1
|
Xian G, Huang R, Hu D, Xu M, Chen Y, Ren H, Xu D, Zeng Q. Interleukin-37 attenuates aortic valve lesions by inhibiting N6-methyladenosine-mediated interleukin-1 receptor-associated kinase M degradation. Cardiovasc Res 2025; 121:492-506. [PMID: 39913240 DOI: 10.1093/cvr/cvaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/11/2024] [Accepted: 11/12/2024] [Indexed: 02/26/2025] Open
Abstract
AIMS Calcific aortic valve disease (CAVD) has become an increasingly important global medical problem without effective pharmacological intervention. Accumulating evidence indicates that aortic valve calcification is driven by inflammation. Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator of inflammation, but its role in CAVD remains unclear. METHODS AND RESULTS Here, we stimulated aortic valve interstitial cells (AVICs) with low-dose lipopolysaccharide (LPS) to mimic the inflammatory response in aortic valve calcification and observed the expression pattern of IRAK-M. Furthermore, we generated IRAK-M-/- mice to explore the effect of IRAK-M deficiency on the aortic valve in vivo. Additionally, overexpression and knockdown experiments were performed to verify the role of IRAK-M in AVICs. Methylated RNA immunoprecipitation-quantitative polymerase chain reaction was used to detect the N6-methyladenosine (m6A) level of IRAK-M, and recombinant interleukin (IL)-37-treated AVICs were used to determine the regulatory relationship between IL-37 and IRAK-M. We found that IRAK-M expression was upregulated in the early stages of inflammation as part of a negative feedback mechanism to modulate the immune response. However, persistent inflammation increased overall m6A levels, ultimately leading to reduced IRAK-M expression. In vivo, IRAK-M-/- mice exhibited a propensity for aortic valve thickening and calcification. Overexpression and knockdown experiments showed that IRAK-M inhibited inflammation and osteogenic responses in AVICs. In addition, IL-37 restored IRAK-M expression by inhibiting m6A-mediated IRAK-M degradation to suppress inflammation and aortic valve calcification. CONCLUSION Our findings confirm that inflammation and epigenetic modifications synergistically regulate IRAK-M expression. Moreover, IRAK-M represents a potential target for mitigating aortic valve calcification. Meanwhile, IL-37 exhibited inhibitory effects on CAVD development both in vivo and in vitro, giving us hope that CAVD can be treated with drugs rather than surgery.
Collapse
Affiliation(s)
- Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Rong Huang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Minhui Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hao Ren
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
2
|
Chen LZ, Zheng PF, Shi XJ. Multiomics identification of ALDH9A1 as a crucial immunoregulatory molecule involved in calcific aortic valve disease. Sci Rep 2024; 14:23577. [PMID: 39384885 PMCID: PMC11464510 DOI: 10.1038/s41598-024-75115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Mitochondrial dysfunction and immune cell infiltration play crucial yet incompletely understood roles in the pathogenesis of calcific aortic valve disease (CAVD). This study aimed to identify immune-related mitochondrial genes critical to the pathological process of CAVD using multiomics approaches. The CIBERSORT algorithm was employed to evaluate immune cell infiltration characteristics in CAVD patients. An integrative analysis combining weighted gene coexpression network analysis (WGCNA), machine learning, and summary data-based Mendelian randomization (SMR) was performed to identify key mitochondrial genes implicated in CAVD. Spearman's rank correlation analysis was also performed to assess the relationships between key mitochondrial genes and infiltrating immune cells. Compared with those in normal aortic valve tissue, an increased proportion of M0 macrophages and resting memory CD4 T cells, along with a decreased proportion of plasma cells and activated dendritic cells, were observed in CAVD patients. Additionally, eight key mitochondrial genes associated with CAVD, including PDK4, LDHB, SLC25A36, ALDH9A1, ECHDC2, AUH, ALDH2, and BNIP3, were identified through the integration of WGCNA and machine learning methods. Subsequent SMR analysis, incorporating multiomics data, such as expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (mQTLs), revealed a significant causal relationship between ALDH9A1 expression and a reduced risk of CAVD. Moreover, ALDH9A1 expression was inversely correlated with M0 macrophages and positively correlated with M2 macrophages. These findings suggest that increased ALDH9A1 expression is significantly associated with a reduced risk of CAVD and that it may exert its protective effects by modulating mitochondrial function and immune cell infiltration. Specifically, ALDH9A1 may contribute to the shift from M0 macrophages to anti-inflammatory M2 macrophages, potentially mitigating the pathological progression of CAVD. In conclusion, ALDH9A1 represents a promising molecular target for the diagnosis and treatment of CAVD. However, further validation through in vivo and n vitro studies is necessary to confirm its role in CAVD pathogenesis and therapeutic potential.
