1
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
2
|
McGlennon TW, Roberts A, Buchwald JN, Pories WJ, Ahnfeldt EP, Perryman S, Greimel S, Buchwald H. Metabolic Surgery and Chronic Traumatic Encephalopathy: Perceptions of Former NFL Players. Obes Surg 2024; 34:3703-3716. [PMID: 39292334 DOI: 10.1007/s11695-024-07475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Chronic traumatic encephalopathy (CTE) has been diagnosed in 91.7% of retired United States National Football League (NFL) players at postmortem. There is no treatment or cure for CTE. Most living former NFL athletes with probable CTE suffer from obesity and its comorbidities. Our previous reviews document the improvement in cognition following metabolic/bariatric surgery (MBS) (e.g., gastric bypass, sleeve gastrectomy). These operations might reduce microglial maladaptive states, thereby attenuating neurodegeneration and CTE-like neurocognitive impairment. The study evaluated former NFL players' views on metabolic surgery in relation to reduction of obesity and CTE risk. MATERIALS AND METHODS An online multiple-choice questionnaire (30 items, 125 response options, 10-min completion) developed in the Research Electronic Data Capture (REDCap) system was sent to 1,014 athletes screened in 2017-2022 by the Living Heart Foundation. RESULTS From 2/2022 to 7/2023, of 700 surveys opened, 72 (10.3%) of the retired players responded. Mean age was 61.6 ± 12.6 years; 45.0% had the disease of obesity with a mean BMI 35.5 ± 4.6 kg/m2. Thirty-three percent reported ≥ 2 obesity-related comorbidities; 40.3% memory-related TBI symptoms; 66.7% ≥ 1 cognitive symptom; 85.0% believed MBS was safe and effective but were unlikely to elect MBS for weight management. Yet, 57.0% of the entire cohort, and 68.8% of players with obesity were more likely to elect MBS if it could also reduce CTE risk. CONCLUSIONS Results of the study bode well for future research recruitment. Most surveyed retired NFL players with obesity believed MBS to be effective and would be more likely to undergo MBS if it also reduced CTE risk.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, Psychometric Research Analyst, McGlennon MotiMetrics, w4457 120th, Avenue, Maiden Rock, WI, USA.
| | | | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | | | - Sue Greimel
- Aerobic Exercise/Alzheimer's Disease Study, University of Minnesota, Minneapolis, MN, USA
| | - Henry Buchwald
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
4
|
Alabduljabbar K, Bonanos E, Miras AD, le Roux CW. Mechanisms of Action of Bariatric Surgery on Body Weight Regulation. Gastroenterol Clin North Am 2023; 52:691-705. [PMID: 37919021 DOI: 10.1016/j.gtc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Bariatric surgery is an effective treatment modality for obesity and obesity-associated complications. Weight loss after bariatric surgery was initially attributed to anatomic restriction or reduced energy absorption, but now it is understood that surgery treats obesity by influencing the subcortical areas of the brain to lower adipose tissue mass. There are three major phases of this process: initially the weight loss phase, followed by a phase where weight loss is maintained, and in a subset of patients a phase where weight is regained. These phases are characterized by altered appetitive behavior together with changes in energy expenditure. The mechanisms associated with the rearrangement of the gastrointestinal tract include central appetite control, release of gut peptides, change in microbiota and bile acids. However, the exact combination and timing of signals remain largely unknown.
Collapse
Affiliation(s)
- Khaled Alabduljabbar
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland; Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev 2022; 43:19-34. [PMID: 34363458 PMCID: PMC8755990 DOI: 10.1210/endrev/bnab022] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore.,University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland.,Diabetes Research Group, School of Biomedical Science, Ulster University, Belfast, UK
| |
Collapse
|
6
|
Zhou M, Wang L, Zhou L, Chang X, Zhu X. Novel Insight into the Mechanism of Metabolic Surgery Causing the Diversity in Glycemic Status in Type 2 Diabetes. Exp Clin Endocrinol Diabetes 2022; 130:484-492. [PMID: 34979572 DOI: 10.1055/a-1708-3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic surgery results in diverse glycemic status in patients with type 2 diabetes (T2D), including hyperglycemia without remission, significant amelioration of hyperglycemia with partial remission, complete restoration of euglycemia, or with prolonged remission, hyperglycemia recurrence in relapses after remission, or post-bariatric hypoglycemia. Unfortunately, it is not known how metabolic surgery leads to this diverse consequence. Here, we discuss the diversity of glycemic status associated with metabolic surgery and the potential mechanisms of T2D remission. We also highlight the relationship between the change in low-grade inflammation and T2D remission after metabolic surgery. We hypothesize that the level of inflammatory and anti-inflammatory cytokines controls the efficacy of metabolic surgery in patients with T2D. This hypothesis may provide further insight into the mechanism of the beneficial effects of metabolic surgery patients with T2D.
