1
|
Feng H, Chen Z, Li J, Feng J, Yang F, Meng F, Yin H, Guo Y, Xu H, Liu Y, Liu R, Lou W, Liu L, Han X, Su H, Zhang L. Unveiling circulating targets in pancreatic cancer: Insights from proteogenomic evidence and clinical cohorts. iScience 2025; 28:111693. [PMID: 40060891 PMCID: PMC11889678 DOI: 10.1016/j.isci.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/23/2024] [Accepted: 12/23/2024] [Indexed: 03/04/2025] Open
Abstract
Pancreatic cancer (PC), characterized by the absence of effective biomarkers and therapies, remains highly fatal. Data regarding the correlations between PC risk and individual plasma proteome known for minimally invasive biomarkers are scarce. Here, we analyzed 1,345 human plasma proteins using proteome-wide association studies, identifying 78 proteins significantly associated with PC risk. Of these, four proteins (ROR1, FN1, APOA5, and ABO) showed the most substantial causal link to PC, confirmed through Mendelian randomization and colocalization analyses. Data from two clinical cohorts further demonstrated that FN1 and ABO were notably overexpressed in both blood and tumor samples from PC patients, compared to healthy controls or para-tumor tissues. Additionally, elevated FN1 and ABO levels correlated with shorter median survival in patients. Multiple drugs targeting FN1 or ROR1 are available or in clinical trials. These findings suggest that plasma protein FN1 associated with PC holds potential as both prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Yang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxin Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Runjie Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 201104, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Ma YY, Wang XH, Zeng JY, Chen JB, Niu LZ. Irreversible electroporation combined with anti-programmed cell death protein 1 therapy promotes tumor antigen-specific CD8 + T cell response. World J Gastrointest Oncol 2025; 17:101991. [PMID: 40092962 PMCID: PMC11866226 DOI: 10.4251/wjgo.v17.i3.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is a novel local tumor ablation approach with the potential to activate the host's immune system. However, this approach is insufficient to prevent cancer progression, and complementary approaches are required for effective immunotherapy. AIM To assess the immunomodulatory effects and mechanism of IRE combined anti-programmed cell death protein 1 (PD-1) treatment in subcutaneous pancreatic cancer models. METHODS C57BL-6 tumor-bearing mice were randomly divided into four groups: Control group; IRE group; anti-PD-1 group; and IRE + anti-PD-1 group. Tumor-infiltrating T, B, and natural killer cell levels and plasma concentrations of T helper type 1 cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) were evaluated. Real-time PCR was used to determine the expression of CD8 (marker of CD8+ T cells) in tumor tissues of the mice of all groups at different points of time. The growth curves of tumors were drawn. RESULTS The results demonstrated that the IRE + anti-PD-1 group exhibited significantly higher percentages of T lymphocyte infiltration, including CD4+ and CD8+ T cells compared with the control group. Additionally, the IRE + anti-PD-1 group showed increased infiltration of natural killer and B cells, elevated cytokine levels, and higher CD8 mRNA expression. Tumor volume was significantly reduced in the IRE + anti-PD-1 group, indicating a more pronounced therapeutic effect. CONCLUSION The combination of IRE and anti-PD-1 therapy promotes CD8+ T cell immunity responses, leading to a more effective reduction in tumor volume and improved therapeutic outcomes, which provides a new direction for ablation and immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Yang-Yang Ma
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Xiao-Hua Wang
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Jian-Ying Zeng
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Ji-Bing Chen
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Li-Zhi Niu
- Department of Oncology, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| |
Collapse
|
3
|
Sousa P, Silva L, Câmara JS, Guedes de Pinho P, Perestrelo R. Integrating OMICS-based platforms and analytical tools for diagnosis and management of pancreatic cancer: a review. Mol Omics 2025; 21:108-121. [PMID: 39714229 DOI: 10.1039/d4mo00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy. This review provides an updated overview of recent studies combining multi-OMICs approaches (e.g., proteomics, metabolomics) with analytical tools, highlighting the synergy between high-throughput molecular data generation and precise analytical tools such as LC-MS, GC-MS and MALDI-TOF MS. This combination significantly improves the detection, quantification and identification of biomolecules in complex biological systems and represents the latest advances in understanding PaC management and the search for effective diagnostic tools. Large-scale data analysis coupled with bioinformatics tools enables the identification of specific genetic mutations, gene expression patterns, pathways, networks, protein modifications and metabolic signatures associated with PaC pathogenesis, progression and treatment response through the integration of multi-OMICs data.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Laurentina Silva
- Hospital Dr Nélio Mendonça, SESARAM, EPERAM - Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, 9004-514 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
4
|