Collapse
Affiliation(s)
- Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, No. 36 QianYuan Lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
- Institute of cardiovascular epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Xiang-Jiang Shi
- Department of Cardiology, The Central Hospital of ShaoYang, No. 36 QianYuan Lane, Daxiang District, Shaoyang, 422000, Hunan, China.
| |
Collapse
|
3
|
The E, Zhai Y, Yao Q, Ao L, Fullerton DA, Meng X. Molecular Interaction of Soluble Klotho with FGF23 in the Pathobiology of Aortic Valve Lesions Induced by Chronic Kidney Disease. Int J Biol Sci 2024; 20:3412-3425. [PMID: 38993571 PMCID: PMC11234222 DOI: 10.7150/ijbs.92447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 07/13/2024] Open
Abstract
Chronic kidney disease (CKD) is linked to greater prevalence and rapid progression of calcific aortic valve disease (CAVD) characterized by valvular leaflet fibrosis and calcification. Fibroblast growth factor 23 (FGF23) level is elevated, and anti-aging protein Klotho is reduced in CKD patients. However, the roles of FGF23 and Klotho in the mechanism of aortic valve fibrosis and calcification remain unclear. We hypothesized that FGF23 mediates CKD-induced CAVD by enhancing aortic valve interstitial cell (AVIC) fibrosis and calcification, while soluble Klotho inhibits FGF23 effect. Methods and Results: In an old mouse model of CKD, kidney damages were accompanied by aortic valve thickening and calcification. FGF23 levels in plasma and aortic valve were increased, while Klotho levels were decreased. Recombinant FGF23 elevated the inflammatory, fibrogenic, and osteogenic activities in AVICs. Neutralizing antibody or shRNA targeting FGF23 suppressed the pathobiological activities in AVICs from valves affected by CAVD. FGF23 exerts its effects on AVICs via FGF receptor (FGFR)/Yes-associated protein (YAP) signaling, and inhibition of FGFR/YAP reduced FGF23's potency in AVICs. Recombinant Klotho downregulated the pathobiological activities in AVICs exposed to FGF23. Incubation of FGF23 with Klotho formed complexes and decreased FGF23's potency. Further, treatment of CKD mice with recombinant Klotho attenuated aortic valve lesions. Conclusion: This study demonstrates that CKD induces FGF23 accumulation, Klotho insufficiency and aortic valve lesions in old mice. FGF23 upregulates the inflammatory, fibrogenic and osteogenic activities in AVICs via the FGFR/YAP signaling pathway. Soluble Klotho suppresses FGF23 effect through molecular interaction and is capable of mitigating CKD-induced CAVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianzhong Meng
- Departments of Surgery and Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Yang X, Zeng J, Xie K, Su S, Guo Y, Zhang H, Chen J, Ma Z, Xiao Z, Zhu P, Zheng S, Xu D, Zeng Q. Advanced glycation end product-modified low-density lipoprotein promotes pro-osteogenic reprogramming via RAGE/NF-κB pathway and exaggerates aortic valve calcification in hamsters. Mol Med 2024; 30:76. [PMID: 38840067 PMCID: PMC11155186 DOI: 10.1186/s10020-024-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jingxin Zeng
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kaiji Xie
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Shuwen Su
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yuyang Guo
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Hao Zhang
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jun Chen
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Zhuang Ma
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dingli Xu
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Qingchun Zeng
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
5
|
Tucureanu MM, Ciortan L, Macarie RD, Mihaila AC, Droc I, Butoi E, Manduteanu I. The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction. Int J Mol Sci 2024; 25:3048. [PMID: 38474293 DOI: 10.3390/ijms25053048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.