Collapse
Affiliation(s)
- Mengxiao Zhou
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China.,Department of Blood Transfusion, Forth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lijuan Wang
- Department of Day Care Unit, Gansu Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Lujin Zhou
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| | - Xiaotong Chang
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| | - Xiaobo Zhu
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| |
Collapse
|
7
|
Chen J, Haase N, Haange SB, Sucher R, Münzker J, Jäger E, Schischke K, Seyfried F, von Bergen M, Hankir MK, Krügel U, Fenske WK. Roux-en-Y gastric bypass contributes to weight loss-independent improvement in hypothalamic inflammation and leptin sensitivity through gut-microglia-neuron-crosstalk. Mol Metab 2021; 48:101214. [PMID: 33741533 PMCID: PMC8095174 DOI: 10.1016/j.molmet.2021.101214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Hypothalamic inflammation and endoplasmic reticulum (ER) stress are extensively linked to leptin resistance and overnutrition-related diseases. Surgical intervention remains the most efficient long-term weight-loss strategy for morbid obesity, but mechanisms underlying sustained feeding suppression remain largely elusive. This study investigated whether Roux-en-Y gastric bypass (RYGB) interacts with obesity-associated hypothalamic inflammation to restore central leptin signaling as a mechanistic account for post-operative appetite suppression. Methods RYGB or sham surgery was performed in high-fat diet-induced obese Wistar rats. Sham-operated rats were fed ad libitum or by weight matching to RYGB via calorie restriction (CR) before hypothalamic leptin signaling, microglia reactivity, and the inflammatory pathways were examined to be under the control of gut microbiota-derived circulating signaling. Results RYGB, other than CR-induced adiposity reduction, ameliorates hypothalamic gliosis, inflammatory signaling, and ER stress, which are linked to enhanced hypothalamic leptin signaling and responsiveness. Mechanistically, we demonstrate that RYGB interferes with hypothalamic ER stress and toll-like receptor 4 (TLR4) signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the altered gut microbial environment upon RYGB surgery. Conclusions Our data demonstrate that RYGB interferes with hypothalamic TLR4 signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the post-surgical altered gut microbial environment. RYGB surgery-related weight loss independently restores hypothalamic leptin signaling and action in diet-induced obesity. RGYB modulates hypothalamic TLR4-mediated pro-inflammatory signaling and ER stress to restore leptin's anorexigenic action. Humoral factors contribute to modulated microglia-POMC neuron interaction, which appears specific to the RYGB procedure. Altering the gut microbiota environment by antibiotics deteriorates leptin's feeding suppressive action after RYGB.
Collapse
Affiliation(s)
- Jiesi Chen
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Nadine Haase
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Robert Sucher
- Division of Bariatric Surgery, Clinic of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital, Liebigstraße 20, D-4015, Leipzig, Germany
| | - Julia Münzker
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Elisabeth Jäger
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Kristin Schischke
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital, Würzburg, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Wiebke K Fenske
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany; Division of Endocrinology, Diabetes, and Metabolism, Medical Department I, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
McGlennon TW, Buchwald JN, Pories WJ, Yu F, Roberts A, Ahnfeldt EP, Menon R, Buchwald H. PART 3 Bypassing TBI: Metabolic Surgery and the Link Between Obesity and Traumatic Brain Injury-a Review. Obes Surg 2021; 31:477-480. [PMID: 33398623 DOI: 10.1007/s11695-020-05176-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Obesity is a common outcome of traumatic brain injury (TBI) that exacerbates principal TBI symptom domains identified as common areas of post-TBI long-term dysfunction. Obesity is also associated with increased risk of later-life dementia and Alzheimer's disease. Patients with obesity and chronic TBI may be more vulnerable to long-term mental abnormalities. This review explores the question of whether weight loss induced by bariatric surgery could delay or perhaps even reverse the progression of mental deterioration. Bariatric surgery, with its induction of weight loss, remission of type 2 diabetes, and other expressions of the metabolic syndrome, improves metabolic efficiency, leads to reversal of brain lesions seen on imaging studies, and improves function. These observations suggest that metabolic/bariatric surgery may be a most effective therapy for TBI.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | | | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Rukmini Menon
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Henry Buchwald
- Surgery and Biomedical Engineering, Owen H. & Sarah Davidson Wangensteen Chair in Experimental Surgery, Emeritus, University of Minnesota Medical School, 420 Delaware Street SE, MMC 195, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Ceglarek VM, Bertasso IM, Pietrobon CB, Scomazzon SP, Leite NC, Bonfleur ML, Araújo ACF, Balbo SL, Grassiolli S. Maternal Roux-en-Y gastric bypass surgery reduces lipid deposition and increases UCP1 expression in the brown adipose tissue of male offspring. Sci Rep 2021; 11:1158. [PMID: 33441773 PMCID: PMC7806700 DOI: 10.1038/s41598-020-80104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity induced by cafeteria diet (CAF) predisposes offspring to obesity and metabolic diseases, events that could be avoided by maternal bariatric surgery (BS). Herein we evaluated whether maternal BS is able to modulate brown adipose tissue (BAT) morphology and function in adult male rats born from obese female rats submitted to Roux-en-Y gastric bypass (RYGB). For this, adult male rat offspring were obtained from female rats that consumed standard diet (CTL), or CAF diet, and were submitted to simulated operation or RYGB. Analysis of offspring showed that, at 120 days of life, the maternal CAF diet induced adiposity and decreased the expression of mitochondrial Complex I (CI) and Complex III (CIII) in the BAT, resulting in higher accumulation of lipids than in BAT from offspring of CTL dams. Moreover, maternal RYGB increased UCP1 expression and prevented excessive deposition of lipids in the BAT of adult male offspring rats. However, maternal RYGB failed to reverse the effects of maternal diet on CI and CIII expression. Thus, maternal CAF promotes higher lipid deposition in the BAT of offspring, contributing to elevated adiposity. Maternal RYGB prevented obesity in offspring, probably by increasing the expression of UCP1.
