1
|
Zhang Y, Liu T, Li P, Xing Z, Mi L, He T, Wei T, Wu W. Potential therapeutic targets of eukaryotic translation initiation factors in tumor therapy. Eur J Med Chem 2025; 291:117638. [PMID: 40273663 DOI: 10.1016/j.ejmech.2025.117638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Translation initiation is the first and rate-limiting step in protein synthesis, and its dysregulation is frequently observed in various malignancies. Cap-dependent translation, the predominant form of translation initiation, relies on the coordinated action of eukaryotic translation initiation factors (eIFs), including eIF1, eIF2, eIF4, and others. These factors play critical roles in regulating the efficiency and fidelity of protein synthesis, and their overexpression has been linked to tumor progression, proliferation, and metastasis. Notably, certain eIFs have emerged as potential prognostic markers due to their elevated expression in tumors. Targeting eIFs represents a promising strategy, particularly for cancers characterized by aberrant eIF activity. In this review, we summarize the roles of individual eIFs in cap-dependent translation and discuss their potential as therapeutic targets in cancer treatment. We also highlight recent advances in drug discovery efforts aimed at modulating eIF activity, providing insights into the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianyou Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengyu Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Du Y, Xie J, Liu D, Zhao J, Chen P, He X, Hong P, Fu Y, Hong Y, Liu WH, Xiao C. Critical and differential roles of eIF4A1 and eIF4A2 in B-cell development and function. Cell Mol Immunol 2025; 22:40-53. [PMID: 39516355 PMCID: PMC11685474 DOI: 10.1038/s41423-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Eukaryotic initiation factor 4 A (eIF4A) plays critical roles during translation initiation of cellular mRNAs by forming the cap-binding eIF4F complex, recruiting the 40S small ribosome subunit, and scanning the 5' untranslated region (5' UTR) for the start codon. eIF4A1 and eIF4A2, two isoforms of eIF4A, are highly conserved and exchange freely within eIF4F complexes. The understanding of their biological and molecular functions remains incomplete if not fragmentary. In this study, we showed that eIF4A1 and eIF4A2 exhibit different expression patterns during B-cell development and activation. Mouse genetic analyses showed that they play critical but differential roles during B-cell development and humoral immune responses. While eIF4A1 controls global protein synthesis, eIF4A2 regulates the biogenesis of 18S ribosomal RNA and the 40S ribosome subunit. This study demonstrates the distinct cellular and molecular functions of eIF4A1 and eIF4A2 and reveals a new role of eIF4A2 in controlling 40S ribosome biogenesis.
Collapse
Affiliation(s)
- Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Dewang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yubing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Santos D, Christopoulou VM, Taning CNT, Avgeris S, Papadopoulou A, Kletsas D, Voutsinas GE, Labropoulou V, Swevers L. Stimulation of IRES-Dependent Translation by Rocaglamide A Increases the Replication and Virulence of Cricket Paralysis Virus in Lepidopteran Insect Cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70028. [PMID: 39835498 DOI: 10.1002/arch.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response. In this research, a screening system is presented for the detection of molecules that interfere with the internal ribosomal entry site (IRES) of Cricket paralysis virus (Dicistroviridae) which has been well characterized in previous research. Over-expression and RNAi experiments identified the importance of eIF4A, a component of the cap-dependent translation initiation complex, to modify the activity of IRES-mediated translation. Application of Rocaglamide A (RocA), a natural product from Aglaia plants and inhibitor of eIF4A, resulted in strong stimulation of IRES-mediated translation in reporter assays as well as increased CrPV genome replication and virion production in lepidopteran Hi5 cells. At 100 nM of RocA, dsRNA molecules accumulated in infected cells, corresponding to full-length genome (9.5 kb) and a smaller fragment (0.8 kb) with unknown function. Treatment of silkworm larvae with RocA by injection or topically was highly toxic while no strong stimulation of CrPV infection could be observed. The prospect of the use of rocaglamates as insecticides and enhancers of CrPV infection is discussed together with its potential impact on mammalian cells.