Chen Y, Li LY, Li JD, He RQ, Huang ZG, Huang WY, Luo JY, Dang YW, Chen G, Wei DM. Expression, potential biological behaviour and clinical significance of MCM3 in pancreatic adenocarcinoma: a comprehensive study integrating high throughput sequencing, CRISPR screening and in-house immunohistochemistry. Ann Med 2024; 56:2405879. [PMID: 39310930 PMCID: PMC11421141 DOI: 10.1080/07853890.2024.2405879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Minichromosome maintenance complex component 3 (MCM3) plays a key role in various tumours. However, it remains largely unknown what the specific role and clinical significance of MCM3 in pancreatic adenocarcinoma (PAAD) are. MATERIALS AND METHODS We integrated high-throughput data from PAAD worldwide to analyse the expression level of MCM3 mRNA. We used immunohistochemistry to analyse MCM3 protein expression levels in 145 cases in the PAAD group and 29 cases in the non-PAAD group. We also mainly analysed the necessity of MCM3 for PAAD growth based on CRISPR screen data. In addition, we used enrichment analysis and protein-protein interaction networks to explore the molecular mechanism of MCM3 in PAAD. We also analysed the correlation between MCM3 expression, components of the immune microenvironment in PAAD tissue and clinical prognosis. RESULTS In PAAD, we observed for the first time that MCM3 was significantly highly expressed at both the mRNA (SMD = 0.67, 95% CI: 0.38 ∼ 0.96) and the protein level (p < 0.05). The mRNA (AUC = 0.78, 95% CI: 0.74 ∼ 0.81; sensitivity = 0.66, 95% CI: 0.55 ∼ 0.76; specificity = 0.76, 95% CI: 0.67 ∼ 0.84) and protein (AUC = 0.929) expression levels of MCM3 had a good ability to distinguish between PAAD and non-PAAD tissue. There was heterogeneity reflected by the differential expression of MCM3 protein in PAAD cells. MCM3 played an essential role in PAAD growth, through abnormal DNA replication, p53 signalling and cell cycle checkpoints. PAAD with high MCM3 expression was sensitive to c-75, brivanib, flavopiridol and VNLG/124 drugs, with stable molecular docking models. CONCLUSION MCM3 is likely to be a critical element in promoting the initiation and growth of PAAD. Flavopiridol may exert its anti-PAAD effect through the interaction between MCM3, classic CDK1 targets in the cell cycle checkpoint and p53 pathway as well as related molecules in other pathways.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Liu-Yan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Rong-Quan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wan-Ying Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|
5
|
Wang Y, Zhang C, Zhang J, Huang H, Guo J. Construction and Validation of a Novel T/NK-Cell Prognostic Signature for Pancreatic Cancer Based on Single-Cell RNA Sequencing. Cancer Invest 2024; 42:876-892. [PMID: 39523741 DOI: 10.1080/07357907.2024.2424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Evidence with regards to the distinction between primary and metastatic tumors in pancreatic cancer and driving factors for metastases remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) was conducted on metastatic pancreatic cancer. Bioinformatics analysis on relevant sequencing data was used to construct a risk model to predict patient prognosis. Furthermore, immune infiltration and metabolic differences were assessed. The biological function of key differential genes was evaluated. RESULTS Paired primary and metastatic tumor tissues from 3 pancreatic cancer patients were collected and conducted scRNA-seq. Subsequently, the T/NK cell subgroup was the most different cell type between primary tumors and liver metastases and was selected for further analysis. Eventually, 6 specifically expressed genes of T/NK cells (B2M, ZFP36L2, ANXA1, ARL4C, TSPYL2, FYN) were used constructing the prognostic model. The stability of this model was validated by an external cohort. Meanwhile, different immune infiltration abundances occurred between high and low risk groups stratified by the model. The high-risk group had a stronger metabolic capability. CONCLUSIONS A novel prognostic T/NK-cell signature for pancreatic cancer was constructed based on scRNA-seq data and externally validated. The involved key genes may play a role in multiple metabolic pathways of metastasis and affect the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jianlu Zhang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Liu N, Wang Q, Zhu P, He G, Li Z, Chen T, Yuan J, La T, Tian H, Li Z. DHX34 as a promising biomarker for prognosis, immunotherapy and chemotherapy in Pan-Cancer: A Comprehensive Analysis and Experimental Validation. J Cancer 2024; 15:6594-6615. [PMID: 39668816 PMCID: PMC11632995 DOI: 10.7150/jca.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background: As a member of the DExD/H-box RNA helicase family, DHX34 has demonstrated a significant correlation with the development of multiple disorders. Nevertheless, a comprehensive investigation between DHX34 and pan-cancer remains unexplored. Methods: We analyzed the value of DHX34 in pan-cancer based on some databases, such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) by use the R language as well as some online analysis tools, including STRING, TISIDB, TISCH2. And based on our samples we performed Western blot (WB), qPCR and immunohistochemical staining (IHC) experiments. Results: DHX34 was highly expressed in most tumors, including Liver Hepatocellular Carcinoma (LIHC), compared to corresponding normal tissues. Among cervical cancers, DHX34 mutation frequency was the highest. Intriguingly, a positive correlation was observed between DHX34 expression and Mutational Burden (TMB) across 12 tumor types, and Microsatellite Instability (MSI) across 10 tumor types. Remarkably, DHX34 exhibited a favorable diagnostic value in a multitude of tumors. High expression of DHX34 is associated with poor prognosis in tumors such as adrenocortical carcinoma (ACC), renal papillary cell carcinoma (KIRP), low-grade glioma (LGG), and LIHC. Correlation analysis indicated that DHX34 expression correlated with clinicopathological features in a variety of tumors. The Protein-Protein Interaction (PPI) network and GSCALite database suggested that DHX34 and its ten co-expression genes might promote cancer progression by regulating the cell cycle. Gene Set Enrichment Analysis (GSEA) results further showed that DHX34 was positively correlated with pathways such as cell cycle, mitosis, and gene transcription regulation. The TISIDB database showed that DHX34 expression was closely associated with immune infiltration. Based on the TISCH2 database, we found that DHX34 was expressed in a number of immune cells, with relatively high expression in monocyte macrophages in LIHC. Conclusions: In summary, our study found that DHX34 is highly expressed in pan-cancer and has diagnostic and prognostic value. Targeting DHX34 may improve the therapeutic efficacy of immunotherapy and chemotherapy in a multitude of tumors.
