1
|
Lu Y, Han S, Hu J, Lv K, Ruan Y, Cheng G, Zhang J, Wu X, Weng Z, Zhou X. Deciphering the senescence-based tumoral heterogeneity and characteristics in pancreatic cancer: Results from parallel bulk and single-cell transcriptome data. IUBMB Life 2025; 77:e70001. [PMID: 39865528 DOI: 10.1002/iub.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025]
Abstract
The prevalent intra- and intertumoral heterogeneity results in undesirable prognosis and therapy failure of pancreatic cancer, potentially resulting from cellular senescence. Herein, integrated analysis of bulk and single-cell RNA-seq profiling was conducted to characterize senescence-based heterogeneity in pancreatic cancer. Publicly available bulk and single-cell RNA sequencing from pancreatic cancer patients were gathered from TCGA-PAAD, PACA-AU, PACA-CA, and GSE154778 datasets. The activity of three senescence-related pathways (cell cycle, DNA repair, and inflammation) was scored utilizing ssGSEA algorithm. A series of functional verifications of crucial genes were accomplished in patient tissue and pancreatic cancer cells. Based upon them, unsupervised clustering analysis was executed to classify pancreatic cancer samples into distinct senescence-based clusters at the bulk and single-cell levels. For single-cell transcriptome profiling, cell clustering and annotation were implemented, and malignant cells were recognized utilizing infercnv algorithm. Two senescence-based clusters were established and highly reproducible at the bulk level, with the heterogeneity in prognosis, clinicopathological features, genomic CNVs, oncogenic pathway activity, immune microenvironment and immune checkpoints. Senescence-relevant gene CHGA, UBE2C and MCM10 were proved to correlate with the migration and prognosis of pancreatic cancer. At the single-cell level, seven cell types were annotated, comprising ductal cells 1, ductal cells 2, fibroblasts, macrophages, T cells, stellate cells, and endothelial cells. The senescence-based classification was also proven at the single-cell level. Ductal cells were classified as malignant cells and non-malignant cells. In the tumor microenvironment of malignant cells, hypoxia and angiogenesis affected senescent phenotype. The heterogeneity in senescence was also observed between and within cell types. Altogether, our findings unveil that cellular senescence contributes to intra- and intertumoral heterogeneity in pancreatic cancer, which might facilitate the development of therapeutics and precision therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Yeting Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Shuo Han
- Ningbo Healthcare Security Fund Management Center, Ningbo, Zhejiang, People's Republic of China
| | - Jing Hu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Kaiji Lv
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Yi Ruan
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Gong Cheng
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Xiang Wu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China
| | - Zeming Weng
- Department of Urology, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| | - Xinhua Zhou
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Limbu KR, Chhetri RB, Kim S, Shrestha J, Oh YS, Baek DJ, Park EY. Targeting sphingosine 1-phosphate and sphingosine kinases in pancreatic cancer: mechanisms and therapeutic potential. Cancer Cell Int 2024; 24:353. [PMID: 39462385 PMCID: PMC11514880 DOI: 10.1186/s12935-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Pancreatic cancer is known to be the most lethal cancer. Fewer new treatments are being developed for pancreatic cancer as compared to other cancers. The bioactive lipid S1P, which is mainly regulated by sphingosine kinase 1 (SK1) and sphingosine kinase 2 (SK2) enzymes, plays significant roles in pancreatic cancer initiation and exacerbation. S1P controls many signaling pathways to modulate the progression of pancreatic cancer through the G-coupled receptor S1PR1-5. Several papers reporting amelioration of pancreatic cancer via modulation of S1P levels or downstream signaling pathways have previously been published. In this paper, for the first time, we have reviewed the results of previous studies to understand how S1P and its receptors contribute to the development of pancreatic cancer, and whether S1P can be a therapeutic target. In addition, we have also reviewed papers dealing with the effects of SK1 and SK2, which are kinases that regulate the level of S1P, on the pathogenesis of pancreatic cancer. We have also listed available drugs that particularly focus on S1P, S1PRs, SK1, and SK2 for the treatment of pancreatic cancer. Through this review, we would like to suggest that the SK/S1P/S1PR signaling system can be an important target for treating pancreatic cancer, where a new treatment target is desperately warranted.