Collapse
Affiliation(s)
- Vanessa Marieli Ceglarek
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil. .,Institute of Basic Health Sciences. Biological Sciences: Physiology, postgraduate. Department of Physiology, Room 337-7, Laboratory of Neurophysiology of Cognition and Development of the Brain, Federal University of Rio Grande do Sul, 500, Sarmento Leite - Farroupilha, Porto Alegre, RS, 90050-170, Brazil.
| | - Iala Milene Bertasso
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sofia Pizzato Scomazzon
- Medical Sciences: Endocrinology Post Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nayara Carvalho Leite
- Obesity Comorbidities and Research Center, University of Campinas, Campinas, SP, Brazil
| | - Maria Lúcia Bonfleur
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Allan Cezar Faria Araújo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| |
Collapse
|
10
|
McGlennon TW, Buchwald JN, Pories WJ, Yu F, Roberts A, Ahnfeldt EP, Menon R, Buchwald H. Part 2: Bypassing TBI-Metabolic Surgery and the Link Between Obesity and Traumatic Brain Injury-A Review. Obes Surg 2021; 31:26-35. [PMID: 33405185 DOI: 10.1007/s11695-020-05142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Obesity is a common outcome of traumatic brain injury (TBI) that exacerbates principal TBI symptom domains identified as common areas of post-TBI long-term dysfunction. Obesity is also associated with increased risk of later-life dementia and Alzheimer's disease. Patients with obesity and chronic TBI may be more vulnerable to long-term mental abnormalities. This review explores the question of whether weight loss induced by bariatric surgery could delay or perhaps even reverse the progression of mental deterioration. Bariatric surgery, with its induction of weight loss, remission of type 2 diabetes, and other expressions of the metabolic syndrome, improves metabolic efficiency, leads to reversal of brain lesions seen on imaging studies, and improves function. These observations suggest that metabolic/bariatric surgery may be the most effective therapy for TBI.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | | | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Rukmini Menon
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Henry Buchwald
- University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
12
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
13
|
Abstract
Reviewed here are multiple mouse models of vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) that have emerged over the past decade. These models use diverse approaches to both operative and perioperative procedures. Scrutinizing the benefits and pitfalls of each surgical model and what to expect in terms of post-operative outcomes will enhance our assessment of studies using mouse models, as well as advance our understanding of their translational potential. Two mouse models of bariatric surgery, VSG-lembert and RYGB-small pouch, demonstrate low mortality and most closely recapitulate the human forms of surgery. The use of liquid diets can be minimized, and in mice, RYGB demonstrates more reliable and longer lasting effects on weight loss compared to that of VSG.
Collapse
|
14
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
15
|
Hankir MK, Rullmann M, Seyfried F, Preusser S, Poppitz S, Heba S, Gousias K, Hoyer J, Schütz T, Dietrich A, Müller K, Pleger B. Roux-en-Y gastric bypass surgery progressively alters radiologic measures of hypothalamic inflammation in obese patients. JCI Insight 2019; 4:131329. [PMID: 31465301 DOI: 10.1172/jci.insight.131329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Rullmann
- IFB AdiposityDiseases and.,Department of Nuclear Medicine, University Hospital Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sven Preusser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sindy Poppitz
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Konstantinos Gousias
- Department of Neurosurgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jana Hoyer
- Department of Behavioral Epidemiology, Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | | | - Arne Dietrich
- IFB AdiposityDiseases and.,Department of Bariatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Burkhard Pleger
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany.,Department of Neurology and
| |
Collapse
|