Collapse
Affiliation(s)
- Dulce Santos
- Division of Animal Physiology and Neurobiology, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Leuven, Belgium
| | - Vasiliki-Maria Christopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Socratis Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
4
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Long Z, Li X, Deng W, Tan Y, Liu J. Tumor-associated characteristics and immune dysregulation in nasopharyngeal carcinoma under the regulation of m7G-related tumor microenvironment cells. World J Surg Oncol 2024; 22:166. [PMID: 38918785 PMCID: PMC11202337 DOI: 10.1186/s12957-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant tumor with high morbidity. Aberrant levels of N7-methylguanosine (m7G) are closely associated with tumor progression. However, the characteristics of the tumor microenvironment (TME) in NPC associated with m7G modification remain unclear. METHODS A total of 68,795 single cells from single-cell RNA sequencing data derived from 11 NPC tumor samples and 3 nasopharyngeal lymphatic hyperplasia (NLH) samples were clustered using a nonnegative matrix factorization algorithm according to 61 m7G RNA modification regulators. RESULTS The m7G regulators were found differential expression in the TME cells of NPC, and most m7G-related immune cell clusters in NPC tissues had a higher abundance compared to non-NPC tissues. Specifically, m7G scores in the CD4+ and CD8+ T cell clusters were significantly lower in NPC than in NLH. T cell clusters differentially expressed immune co-stimulators and co-inhibitors. Macrophage clusters differentially expressed EIF4A1, and high EIF4A1 expression was associated with poor survival in patients with head and neck squamous carcinoma. EIF4A1 was upregulated in NPC tissues compared to the non-NPC tissues and mainly expressed in CD86+ macrophages. Moreover, B cell clusters exhibited tumor biological characteristics under the regulation of m7G-related genes in NPC. The fibroblast clusters interacted with the above immune cell clusters and enriched tumor biological pathways, such as FGER2 signaling pathway. Importantly, there were correlations and interactions through various ligand-receptor links among epithelial cells and m7G-related TME cell clusters. CONCLUSION Our study revealed tumor-associated characteristics and immune dysregulation in the NPC microenvironment under the regulation of m7G-related TME cells. These results demonstrated the underlying regulatory roles of m7G in NPC.
Collapse
Affiliation(s)
- Zhen Long
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Tan
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Kim KQ, Nanjaraj Urs AN, Lasehinde V, Greenlaw AC, Hudson BH, Zaher HS. eIF4F complex dynamics are important for the activation of the integrated stress response. Mol Cell 2024; 84:2135-2151.e7. [PMID: 38848692 PMCID: PMC11189614 DOI: 10.1016/j.molcel.2024.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Benjamin H Hudson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Screen M, Matheson LS, Howden AJ, Strathdee D, Willis AE, Bushell M, Sansom O, Turner M. RNA helicase EIF4A1-mediated translation is essential for the GC response. Life Sci Alliance 2024; 7:e202302301. [PMID: 38011999 PMCID: PMC10681908 DOI: 10.26508/lsa.202302301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.
Collapse
Affiliation(s)
- Michael Screen
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Louise S Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew Jm Howden
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
8
|
Casacuberta-Serra S, Gonzalez-Larreategui I, Soucek L. eIF4A dependency: the hidden key to unlock KRAS mutant non-small cell lung cancer's vulnerability. Transl Lung Cancer Res 2023; 12:2570-2575. [PMID: 38205207 PMCID: PMC10775007 DOI: 10.21037/tlcr-23-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Affiliation(s)
| | - Iñigo Gonzalez-Larreategui
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d’Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d’Hebron Campus, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Kwak L, Szymura S, Wang L, Zhang T, Cha SC, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottham S, Rao S, Olsem J, Crumpton B, Lee H, Manasanch E, Neelapu S, Thomas S. First-in-human clinical trial of personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma. RESEARCH SQUARE 2023:rs.3.rs-3315017. [PMID: 37790486 PMCID: PMC10543432 DOI: 10.21203/rs.3.rs-3315017/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade B-cell lymphoma of the bone marrow. Despite a cumulative risk of progression, there is no approved therapy for patients in the asymptomatic phase. We conducted a first-in-human clinical trial of a novel therapeutic DNA idiotype neoantigen vaccine in nine patients with asymptomatic LPL. Treatment was well tolerated with no dose limiting toxicities. One patient achieved a minor response, and all remaining patients experienced stable disease, with median time to disease progression of 61+ months. Direct interrogation of the tumor microenvironment by single-cell transcriptome analysis revealed an unexpected dichotomous antitumor response, with significantly reduced numbers of clonal tumor mature B-cells, tracked by their unique BCR, and downregulation of genes involved in signaling pathways critical for B-cell survival post-vaccine, but no change in clonal plasma cell subpopulations. Downregulation of HLA class II molecule expression suggested intrinsic resistance by tumor plasma cell subpopulations and cell-cell interaction analyses predicted paradoxical upregulation of IGF signaling post vaccine by plasma cell, but not mature B-cell subpopulations, suggesting a potential mechanism of acquired resistance. Vaccine therapy induced dynamic changes in bone marrow T-cells, including upregulation