Collapse
Affiliation(s)
- Khem Raj Limbu
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | | | - Subin Kim
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, South Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| |
Collapse
|
3
|
Aslan M, Ozturk S, Shahbazi R, Bozdemir Ö, Dilara Zeybek N, Vargel İ, Eroğlu İ, Ulubayram K. Therapeutic targeting of siRNA/anti-cancer drug delivery system for non-melanoma skin cancer. Part I: Development and gene silencing of JAK1siRNA/5-FU loaded liposome nanocomplexes. Eur J Pharm Biopharm 2024; 203:114432. [PMID: 39097115 DOI: 10.1016/j.ejpb.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Non-melanoma skin cancer (NMSC) is one of the most prevalent cancers, leading to significant mortality rates due to limited treatment options and a lack of effective therapeutics. Janus kinase (JAK1), a non-receptor tyrosine kinase family member, is involved in various cellular processes, including differentiation, cell proliferation and survival, playing a crucial role in cancer progression. This study aims to provide a more effective treatment for NMSC by concurrently silencing the JAK1 gene and administering 5-Fluorouracil (5-FU) using liposome nanocomplexes as delivery vehicles. Utilizing RNA interference (RNAi) technology, liposome nanocomplexes modified with polyethylene imine (PEI) were conjugated with siRNA molecule targeting JAK1 and loaded with 5-FU. The prepared formulations (NL-PEI) were characterized in terms of their physicochemical properties, morphology, encapsulation efficiency, in vitro drug release, and stability. Cell cytotoxicity, cell uptake and knockdown efficiency were evaluated in human-derived non-melanoma epidermoid carcinoma cells (A-431). High contrast transmission electron microscopy (CTEM) images and dynamic light scattering (DLS) measurements revealed that the nanocomplexes formed spherical morphology with uniform sizes ranging from 80-120 nm. The cationic NL-PEI nanocomplexes successfully internalized within the cytoplasm of A-431, delivering siRNA for specific sequence binding and JAK1 gene silencing. The encapsulation of 5-FU in the nanocomplexes was achieved at 0.2 drug/lipid ratio. Post-treatment with NL-PEI for 24, 48 and 72 h showed cell viability above 80 % at concentrations up to 8.5 × 101 µg/mL. Notably, 5-FU delivery via nanoliposome formulations significantly reduced cell viability at 5-FU concentration of 5 µM and above (p < 0.05) after 24 h of incubation. The NL-PEI nanocomplexes effectively silenced the JAK1 gene in vitro, reducing its expression by 50 %. Correspondingly, JAK1 protein level decreased after transfection with JAK1 siRNA-conjugated liposome nanocomplexes, leading to a 37 % reduction in pERK (phosphor extracellular signal-regulated kinase) protein expression. These findings suggest that the combined delivery of JAK1 siRNA and 5-FU via liposomal formulations offers a promising and novel treatment strategy for targeting genes and other identified targets in NMSC therapy.
Collapse
Affiliation(s)
- Minela Aslan
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reza Shahbazi
- School of Medicine, Indiana University, Indianapolis, IN
| | - Özlem Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İbrahim Vargel
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Kezban Ulubayram
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Zhao W, Wu Y, Wang S, Zhao F, Liu W, Xue Z, Zhang L, Wang J, Han M, Li X, Huang B. HTRA1 promotes EMT through the HDAC6/Ac-α-tubulin pathway in human GBM cells. CNS Neurosci Ther 2024; 30:e14605. [PMID: 38334007 PMCID: PMC10853898 DOI: 10.1111/cns.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The infiltrative nature of human gliomas renders complete surgical removal of tumors futile. Thus, illuminating mechanisms of their infiltrative properties may improve therapies and outcomes of glioma patients. METHODS Comprehensive bioinformatic analyses of PRSS family were undertaken. Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, and colony formation assay were employed to assess cell viability, and cell migration/invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion assays. Immunoprecipitation was applied to study the mechanism that HTRA1 affected cell migration. In addition, in situ xenograft tumor model was employed to explore the role of HTRA1 in glioma growth in vivo. RESULTS HTRA1 knockdown could lead to suppression of cell viability, migration and invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 might facilitate combination between HDAC6 and α-tubulin to enhance cell migration by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth of xenografts derived from orthotopic implantation of GBM cells and prolonged the survival time of tumor-bearing mice. CONCLUSION Our results indicate that HTRA1 promotes the proliferation and migration of GBM cells in vitro and in vivo, and thus may be a potential target for treatment in gliomas.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Yibo Wu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Shuai Wang