Collapse
Affiliation(s)
- Nanbin Liu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Pengpeng Zhu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gaixia He
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyu Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting Chen
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Jianing Yuan
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Xu C, Pascual-Sabater S, Fillat C, Goel A. The LAMB3-EGFR signaling pathway mediates synergistic Anti-Cancer effects of berberine and emodin in Pancreatic cancer. Biochem Pharmacol 2024; 228:116509. [PMID: 39214450 PMCID: PMC11771243 DOI: 10.1016/j.bcp.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46-6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30-5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05-0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (p < 0.05-0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, Liaoning, China
| | - Silvia Pascual-Sabater
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Yu F, Zeng G, Yang L, Zhou H, Wang Y. LAMB3: Central role and clinical significance in neoplastic and non-neoplastic diseases. Biomed Pharmacother 2024; 178:117233. [PMID: 39111076 DOI: 10.1016/j.biopha.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Recently, topics related to targeted gene therapy and diagnosis have become increasingly important in disease research. The progression of many diseases is associated with specific gene signaling pathways. Therefore, the identification of precise gene targets in various diseases is crucial for the development of effective treatments. Laminin subunit beta 3 (LAMB3), a component of laminin 5, functions as an adhesive protein in the extracellular matrix and plays a vital role in regulating cell proliferation, migration, and cell cycle in certain diseases. Previous studies have indicated that LAMB3 is highly expressed in numerous tumorous and non-tumorous conditions, including renal fibrosis; squamous cell carcinoma of the skin, thyroid, lung, pancreatic, ovarian, colorectalr, gastric, breast, cervical, nasopharyngeal, bladder, prostate cancers; and cholangiocarcinoma. Conversely, it is underexpressed in other conditions, such as hepatocellular carcinoma, epidermolysis bullosa, and amelogenesis imperfecta. Consequently, LAMB3 may serve as a molecular diagnostic and therapeutic target for various diseases through its involvement in critical gene signaling pathways. This paper reviews the research status of LAMB3 and its role in related diseases.
Collapse
Affiliation(s)
- Fangqiu Yu
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Guoqiang Zeng
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Lei Yang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Honglan Zhou
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yuantao Wang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| |
Collapse
|
9
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Wang Y, Liang C, Liu X, Cheng SQ. A novel tumor-derived exosomal gene signature predicts prognosis in patients with pancreatic cancer. Transl Cancer Res 2024; 13:4324-4340. [PMID: 39262474 PMCID: PMC11384923 DOI: 10.21037/tcr-23-2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Pancreatic cancer is a devastating disease with poor prognosis. Accumulating evidence has shown that exosomes and their cargo have the potential to mediate the progression of pancreatic cancer and are promising non-invasive biomarkers for the early detection and prognosis of this malignancy. This study aimed to construct a gene signature from tumor-derived exosomes with high prognostic capacity for pancreatic cancer using bioinformatics analysis. Methods Gene expression data of solid pancreatic cancer tumors and blood-derived exosome tissues were downloaded from The Cancer Genome Atlas (TCGA) and ExoRBase 2.0. Overlapping differentially expressed genes (DEGs) in the two datasets were analyzed, followed by functional enrichment analysis, protein-protein interaction networks, and weighted gene co-expression network analysis (WGCNA). Using the least absolute shrinkage and selection operator (LASSO) regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was constructed based on the TCGA dataset, which was validated by an external validation dataset, GSE62452. The prognostic power of this gene signature and its relationship with various pathways and immune cell infiltration were analyzed. Results A total of 166 overlapping DEGs were identified from the two datasets, which were markedly enriched in functions and pathways associated with the cell cycle. Two key modules and corresponding 70 exosomal DEGs were identified using WGCNA. Using LASSO Cox regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was built using six exosomal DEGs (ARNTL2, FHL2, KRT19, MMP1, CDCA5, and KIF11), which showed high predictive performance for prognosis in both the training and validation datasets. In addition, this prognostic signature is associated with the differential activation of several pathways, such as the cell cycle, and the infiltration of some immune cells, such as Tregs and CD8+ T cells. Conclusions This study established a six-exosome gene signature that can accurately predict the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinbo Liu
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Wang Y, Zhang W, Li T, Liu M, Gao M, Li X, Chen Y, Song Y, Li W, Du C, Wang F, Liu L. Identification of potential immune-related mechanisms related to the development of multiple myeloma. Chin Med J (Engl) 2024; 137:1603-1613. [PMID: 38844445 PMCID: PMC11230759 DOI: 10.1097/cm9.0000000000003116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Although significant advances have been made in the treatment of multiple myeloma (MM), leading to unprecedented response and survival rates among patients, the majority eventually relapse, and a cure remains elusive. This situation is closely related to an incomplete understanding of the immune microenvironment, especially monocytes/macrophages in patients with treatment-naïve MM. The aim of this study was to provide insight into the immune microenvironment, especially monocytes/macrophages, in patients with treatment-naïve MM. METHODS This study used the single-cell RNA sequencing (scRNA-seq) data of both patients with MM and heathy donors to identify immune cells, including natural killer (NK) cells, T cells, dendritic cells (DCs), and monocytes/macrophages. Transcriptomic data and flow cytometry analysis of monocytes/macrophages were used to further examine the effect of monocytes/macrophages in treatment-naïve MM patients. RESULTS A significant difference was observed between the bone marrow (BM) immune cells of the healthy controls and treatment-naïve MM patients through scRNA-seq. It is noteworthy that, through an scRNA-seq data analysis, this study found that interferon (IFN)-induced NK/T cells, terminally differentiated effector memory (TEMRA) cells, T-helper cells characterized by expression of IFN-stimulated genes (ISG + Th cells), IFN-responding exhausted T cells, mannose receptor C-type 1 (MRC1) + DCs, IFN-responding DCs, MHCII + DCs, and immunosuppressive monocytes/macrophages were enriched in patients with treatment-naïve MM. Significantly, transcriptomic data of monocytes/macrophages demonstrated that "don't eat me"-related genes and IFN-induced genes increase in treatment-naïve MM patients. Furthermore, scRNA-seq, transcriptomic data, and flow cytometry also showed an increased proportion of CD16 + monocytes/macrophages and expression level of CD16. Cell-cell communication analysis indicated that monocytes/macrophages, whose related important signaling pathways include migration inhibitory factor (MIF) and interleukin 16 (IL-16) signaling pathway, are key players in treatment-naïve MM patients. CONCLUSIONS Our findings provide a comprehensive and in-depth molecular characterization of BM immune cell census in MM patients, especially for monocytes/macrophages. Targeting macrophages may be a novel treatment strategy for patients with MM.