Collapse
Affiliation(s)
- Monica Madalina Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Razvan Daniel Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Andreea Cristina Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| |
Collapse
|
6
|
Hu DN, Zhang R, Iacob CE, Yao S, Yang SF, Chan CC, Rosen RB. Effects of Toll-like receptor 1 and 2 agonist Pam3CSK4 on uveal melanocytes and relevant experimental mouse model. Exp Eye Res 2024; 239:109749. [PMID: 38113956 DOI: 10.1016/j.exer.2023.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Pam3CSK4 activates Toll-like receptors 2 and 1 (TLR1/2), which recognize mainly molecules from gram-positive pathogens. The effect of Pam3CSK4 on various cytokine and chemokine expression in cultured human uveal melanocytes (UM) has not been studied systematically. The purpose of this study was to investigate the mechanistic expressions of seven cytokines and chemokines of interleukin- (IL-) 6, IL-10, MCP-1 (CCL-2), CXCL-1 (GRO-α), CXCL-8 (IL-8), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) in UM. These cytokines are reported to be increased in intraocular fluids or tissues of the patients with endophthalmitis and non-infectious uveitis, as well as in various experimental animal uveitic models in the literature. Flow cytometry was used to measure the effects of Pam3CSK4 on the expression of TLR1/2 in UM. ELISA and Real-time PCR analysis were used to estimate the ability of Pam3CSK4 to elevate these cytokines and chemokines levels in conditioned media and cell lysates of UM, respectively. Flow cytometry measured and compared the phosphorylated MAPK pathway and activated NF-κB signals pathway in UM, treated with and without Pam3CSK4. ELISA analysis tested the effect of various signal inhibitors (ERK1/2, JNK1/2, p38 and NF-κB) on Pam3CSK4-induced IL-6 levels in cultured UM. The role of TLR2 in Pam3CSK4-induced acute anterior uveitis in experimental mouse model was tested in TLR2 knockout (TLR2 KO) mice and their wild-type C57Bl/6 controls. Pam3CSK4 increased the expression of TLR1/2 proteins in cultured UM. Pam3CSK4 significantly elevated the IL-6, MCP-1, CXCL-1, CXCL-8 protein, and mRNA levels in cultured UM, but not IL-10, TNF-α, or IFN-γ. Pam3CSK4 activated NF-κB, ERK, JNK, and p38 expression. Pam3CSK4-induced expression of IL-6 was decreased by NF-κB, ERK, INK, and p38 inhibitors; especially the NF-κB inhibitor, which can completely block the IL-6 stimulation. Intravitreal injection of Pam3CSK4 induced acute anterior uveitis in C57Bl/6 mice, this effect was significantly reduced in TLR2 KO mice. TLR1/2 plays an important role against invading pathogens, especially gram-positive bacteria; but an excessive reaction to molecules from gram-positive bacteria may promote non-infectious uveitis. UM can produce IL-6, MCP-1, CXCL-1, and CXCL-8, and are one of the target cells of TNF-α and IFN-γ. TLR-2 inhibitors might have a beneficial effect in the treatment of certain types of uveitis and other ocular inflammatory-related diseases and warrant further investigation.
Collapse
Affiliation(s)
- Dan-Ning Hu
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruihua Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Codrin E Iacob
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shen Yao
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard B Rosen
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Abstract
Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.
Collapse
|
8
|
Zhang S, Fan L, Wang Y, Xu J, Shen Q, Xie J, Zeng Z, Zhou T. Dihydromyricetin ameliorates osteogenic differentiation of human aortic valve interstitial cells by targeting c-KIT/interleukin-6 signaling pathway. Front Pharmacol 2022; 13:932092. [PMID: 36003494 PMCID: PMC9393384 DOI: 10.3389/fphar.2022.932092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aims: Calcific aortic valve disease (CAVD) is a chronic cardiovascular disease with high morbidity that lacks effective pharmacotherapeutics. As a natural flavonoid extracted from Ampelopsis grossedentata, dihydromyricetin (DHM) has been shown to be effective in protecting against atherosclerosis; yet, the therapeutic role of DHM in CAVD remains poorly understood. Herein, we aimed to clarify the therapeutic implications of DHM in CAVD and the underlying molecular mechanisms in human valvular interstitial cells (hVICs). Methods and Results: The protein levels of two known osteogenesis-specific genes (alkaline phosphatase, ALP; runt-related transcription factor 2, Runx2) and calcified nodule formation in hVICs were detected by Western blot and Alizarin Red staining, respectively. The results showed that DHM markedly ameliorated osteogenic induction medium (OM)-induced osteogenic differentiation of hVICs, as evidenced by downregulation of ALP and Runx2 expression and decreased calcium deposition. The SwissTargetPrediction database was used to identify the potential AVC-associated direct protein target of DHM. Protein-protein interaction (PPI) analysis revealed that c-KIT, a tyrosine-protein kinase, can act as a credible protein target of DHM, as evidenced by molecular docking. Mechanistically, DHM-mediated inhibition of c-KIT phosphorylation drove interleukin-6 (IL-6) downregulation in CAVD, thereby ameliorating OM-induced osteogenic differentiation of hVICs and aortic valve calcification progression. Conclusion: DHM ameliorates osteogenic differentiation of hVICs by blocking the phosphorylation of c-KIT, thus reducing IL-6 expression in CAVD. DHM could be a viable therapeutic supplement to impede CAVD.
Collapse
Affiliation(s)
- Shaoshao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Fan
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Zeng
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|