- University of Pittsburgh Medical Center Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Feihu Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Wenyu Liu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Zhiyi Xue
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Lin Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Jian Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Mingzhi Han
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xingang Li
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Bin Huang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| |
Collapse
|
5
|
Pourali G, Donyadideh G, Mehrabadi S, Hamid F, Hassanian SM, Ferns GA, Khazaei M, Avan A. Clinical practice guidelines for interventional treatment of pancreatic cancer. RECENT ADVANCES IN NANOCARRIERS FOR PANCREATIC CANCER THERAPY 2024:345-373. [DOI: 10.1016/b978-0-443-19142-8.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
6
|
Jamali E, Safarzadeh A, Hussen BM, Liehr T, Ghafouri-Fard S, Taheri M. Single cell RNA-seq analysis with a systems biology approach to recognize important differentially expressed genes in pancreatic ductal adenocarcinoma compared to adjacent non-cancerous samples by targeting pancreatic endothelial cells. Pathol Res Pract 2023; 248:154614. [PMID: 37329816 DOI: 10.1016/j.prp.2023.154614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is usually diagnosed at late stages. This highly aggressive tumor is resistant to most therapeutic approaches, necessitating identification of differentially expressed genes to design new therapies. Herein, we have analyzed single cell RNA-seq data with a systems biology approach to identify important differentially expressed genes in PDAC samples compared to adjacent non-cancerous samples. Our approach revealed 1462 DEmRNAs, including 1389 downregulated DEmRNAs (like PRSS1 and CLPS) and 73 upregulated DEmRNAs (like HSPA1A and SOCS3), 27 DElncRNAs, including 26 downregulated DElncRNAs (like LINC00472 and SNHG7) and 1 upregulated DElncRNA (SNHG5). We also listed a number of dysregulated signaling pathways, abnormally expressed genes and aberrant cellular functions in PDAC which can be used as possible biomarkers and therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
- Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Girodon E, Rebours V, Chen JM, Pagin A, Levy P, Ferec C, Bienvenu T. WITHDRAWN: Clinical interpretation of PRSS1 gene variants in patients with pancreatitis. Clin Res Hepatol Gastroenterol 2022; 46:101531. [PMID: 36057185 DOI: 10.1016/j.clinre.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/27/2020] [Indexed: 02/04/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Clinics and Research in Hepatology and Gastroenterology, Volume 45, Issue 1, 2021, 101497. https://doi.org/10.1016/j.clinre.2020.07.004. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Emmanuelle Girodon
- Laboratoire de G..n..tique et Biologie Mol..culaires, H..pital Cochin, APHP.Centre-Universit.. de Paris, France
| | - Vinciane Rebours
- Service de Pancr..atologie-Gastroent..rologie, P..le des Maladies de l'Appareil Digestif, Universit.. Denis Diderot, H..pital Beaujon, APHP, DHU UNITY, Clichy, and Centre de R..f..rence des Maladies Rares du Pancr..as...PAncreaticRaresDISeases (PaRaDis), France
| | - Jian Min Chen
- INSERM UMR1078 "G..n..tique, G..nomique Fonctionnelle et Biotechnologies", EFS - Bretagne, Universit.. de Brest, CHRU Brest, Brest, France
| | - Adrien Pagin
- CHU Lille, Service de Toxicologie et G..nopathies, Lille, France
| | - Philippe Levy
- Service de Pancr..atologie-Gastroent..rologie, P..le des Maladies de l'Appareil Digestif, Universit.. Denis Diderot, H..pital Beaujon, APHP, DHU UNITY, Clichy, and Centre de R..f..rence des Maladies Rares du Pancr..as...PAncreaticRaresDISeases (PaRaDis), France
| | - Claude Ferec
- INSERM UMR1078 "G..n..tique, G..nomique Fonctionnelle et Biotechnologies", EFS - Bretagne, Universit.. de Brest, CHRU Brest, Brest, France
| | - Thierry Bienvenu
- Laboratoire de G..n..tique et Biologie Mol..culaires, H..pital Cochin, APHP.Centre-Universit.. de Paris, France.
| |
Collapse
|
8
|
Abstract
It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.