Collapse
Affiliation(s)
- Yaomei Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wenli Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mengmeng Liu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Mengya Gao
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Xinqing Li
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yufei Chen
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lina Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
12
|
Ye Q, Chen D, Liu X, Yang B, Li G, Ma J, Ai L, Li Z, Yang H, Yu T, Tan J. The EFNA4 gene is a potential prognostic biomarker in pancreatic cancer: a bioinformatics analysis. J Gastrointest Oncol 2024; 15:1165-1178. [PMID: 38989440 PMCID: PMC11231855 DOI: 10.21037/jgo-24-227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Background Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Qiuwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dong Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xin Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Burong Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Ai
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhilin Li
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Huaiyong Yang
- Clinical Pharmacy Department, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Tan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, China
| |
Collapse
|
13
|
Guo D, Feng Y, Liu P, Yang S, Zhao W, Li H. Identification and prognostic analysis of ferroptosis‑related gene HSPA5 to predict the progression of lung squamous cell carcinoma. Oncol Lett 2024; 27:186. [PMID: 38464337 PMCID: PMC10921261 DOI: 10.3892/ol.2024.14320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, is implicated in the development and therapeutic responses of cancer. However, the role of ferroptosis-related gene profiles in lung squamous cell carcinoma (LSCC) remains largely unknown. The present study aimed to identify the prognostic roles of ferroptosis-related genes in LSCC. Sequencing data from the Cancer Genome Atlas were analyzed and ferroptosis-related gene expression between tumor and para-tumor tissue was identified. The prognostic role of these genes was also assessed using Kaplan-Meier analyses and univariate and multivariate Cox proportional hazards regression model analyses. Immunological correlation, tumor stemness, drug sensitivity and the transcriptional differences of heat shock protein (HSP)A5 in LSCC were also analyzed. Thereafter, the expression of HSPA5 in 100 patients with metastatic LSCC was evaluated using immunohistochemistry (IHC) and the clinical significance of these markers with different risk factors was assessed. Of the 22 ferroptosis-related genes, the expression of HSPA5, HSPB1, glutathione peroxidase 4, Fanconi anemia complementation group D2, CDGSH iron sulfur domain 1, farnesyl-diphosphate farnesyltransferase 1, nuclear factor erythroid 2 like 2, solute carrier (SLC)1A5, ribosomal protein L8, nuclear receptor coactivator 4, transferrin receptor and SLC7A11 was significantly increased in LSCC compared with adjacent tissues. However, only high expression of HSPA5 was able to predict progression-free survival (PFS) and disease-free survival in LSCC. Although HSPA5 was also significantly elevated in patients with lung adenocarcinoma, HSPA5 expression did not predict the prognosis of patients with lung adenocarcinoma. Of note, a higher expression of HSPA5 was related to higher responses to chemotherapy but not to immunotherapy. In addition, HSPA5 expression was positively correlated with 'ferroptosis', 'cellular responses to hypoxia', 'tumor proliferation signature', 'G2M checkpoint', 'MYC targets' and 'TGFB'. IHC analysis also demonstrated that a high expression of HSPA5 in patients with metastatic LSCC in the study cohort was associated with shorter PFS and overall survival. In conclusion, the present study demonstrated that the expression of the ferroptosis-related gene HSPA5 may be a negative prognostic marker for LSCC.