of signaling pathways involved in T-cell activation, expansion of T-cell clonotypes, increased T-cell clonal diversity, and functional tumor antigen-specific cytokine production, with little change in co-inhibitory pathways or Treg. Vaccine therapy also globally altered cell-cell communication networks across various bone marrow cell types and was associated with reduction of protumoral signaling by myeloid cells, principally non-classical monocytes. These results suggest that this prototype neoantigen vaccine favorably perturbed the tumor immune microenvironment, resulting in reduction of clonal tumor mature B-cell, but not plasma cell subpopulations. Future strategies to improve clinical efficacy may require combinations of neoantigen vaccines with agents which specifically target LPL plasma cell subpopulations, or enable blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
| | - Szymon Szymura
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | - Lin Wang
- City of Hope, Beckman Research Institute, Department of Computational and Quantitative Medicine
| | - Tiantian Zhang
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | - Soung-Chul Cha
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | | | | | | | | | - Zhe Wang
- City of Hope National Medical Center
| | | | | | | | | | - Hans Lee
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
10
|
Roychowdhury A, Pal D, Basu M, Samadder S, Mondal R, Roy A, Roychoudhury S, Panda CK. Promoter methylation and enhanced SKP2 are associated with the downregulation of CDKN1C in cervical squamous cell carcinoma. Cell Signal 2023; 109:110735. [PMID: 37257769 DOI: 10.1016/j.cellsig.2023.110735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Cervical Squamous Cell Carcinoma (CSCC) is one of the significant causes of cancer deaths among women. Distinct genetic and epigenetic-altered loci, including chromosomal 11p15.5-15.4, have been identified. CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C, p57KIP2), a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CDKIs), located at 11p15.4, is a putative tumor suppressor. Apart from transcriptional control, S-Phase Kinase Associated Protein 2 (SKP2), an oncogenic E3 ubiquitin ligase, regulates the protein turnover of CDKN1C. But the molecular status of CDKN1C in CSCC and the underlying mechanistic underpinnings have yet to be explored. METHODS TCGA and other publicly available datasets were analyzed to evaluate the expression of CDKN1C and SKP2. The expression (transcript/protein) was validated in independent CSCC tumors (n = 155). Copy number alteration and promoter methylation were correlated with the expression. Finally, in vitro functional validation was performed. RESULTS CDKN1C was down-regulated, and SKP2 was up-regulated at the transcript and protein levels in CSCC tumors and the SiHa cell line. Notably, promoter methylation (50%) was associated with the downregulation of the CDKN1C transcript. However, high expression of SKP2 was found to be associated with the decreased expression of CDKN1C protein. Independent treatments with 5-aza-dC, MG132, and SKP2i (SKPin C1) in SiHa cells led to an enhanced expression of CDKN1C protein, validating the mechanism of down-regulation in CSCC. CONCLUSION Collectively, CDKN1C was down-regulated due to the synergistic effect of promoter hyper-methylation and SKP2 over-expression in CSCC tumors, paving the way for further studies of its role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ranajit Mondal
- Department of Gynecology Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
11
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
12
|
Kellogg GE, Marabotti A, Spyrakis F, Mozzarelli A. HINT, a code for understanding the interaction between biomolecules: a tribute to Donald J. Abraham. Front Mol Biosci 2023; 10:1194962. [PMID: 37351551 PMCID: PMC10282649 DOI: 10.3389/fmolb.2023.1194962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A long-lasting goal of computational biochemists, medicinal chemists, and structural biologists has been the development of tools capable of deciphering the molecule-molecule interaction code that produces a rich variety of complex biomolecular assemblies comprised of the many different simple and biological molecules of life: water, small metabolites, cofactors, substrates, proteins, DNAs, and RNAs. Software applications that can mimic the interactions amongst all of these species, taking account of the laws of thermodynamics, would help gain information for understanding qualitatively and quantitatively key determinants contributing to the energetics of the bimolecular recognition process. This, in turn, would allow the design of novel compounds that might bind at the intermolecular interface by either preventing or reinforcing the recognition. HINT, hydropathic interaction, was a model and software code developed from a deceptively simple idea of Donald Abraham with the close collaboration with Glen Kellogg at Virginia Commonwealth University. HINT is based on a function that scores atom-atom interaction using LogP, the partition coefficient of any molecule between two phases; here, the solvents are water that mimics the cytoplasm milieu and octanol that mimics the protein internal hydropathic environment. This review summarizes the results of the extensive and successful collaboration between Abraham and Kellogg at VCU and the group at the University of Parma for testing HINT in a variety of different biomolecular interactions, from proteins with ligands to proteins with DNA.
Collapse
Affiliation(s)
- Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna Marabotti
- Department of Chemistry and Biology “A Zambelli”, University of Salerno, Fisciano (SA), Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma and Institute of Biophysics, Parma, Italy
| |
Collapse
|