Collapse
Affiliation(s)
- Petr SUHAJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas OLEJAR
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav MATEJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Department of Pathology, University Hospital Kralovske Vinohrady, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Liu Y, Wang T, Duggan B, Sharpnack M, Huang K, Zhang J, Ye X, Johnson TS. SPCS: a spatial and pattern combined smoothing method for spatial transcriptomic expression. Brief Bioinform 2022; 23:bbac116. [PMID: 35380614 PMCID: PMC9116229 DOI: 10.1093/bib/bbac116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
High-dimensional, localized ribonucleic acid (RNA) sequencing is now possible owing to recent developments in spatial transcriptomics (ST). ST is based on highly multiplexed sequence analysis and uses barcodes to match the sequenced reads to their respective tissue locations. ST expression data suffer from high noise and dropout events; however, smoothing techniques have the promise to improve the data interpretability prior to performing downstream analyses. Single-cell RNA sequencing (scRNA-seq) data similarly suffer from these limitations, and smoothing methods developed for scRNA-seq can only utilize associations in transcriptome space (also known as one-factor smoothing methods). Since they do not account for spatial relationships, these one-factor smoothing methods cannot take full advantage of ST data. In this study, we present a novel two-factor smoothing technique, spatial and pattern combined smoothing (SPCS), that employs the k-nearest neighbor (kNN) technique to utilize information from transcriptome and spatial relationships. By performing SPCS on multiple ST slides from pancreatic ductal adenocarcinoma (PDAC), dorsolateral prefrontal cortex (DLPFC) and simulated high-grade serous ovarian cancer (HGSOC) datasets, smoothed ST slides have better separability, partition accuracy and biological interpretability than the ones smoothed by preexisting one-factor methods. Source code of SPCS is provided in Github (https://github.com/Usos/SPCS).
Collapse
Affiliation(s)
- Yusong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Tongxin Wang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Ben Duggan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Sharpnack
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Travis S Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Fereydouni M, Ahani E, Desai P, Motaghed M, Dellinger A, Metcalfe DD, Yin Y, Lee SH, Kafri T, Bhatt AP, Dellinger K, Kepley CL. Human Tumor Targeted Cytotoxic Mast Cells for Cancer Immunotherapy. Front Oncol 2022; 12:871390. [PMID: 35574362 PMCID: PMC9097604 DOI: 10.3389/fonc.2022.871390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
The diversity of autologous cells being used and investigated for cancer therapy continues to increase. Mast cells (MCs) are tissue cells that contain a unique set of anti-cancer mediators and are found in and around tumors. We sought to exploit the anti-tumor mediators in MC granules to selectively target them to tumor cells using tumor specific immunoglobin E (IgE) and controllably trigger release of anti-tumor mediators upon tumor cell engagement. We used a human HER2/neu-specific IgE to arm human MCs through the high affinity IgE receptor (FcεRI). The ability of MCs to bind to and induce apoptosis of HER2/neu-positive cancer cells in vitro and in vivo was assessed. The interactions between MCs and cancer cells were investigated in real time using confocal microscopy. The mechanism of action using cytotoxic MCs was examined using gene array profiling. Genetically manipulating autologous MC to assess the effects of MC-specific mediators have on apoptosis of tumor cells was developed using siRNA. We found that HER2/neu tumor-specific IgE-sensitized MCs bound, penetrated, and killed HER2/neu-positive tumor masses in vitro. Tunneling nanotubes formed between MCs and tumor cells are described that parallel tumor cell apoptosis. In solid tumor, human breast cancer (BC) xenograft mouse models, infusion of HER2/neu IgE-sensitized human MCs co-localized to BC cells, decreased tumor burden, and prolonged overall survival without indications of toxicity. Gene microarray of tumor cells suggests a dependence on TNF and TGFβ signaling pathways leading to apoptosis. Knocking down MC-released tryptase did not affect apoptosis of cancer cells. These studies suggest MCs can be polarized from Type I hypersensitivity-mediating cells to cytotoxic cells that selectively target tumor cells and specifically triggered to release anti-tumor mediators. A strategy to investigate which MC mediators are responsible for the observed tumor killing is described so that rational decisions can be made in the future when selecting which mediators to target for deletion or those that could further polarize them to cytotoxic MC by adding other known anti-tumor agents. Using autologous human MC may provide further options for cancer therapeutics that offers a unique anti-cancer mechanism of action using tumor targeted IgE’s.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Parth Desai
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Anthony Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sung Hyun Lee
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aadra P. Bhatt
- Lineberger Comprehensive Cancer Center, and the Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
11
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
12
|
Gheorghe G, Diaconu CC, Ionescu V, Constantinescu G, Bacalbasa N, Bungau S, Gaman MA, Stan-Ilie M. Risk Factors for Pancreatic Cancer: Emerging Role of Viral Hepatitis. J Pers Med 2022; 12:83. [PMID: 35055398 PMCID: PMC8780367 DOI: 10.3390/jpm12010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive malignant neoplastic diseases. The incidence and mortality rates of this disease vary depending on geographical area, which might be explained by the different exposure to risk factors. To improve the prognosis of patients with pancreatic cancer, different approaches are needed for an earlier diagnosis. Identification of risk factors and implementation of screening strategies are essential for a better prognosis. Currently, the risk factors for pancreatic cancer fall into two broad categories, namely extrinsic and intrinsic factors. Extrinsic factors include alcohol consumption, smoking, a diet rich in saturated fats, and viral infections such as chronic infection with hepatitis B and C viruses. The pathophysiological mechanisms explaining how these hepatotropic viruses contribute to the development of pancreatic cancer are not fully elucidated. The common origin of hepatocytes and pancreatic cells in the multipotent endodermal cells, the common origin of the blood vessels and biliary ducts of the pancreas and the liver, or chronic inflammatory changes may be involved in this interaction. A careful monitoring of patients with viral liver infections may contribute to the early diagnosis of pancreatic cancer and improve the prognosis of these patients.