Collapse
Affiliation(s)
- Di Guo
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yonghai Feng
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Peijie Liu
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shanshan Yang
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wenfei Zhao
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
14
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
15
|
Chen X, Yuan Q, Guan H, Shi X, Sun J, Wu Z, Ren J, Xia S, Shang D. Identification and characterization of interferon-γ signaling-based personalized heterogeneity and therapeutic strategies in patients with pancreatic cancer. Front Oncol 2023; 13:1227606. [PMID: 37941546 PMCID: PMC10628740 DOI: 10.3389/fonc.2023.1227606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background Interferon-γ (IFN-γ) is a key cytokine with diverse biological functions, including antiviral defense, antitumor activity, immune regulation, and modulation of cellular processes. Nonetheless, its role in pancreatic cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore the role of Interferon-γ related genes (IFN-γGs) in the progression of PC development. Methodology Transcriptomic data from 930 PC were sourced from TCGA, GEO, ICGC, and ArrayExpress, and 93 IFN-γGs were obtained from the MSigDB. We researched the characteristics of IFN-γGs in pan-cancer. Subsequently, the cohort of 930 PC was stratified into two distinct subgroups using the NMF algorithm. We then examined disparities in the activation of cancer-associated pathways within these subpopulations through GSVA analysis. We scrutinized immune infiltration in both subsets and probed classical molecular target drug sensitivity variations. Finally, we devised and validated a novel IFN-γ related prediction model using LASSO and Cox regression analyses. Furthermore, we conducted RT-qPCR and immunohistochemistry assays to validate the expression of seven target genes included in the prediction model. Results We demonstrated the CNV, SNV, methylation, expression levels, and prognostic characteristics of IFN-γGs in pan-cancers. Notably, Cluster 2 demonstrated superior prognostic outcomes and heightened immune cell infiltration compared to Clusters 1. We also assessed the IC50 values of classical molecular targeted drugs to establish links between IFN-γGs expression levels and drug responsiveness. Additionally, by applying our prediction model, we segregated PC patients into high-risk and low-risk groups, identifying potential benefits of cisplatin, docetaxel, pazopanib, midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the low-risk group. The expression levels of these model genes were further verified through HPA website data and qRT-PCR assays in PC cell lines and tissues. Conclusion This study unveils IFN-γGs related molecular subsets in pancreatic cancer for the first time, shedding light on the pivotal role of IFN-γGs in the progression of PC. Furthermore, we establish an IFN-γGs related prognostic model for predicting the survival of PC, offering a theoretical foundation for exploring the precise mechanisms of IFN-γGs in PC.
Collapse
Affiliation(s)
- Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Shi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
16
|
Huang D, Wang Y, Qi P, Ding H, Zhao H. Transcriptome analysis of divergent residual feed intake phenotypes in the M. longissimus thoracis et lumborum of Wannan Yellow rabbits. Front Genet 2023; 14:1247048. [PMID: 37937196 PMCID: PMC10625914 DOI: 10.3389/fgene.2023.1247048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Feed efficiency is an important economic trait in rabbit meat production. The identification of molecular mechanisms and candidate genes for feed efficiency may improve the economic and environmental benefits of the rabbit meat industry. As an alternative to the conventional feed conversion ratio, residual feed intake (RFI) can be used as an accurate indicator of feed efficiency. Methods: RNA sequencing was used to identify the differentially expressed genes (DEGs) in the M. longissimus thoracis et lumborum of eight Wannan Yellow rabbits with excessively high or low RFIs (HRFI or LRFI, respectively). Thereafter, Gene Ontology (GO) analysis, enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) network analysis was conducted. Results: In total, 445 DEGs were identified in the M. longissimus thoracis et lumborum of rabbits with high and low RFIs. The significantly enriched GO terms identified in these two groups were primarily involved in energy and mitochondrial metabolism and oxidation-reduction processes. KEGG analysis identified 11 significantly enriched pathways, including oxidative phosphorylation, PI3K-Akt signaling, and extracellular matrix-receptor interaction pathways. According to GSEA, the expressions of genes and pathways related to mitochondrial function were upregulated in HRFI rabbits, whereas genes with upregulated expressions in LRFI rabbits were related to immune response and energy metabolism. Additionally, PPI network analysis revealed five potential candidate genetic markers. Conclusion: Comparative analysis of the M. longissimus thoracis et lumborum transcriptomes in HRFI and LRFI rabbits revealed FOS, MYC, PRKACB, ITGA2, and FN1 as potential candidate genes that affect feed efficiency in rabbits. In addition, key signaling pathways involved in oxidative phosphorylation and PI3K-Akt and ECM-receptor interaction signaling impact rabbit feed efficiency. These findings will aid in breeding programs to improve feed efficiency and optimize RFI selection of rabbits for meat production.
Collapse
Affiliation(s)
| | | | | | | | - Huiling Zhao
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
17
|
Xu L, Yang H, Yan M, Li W. Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clin Exp Med 2023; 23:2065-2083. [PMID: 36169759 DOI: 10.1007/s10238-022-00897-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) remains an incurable malignancy despite the treatment methods being continually updated. Matrix metalloproteinases (MMPs) promote the progression of HCC; however, no consensus exists on which MMP plays the predominant role in HCCs. In the present study, we analyzed differentially expressed genes in HCCs, especially MMPs, compared with adjacent tissues using the Cancer Genome Atlas database. The KEGG enrichment pathway using differentially expressed genes included extracellular matrix-receptor interaction, which was correlated with MMPs. We found that among the MMP family, only MMP1, MMP3, MMP8, MMP9, MMP11, MMP12, MMP14, MMP15, MMP20, MMP21, and MMP24 significantly increased in HCCs compared with adjacent tissues. Crucially, survival and univariate analyses indicated that only MMPs 1, 9, 12, and 14 predict poor overall survival; however, multivariate Cox analysis and a nomogram demonstrated that only MMP1 is a poor prognostic biomarker for HCCs. In addition, we observed significant enrichment of uncharacterized cells but decreased macrophages in HCC tissues. Consistent with decreased macrophages in HCCs, MMP1 was negatively associated with macrophages but positively correlated with uncharacterized cells, indicating that the main producer of MMP1 is uncharacterized cells. Furthermore, MMP1 expression was negatively correlated with immune responses of HCCs. Taken together, our findings indicated that MMP1 is a poor and predominant prognostic biomarker for patients with HCC and that anti-MMP1 may be a novel therapy that is worth studying in depth.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Hui Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Meimei Yan
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
18
|
Ma Y, Xing Y, Li H, Yuan T, Liang B, Li R, Li J, Li Z, Li S, Niu L. Irreversible electroporation combined with chemotherapy and PD-1/PD-L1 blockade enhanced antitumor immunity for locally advanced pancreatic cancer. Front Immunol 2023; 14:1193040. [PMID: 37691923 PMCID: PMC10485610 DOI: 10.3389/fimmu.2023.1193040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background Irreversible electroporation (IRE) is a novel local tumor ablation approach with the potential to stimulate an antitumor immune response. However, it is not effective in preventing distant metastasis in isolation. This study aimed to compare the potential of augmenting the antitumor immune response in patients with locally advanced pancreatic cancer (LAPC) who underwent IRE combined with chemotherapy and PD-1/PD-L1 blockade with those who underwent IRE combined with chemotherapy. Methods A retrospective review was conducted on LAPC patients treated either with IRE in combination with chemotherapy and PD-1/PD-L1 blockade (group A) or with IRE with chemotherapy alone (group B) from July 2015 to June 2021. The primary outcomes were overall survival (OS) and progression-free survival (PFS), with immune responses and adverse events serving as secondary endpoints. Risk factors for OS and PFS were identified using univariate and multivariate analyses. Results A total of 103 patients were included in the final analysis, comprising 25 in group A and 78 in group B. The median duration of follow-up was 18.2 months (3.0-38.6 months). Group A patients demonstrated improved survival compared to group B (median OS: 23.6 vs. 19.4 months, p = 0.001; median PFS: 18.2 vs. 14.7 months, p = 0.022). The data suggest a robust immune response in group A, while adverse events related to the treatment were similar in both groups. The multivariate analysis identified the combination of IRE, chemotherapy, and PD-1/PD-L1 blockade as an independent prognostic factor for OS and PFS. Conclusion The addition of PD-1/PD-L1 blockade to the regimen of IRE combined with chemotherapy enhanced antitumor immunity and extended survival in LAPC patients.
Collapse
Affiliation(s)
- Yangyang Ma
- Central Laboratory, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Yanli Xing
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Hongmei Li
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Ting Yuan
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Bing Liang
- Department of Surgery and Anesthesia, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Rongrong Li
- Department of Ultrasound, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Jianyu Li
- Department of Surgery and Anesthesia, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Zhonghai Li
- Department of Radiology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Shuying Li
- Department of Surgery and Anesthesia, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Lizhi Niu
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Fan W, Cao W, Shi J, Gao F, Wang M, Xu L, Wang F, Li Y, Guo R, Bian Z, Li W, Jiang Z, Ma W. Contributions of bone marrow monocytes/macrophages in myeloproliferative neoplasms with JAK2 V617F mutation. Ann Hematol 2023; 102:1745-1759. [PMID: 37233774 PMCID: PMC10213596 DOI: 10.1007/s00277-023-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
The classic BCR-ABL1-negative myeloproliferative neoplasm (MPN) is a highly heterogeneous hematologic tumor that includes three subtypes, namely polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). Despite having the same JAK2V617F mutation, the clinical manifestations of these three subtypes of MPN differ significantly, which suggests that the bone marrow (BM) immune microenvironment may also play an important role. In recent years, several studies have shown that peripheral blood monocytes play an important role in promoting MPN. However, to date, the role of BM monocytes/macrophages in MPN and their transcriptomic alterations remain incompletely understood. The purpose of this study was to clarify the role of BM monocytes/macrophages in MPN patients with the JAK2V617F mutation. MPN patients with the JAK2V617F mutation were enrolled in this study. We investigated the roles of monocytes/macrophages in the BM of MPN patients, using flow cytometry, monocyte/macrophage enrichment sorting, cytospins and Giemsa-Wright staining, and RNA-seq. Pearson correlation coefficient analysis was also used to detect the correlation between BM monocytes/macrophages and the MPN phenotype. In the present study, the proportion of CD163+ monocytes/macrophages increased significantly in all three subtypes of MPN. Interestingly, the percentages of CD163+ monocytes/macrophages are positively correlated with HGB in PV patients and PLT in ET patients. In contrast, the percentages of CD163+ monocytes/macrophages are negatively correlated with HGB and PLT in PMF patients. It was also found that CD14+CD16+ monocytes/macrophages increased and correlated with MPN clinical phenotypes. RNA-seq analyses demonstrated that the transcriptional expressions of monocytes/macrophages in MPN patients are relatively distinct. Gene expression profiles of BM monocytes/macrophages suggest a specialized function in support of megakaryopoiesis in ET patients. In contrast, BM monocytes/macrophages yielded a heterogeneous status in the support or inhibition of erythropoiesis. Significantly, BM monocytes/macrophages shaped an inflammatory microenvironment, which, in turn, promotes myelofibrosis. Thus, we characterized the roles of increased monocytes/macrophages in the occurrence and progression of MPNs. Our findings of the comprehensive transcriptomic characterization of BM monocytes/macrophages provide important resources to serve as a basis for future studies and future targets for the treatment of MPN patients.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengcai Gao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meng Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fang Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rong Guo
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
20
|
S100A10 Promotes Pancreatic Ductal Adenocarcinoma Cells Proliferation, Migration and Adhesion through JNK/LAMB3-LAMC2 Axis. Cancers (Basel) 2022; 15:cancers15010202. [PMID: 36612197 PMCID: PMC9818352 DOI: 10.3390/cancers15010202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, characterized by diagnosis at an advanced stage and a poor prognosis. As a member of the S100 protein family, S100A10 regulates multiple biological functions related to cancer progression and metastasis. However, the role of S100A10 in PDAC is still not completely elucidated. In this study, we reported that S100A10 was significantly up-regulated in PDAC tissue and associated with a poor prognosis by integrated bioinformatic analysis and human PDAC tissue samples. In vitro, down-regulation of S100A10 reduced the proliferation, migration, and adhesion of PDAC cell lines, whereas up-regulation of S100A10 showed the opposite effect. Furthermore, LAMB3 was proved to be activated by S100A10 using RNA-sequencing and western blotting. The effect of LAMB3 on the proliferation, migration, and adhesion of PDAC cells was similar to that of S100A10. Up-regulation or down-regulation of LAMB3 could reverse the corresponding effect of S100A10. Moreover, we validated S100A10 activates LAMB3 through the JNK pathway, and LAMB3 was further proved to interact with LAMC2. Mice-bearing orthotopic pancreatic tumors showed that S100A10 knocked-down PANC-1 cells had a smaller tumor size than the control group. In conclusion, S100A10 promotes PDAC cells proliferation, migration, and adhesion through JNK/LAMB3-LAMC2 axis.