Collapse
Affiliation(s)
- Gina Gheorghe
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (G.C.); (M.-A.G.); (M.S.-I.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania;
| | - Camelia Cristina Diaconu
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (G.C.); (M.-A.G.); (M.S.-I.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Vlad Ionescu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania;
| | - Gabriel Constantinescu
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (G.C.); (M.-A.G.); (M.S.-I.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania;
| | - Nicolae Bacalbasa
- Department of Visceral Surgery, “Carol Davila” University of Medicine and Pharmacy, Center of Excellence in Translational Medicine “Fundeni” Clinical Institute, 022328 Bucharest, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Mihnea-Alexandru Gaman
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (G.C.); (M.-A.G.); (M.S.-I.)
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Madalina Stan-Ilie
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (G.C.); (M.-A.G.); (M.S.-I.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania;
| |
Collapse
|
13
|
Guo S, Shi X, Gao S, Hou Q, Jiang L, Li B, Shen J, Wang H, Shen S, Zhang G, Pan Y, Liu W, Xu X, Zheng K, Shao Z, Jing W, Lin L, Li G, Jin G. The Landscape of Genetic Alterations Stratified Prognosis in Oriental Pancreatic Cancer Patients. Front Oncol 2021; 11:717989. [PMID: 34368001 PMCID: PMC8340855 DOI: 10.3389/fonc.2021.717989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic cancer is a life-threatening malignant disease with significant diversity among geographic regions and races leading to distinct carcinogenesis and prognosis. Previous studies mainly focused on Western patients, while the genomic landscape of Oriental patients, especially Chinese, remained less investigated. Methods A total of 408 pancreatic cancer patients were enrolled. A panel containing 436 cancer-related genes was used to detect genetic alterations in tumor samples. Results We profiled the genomic alteration landscape of pancreatic duct adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN), periampullary carcinoma (PVC), and solid-pseudopapillary tumor (SPT). Comparison with a public database revealed specific gene mutations in Oriental PDAC patients including higher mutation rates of DNA damage repair-related genes. Analysis of mutational signatures showed potential heterogenous carcinogenic factors caused by diabetes mellitus. KRAS mutation, especially KRAS G12D mutation, was associated with poor survival, while patients not harboring the 17 significant copy number variations (CNVs) had a better prognosis. We further identified multiple correlations between clinicopathologic variables and genetic mutations, as well as CNVs. Finally, by network-based stratification, three classes of PDAC patients were robustly clustered. Among these, class 1 (characterized by the Fanconi anemia pathway) achieved the best outcome, while class 2 (involved in the platinum drug resistance pathway) suffered from the worst prognosis. Conclusions In this study, we reported for the first time the genetic alteration landscape of Oriental PDAC patients identifying many Oriental-specific alterations. The relationship between genetic alterations and clinicopathological factors as well as prognosis demonstrated important genomic impact on tumor biology. This study will help to optimize clinical treatment of Oriental PDAC patients and improve their survival.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China.,Department of General Surgery, Naval Medical Center of People's Liberation Army (PLA), Shanghai, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Qunxing Hou
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Medical Diagnostics Co., Ltd, Shanghai, China
| | - Lisha Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Medical Diagnostics Co., Ltd, Shanghai, China
| | - Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Jing Shen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Shuo Shen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - GuoXiao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Yaqi Pan
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Wuchao Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Xiongfei Xu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Zhuo Shao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Ling Lin
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Medical Diagnostics Co., Ltd, Shanghai, China
| | - Gang Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
14
|
Clément F, Nougarède A, Combe S, Kermarrec F, Dey AK, Obeid P, Millet A, Navarro FP, Marche PN, Sulpice E, Gidrol X. Therapeutic siRNAs Targeting the JAK/STAT Signalling Pathway in Inflammatory Bowel Diseases. J Crohns Colitis 2021; 16:286-300. [PMID: 34286840 PMCID: PMC8864631 DOI: 10.1093/ecco-jcc/jjab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Flora Clément