Collapse
|
21
|
Wang S, Xu L, Zhu K, Zhu H, Zhang D, Wang C, Wang Q. Developing and validating a survival prediction model based on blood exosomal ceRNA network in patients with PAAD. BMC Med Genomics 2022; 15:260. [PMID: 36522691 PMCID: PMC9753297 DOI: 10.1186/s12920-022-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Among the most lethal cancers, pancreatic adenocarcinoma (PAAD) is an essential component of digestive system malignancies that still lacks effective diagnosis and treatment methods. As exosomes and competing endogenous RNA (ceRNA) regulatory networks in tumors go deeper, we expect to construct a ceRNA regulatory network derived from blood exosomes of PAAD patients by bioinformatics methods and develop a survival prediction model based on it. METHODS Blood exosome sequencing data of PAAD patients and normal controls were downloaded from the exoRbase database, and the expression profiles of exosomal mRNA, lncRNA, and circRNA were differentially analyzed by R. The related mRNA, circRNA, lncRNA, and their corresponding miRNA prediction data were imported into Cytoscape software to visualize the ceRNA network. Then, we conducted GO and KEGG enrichment analysis of mRNA in the ceRNA network. Genes that express differently in pancreatic cancer tissues compared with normal tissues and associate with survival (P < 0.05) were determined as Hub genes by GEPIA. We identified optimal prognosis-related differentially expressed mRNAs (DEmRNAs) and generated a risk score model by performing univariate and multivariate Cox regression analyses. RESULTS 205 DEmRNAs, 118 differentially expressed lncRNAs (DElncRNAs), and 98 differentially expressed circRNAs (DEcircRNAs) were screened out. We constructed the ceRNA network, and a total of 26 mRNA nodes, 7 lncRNA nodes, 6 circRNA nodes, and 16 miRNA nodes were identified. KEGG enrichment analysis showed that the DEmRNAs in the regulatory network were mainly enriched in Human papillomavirus infection, PI3K-Akt signaling pathway, Osteoclast differentiation, and ECM-receptor interaction. Next, six hub genes (S100A14, KRT8, KRT19, MAL2, MYO5B, PSCA) were determined through GEPIA. They all showed significantly increased expression in cancer tissues compared with control groups, and their high expression pointed to adverse survival. Two optimal prognostic-related DEmRNAs, MYO5B (HR = 1.41, P < 0.05) and PSCA (HR = 1.10, P < 0.05) were included to construct the survival prediction model. CONCLUSION In this study, we successfully constructed a ceRNA regulatory network in blood exosomes from PAAD patients and developed a two-gene survival prediction model that provided new targets which shall aid in diagnosing and treating PAAD.