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Adrien Nougarède
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Stéphanie Combe
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | | | - Arindam K Dey
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Patricia Obeid
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Arnaud Millet
- Univ. Grenoble Alpes, Inserm U1209, CNRS UMR5309, Team Mechanobiology, immunity and Cancer, Institute for Advanced Biosciences, La Tronche, France
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Patrice N Marche
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Eric Sulpice
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Corresponding author: Xavier Gidrol, Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000, Grenoble, France. Tel: +(33)4 38 78 22 36; Fax: +(33)4 38 78 59 17;
| |
Collapse
|
15
|
Huang H, Du J, Jin B, Pang L, Duan N, Huang C, Hou J, Yu W, Hao H, Li H. Combination of Urine Exosomal mRNAs and lncRNAs as Novel Diagnostic Biomarkers for Bladder Cancer. Front Oncol 2021; 11:667212. [PMID: 33987102 PMCID: PMC8111292 DOI: 10.3389/fonc.2021.667212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background The recent discovery of miRNAs and lncRNAs in urine exosomes has emerged as promising diagnostic biomarkers for bladder cancer (BCa). However, mRNAs as the direct products of transcription has not been well evaluated in exosomes as biomarkers for BCa diagnosis. The purpose of this study was to identify tumor progression-related mRNAs and lncRNAs in urine exosomes that could be used for detection of BCa. Methods RNA-sequencing was performed to identify tumor progression-related biomarkers in three matched superficial tumor and deep infiltrating tumor regions of muscle-invasive bladder cancer (MIBC) specimens, differently expressed mRNAs and lncRNAs were validated in TCGA dataset (n = 391) in the discovery stage. Then candidate RNAs were chosen for evaluation in urine exosomes of a training cohort (10 BCa and 10 healthy controls) and a validation cohort (80 BCa and 80 healthy controls) using RT-qPCR. The diagnostic potential of the candidates were evaluated by receiver operating characteristic (ROC) curves. Results RNA sequencing revealed 8 mRNAs and 32 lncRNAs that were significantly upregulated in deep infiltrating tumor region. After validation in TCGA database, 10 markedly dysregulated RNAs were selected for further investigation in urine exosomes, of which five (mRNAs: KLHDC7B, CASP14, and PRSS1; lncRNAs: MIR205HG and GAS5) were verified to be significantly dysregulated. The combination of the five RNAs had the highest AUC to disguising the BCa (0.924, 95% CI, 0.875–0.974) or early stage BCa patients (0.910, 95% CI, 0.850 to 0.971) from HCs. The expression levels of these five RNAs were correlated with tumor stage, grade, and hematuria degrees. Conclusions These findings highlight the potential of urine exosomal mRNAs and lncRNAs profiling in the early diagnosis and provide new insights into the molecular mechanisms involved in BCa.
Collapse
Affiliation(s)
- Haiming Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jialin Du
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Lu Pang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Nan Duan
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chenwei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiayin Hou
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Han Hao
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin Res Hepatol Gastroenterol 2021; 45:101497. [PMID: 33257277 DOI: 10.1016/j.clinre.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 02/04/2023]
Abstract
Since the description of the PRSS1 gene encoding the cationic trypsinogen as being involved in dominant hereditary pancreatitis, more than 50 PRSS1 variants have been reported. Among the PRSS1 variants that have been classified as pathogenic, some have a high penetrance and others have a low penetrance. Assessing the clinical relevance of PRSS1 variants is often complicated in the absence of functional evidence and interpretation of rare variants is not very easy in clinical practice. The aim of this study was to review the different variants identified in the PRSS1 gene and to classify them according to their degree of deleterious effect. This classification was based on the results of several in vitro experiments and on population data, in comparing the allelic frequency of each variant in patients with pancreatitis and in unaffected individuals. This review should help geneticists and clinicians in charge of patient's care and genetic counseling to interpret molecular results.
Collapse
|
17
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|