Collapse
Affiliation(s)
- Shanshan Wang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Lijun Xu
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Kangle Zhu
- grid.260483.b0000 0000 9530 8833Department of Medicine, Xinglin college, Nantong University, Nantong City, Jiangsu Province China
| | - Huixia Zhu
- grid.260483.b0000 0000 9530 8833Medical School of Nantong University, Nantong City, 226001 China
| | - Dan Zhang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Chongyu Wang
- grid.260483.b0000 0000 9530 8833Department of Medicine, Xinglin college, Nantong University, Nantong City, Jiangsu Province China
| | - Qingqing Wang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| |
Collapse
|
22
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
23
|
Li J, Chen C, Chen B, Guo T. High FN1 expression correlates with gastric cancer progression. Pathol Res Pract 2022; 239:154179. [PMID: 36274380 DOI: 10.1016/j.prp.2022.154179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE High stromal ratio of gastric cancer is associated with a poor prognosis. Fibronectin 1(FN1) is the main component of gastric cancer stroma. The focus of this research was to investigate the FN1 express pattern, the connection between FN1 expression, clinicopathological parameters, survival, and mismatch repair genes (MMR) or immune checkpoints in gastric cancer patients. METHODS Eighty-six paired stomach cancer tissues, neighboring normal tissues, and eight independent gastric cancer tissues were used to create 180 points tissue microarrays. The association between epithelial fibronectin (E-FN1), stromal fibronectin (S-FN1) expression, and clinical characteristics was analyzed using the chi-square test or Fisher's exact test, and the survival analysis curve was analyzed using the log-rank test, followed by univariate and multivariate Cox regression. The correlation between FN1 and MMR or immune checkpoints was analyzed by Spearman correlation. RESULTS FN1 is mainly expressed in gastric cancer tissues, with low or no expression in adjacent normal tissues. In tumor tissues, FN1 is mostly distributed in the stroma. High E-FN1 expression was associated with a decreased overall survival (OS), while S-FN1 expression did not. High S-FN1 expression correlated with older age (P<0.001), higher pathological grade (P<0.001), pathological type (P<0.001), vessel/lymphatic invasion (P<0.001), advanced T stage (P=0.001), N stage (P=0.01), and worse TNM stage(P = 0.033). FN1 expression was not associated with MMR or immune checkpoints (MLH1, MSH2, MSH6, PDL1, PD1, PMS2, and CD8). CONCLUSIONS High E-FN1 expression predicted poor OS, while S-FN1 is associated with gastric cancer progression.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China; Department of General Surgical, Gansu Provincial Hospital, Lanzhou, Gansu, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Cheng Chen
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Bo Chen
- Department of Ultrasound Diagnosis, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiankang Guo
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China; Department of General Surgical, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
24
|
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
25
|
Xu L, Yan M, Long J, liu M, Yang H, Li W. Identification of macrophage correlated biomarkers to predict the prognosis in patients with intrahepatic cholangiocarcinoma. Front Oncol 2022; 12:967982. [PMID: 36158683 PMCID: PMC9497456 DOI: 10.3389/fonc.2022.967982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been shown that tumor-associated immune cells, particularly macrophages, play a fundamental role in the development and treatment response of intrahepatic cholangiocarcinoma (ICC). However, little is known about macrophages at the single cellular level of ICC patients. Methods ScRNA-seq from Zhang et al. was used in the present study to identify the genes differentially expressed in ICCs. Furthermore, transcriptomic data from TCGA datasets, IHC and flowcytometry from our cohort were used to confirm the findings. Kaplan-Meier and TIDE scores were also used for prognostic analysis and ICB responses. Results A significant number of macrophages were found in ICCs as compared to adjacent tissues. We then extracted, processed, and classified the macrophages from the ICCs and adjacent tissues into 12 clusters. Significantly, the macrophages from the ICC exhibited an immunosuppressed state in terms of both signature gene expression and functional enrichment. Furthermore, our results indicate that, of the 10 selective tumor-promoting genes of macrophages, only MMP19 and SIRPα can predict ICB responses in ICCs. Although a higher expression of MMP19 and SIRPα predict a poor prognosis for ICCs without immunotherapy after surgery, patients with high SIRPα expression were more sensitive to immunotherapy, whereas those with high MMP19 expression were not sensitive to immunotherapy. To define the mechanisms, we found that SIRPαhi ICCs exhibited an increased enrichment KEGG pathway of leukocyte transendothelial migration and neutrophil extracellular trap formation. The increased immune cell infiltration will increase sensitivity to immunotherapy. Conclusion Collectively, macrophages are critical to the immune status of ICCs, and MMP19 and SIRPα can predict prognosis and ICB responses for ICCs.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Linping Xu,
| | - Meimei Yan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jianpeng Long
- Department of Breast and Thyroid Surgery, Gansu Provincial Central Hospital, Lan Zhou, China
| | - Mengmeng liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Hui Yang
- Department of Gastroenterology, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Identification of a Novel Risk Model: A Five-Gene Prognostic Signature for Pancreatic Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3660110. [PMID: 35845587 PMCID: PMC9286972 DOI: 10.1155/2022/3660110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Objective. Biomarkers for pancreatic cancer (PCa) prognosis provide evidence for improving the survival outcome of this disease. This study aimed to identify a prognostic risk model based on gene expression profiling of microarray bioinformatics analysis. Methods. Prognostic immune genes in the TCGA-PAAD cohort were identified using the univariate Cox regression and Kaplan–Meier survival analysis. Multivariate Cox regression (stepAIC) was used to identify prognostic genes from the top 20 hub genes in the protein-protein interaction (PPI) network. A prognostic risk model was established and its performance in predicting the overall survival in PCa was validated in GSE62452. Gene mutations and infiltration immune cells in PCa tumors were analyzed using online databases. Results. Univariate Cox regression and Kaplan–Meier survival analyses identified 128 prognostic genes. Multivariate Cox regression (stepAIC) identified five prognostic genes (PLCG1, MET, TNFSF10, CXCL9, and TLR3) out of the 20 hub genes in the PPI network. A prognostic risk model was established using the signature of five genes. This model had moderate to high accuracies (AUC > 0.700) in predicting 3-year and 5-year overall survival in TCGA and GSE62452 cohorts. The Kaplan–Meier survival analysis showed that high-risk scores were correlated with poor survival outcomes in PCa (
). Also, mutations in the five genes were related to poor survival. The five genes were related to multiple immune cells. Conclusions. The prognostic risk model was significantly correlated with the survival in PCa patients. This model modulated PCa tumor progression and prognosis by regulating immune cell infiltration.
Collapse
|