1
|
Ma X, Chen X, Mu X, Cao M, Zhang Y. Epigenetics of maternal-fetal interface immune microenvironment and placental related pregnancy complications. Front Immunol 2025; 16:1549839. [PMID: 40248704 PMCID: PMC12003353 DOI: 10.3389/fimmu.2025.1549839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Epigenetic regulation of placental development and pregnancy-related disease processes has recently been a hot research topic. Implantation and subsequent placental development depend on carefully orchestrated interactions between fetal and maternal tissues, involving a delicate balance of immune factors. Epigenetic regulation, which refers to altering gene expression and function without changing the DNA sequence, is an essential regulatory process in cell biology. Several epigenetic modifications are known, such as DNA methylation, histone modifications, non-coding RNA regulation, and RNA methylation. Recently, there has been increasing evidence that epigenetic modifications are critical for the immune microenvironment at the maternal-fetal interface. In this review, we highlight recent advances in the role of epigenetics in the immune microenvironment at the maternal-fetal interface and in epigenetic regulation and placenta-associated pregnancy complications.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
3
|
Shi S, Wang C, Cai Q, Yang R, Peng M, Liang H, Qian B, Jiang Y, Xiao B, Wang L, Tao Y, Cai J, Zhao Z. RBM15 drives the progression of lung adenocarcinoma by regulating N6-methyladenosine-mediated LDHA mRNA stability. Life Sci 2024; 358:123146. [PMID: 39406308 DOI: 10.1016/j.lfs.2024.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Abnormal N6-methyladenosine (m6A) methylation in RNA plays a pivotal role in the pathogenesis of many types of tumors by influencing mRNA metabolism, alternative splicing, translocation, stability and translation. However, the specific regulators and underlying mechanisms of m6A modification in the progression of lung adenocarcinoma are not well understood. In this study, we analyzed the RNA-seq transcriptome data downloaded from The Cancer Genome Atlas (TCGA) database, and identified "m6A writer" RNA binding motif protein 15 (RBM15) expression was significantly elevated in lung adenocarcinoma (LUAD) biopsies, and the higher RBM15 levels were correlated with the poorer overall survival (OS) of LUAD patients. Further study confirmed RBM15 was prominently expressed in LUAD tissues and cell lines. Moreover, silencing RBM15 in PC9 and H1299 cells reduced cell proliferation both in vitro and in vivo, while overexpression of RBM15 in A549 cells promoted cell growth. Mechanistically, lactate dehydrogenase A (LDHA) acted as a downstream target of RBM15. RBM15-mediated m6A modification of LDHA mRNA enhanced its stability to exert an oncogenic role in LUAD. Taken together, our findings suggest that the RBM15/LDHA axis might be a novel and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Christopher Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Yang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Muyun Peng
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Banglun Qian
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yupeng Jiang
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Li Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital and School of Basic Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Juan Cai
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhenyu Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Chen R, Wang T, Tong H, Zhang X, Ruan J, Qi H, Liu X, He G. METTL3 and IGF2BP2 coordinately regulate FOSL1 mRNA via m6A modification, suppressing trophoblast invasion and contributing to fetal growth restriction. FASEB J 2024; 38:e70154. [PMID: 39565355 DOI: 10.1096/fj.202401665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Fetal growth restriction (FGR) increases the risk of short-term and long-term complications. Widespread N6-methyladenosine (m6A) modifications on mRNAs have been found to be involved in various biological processes. However, the role of m6A modification in the pathogenesis of FGR remains elusive. Here, we report that elevated levels of METTL3 and m6A modification were detected in FGR placentae. Functionally, cell migration, invasion, and proliferation abilities were suppressed after METTL3 overexpression in HTR8/SVneo cells. Subsequently, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of METTL3-knockdown HTR8/SVneo cells were utilized together to identify FOSL1 as the downstream target genes of METTL3. Furthermore, we illustrated that METTL3-mediated m6A modification enhanced the expression of FOSL1 in a IGF2BP2 dependent manner. FOSL1 inhibited trophoblast invasion and migration. Importantly, STM2457, a novel METTL3 catalytic inhibitor, was intravenously administered to FGR mice models, which restore fetal and placental weights in vivo. In vitro STM2457 regulated trophoblast proliferation, invasion, and migration in a dose-dependent manner. In summary, this study reveals that METTL3 and IGF2BP2 increase FOSL1 expression in an m6A-dependent manner. The increase of FOSL1disrupts normal trophoblast invasion, which results in the progression of FGR. METTL3 can serve as a potential target for FGR therapy.
Collapse
Affiliation(s)
- Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of the Key Perinatal Diseases, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hai Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Ruan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of the Key Perinatal Diseases, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinghui Liu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of the Key Perinatal Diseases, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guolin He
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of the Key Perinatal Diseases, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zha X, Gao Z, Li M, Xia X, Mao Z, Wang S. Insight into the regulatory mechanism of m 6A modification: From MAFLD to hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116966. [PMID: 38906018 DOI: 10.1016/j.biopha.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
In recent years, there has been a significant increase in the incidence of metabolic-associated fatty liver disease (MAFLD), which has been attributed to the increasing prevalence of type 2 diabetes mellitus (T2DM) and obesity. MAFLD affects more than one-third of adults worldwide, making it the most prevalent liver disease globally. Moreover, MAFLD is considered a significant risk factor for hepatocellular carcinoma (HCC), with MAFLD-related HCC cases increasing. Approximately 1 in 6 HCC patients are believed to have MAFLD, and nearly 40 % of these HCC patients do not progress to cirrhosis, indicating direct transformation from MAFLD to HCC. N6-methyladenosine (m6A) is commonly distributed in eukaryotic mRNA and plays a crucial role in normal development and disease progression, particularly in tumors. Numerous studies have highlighted the close association between abnormal m6A modification and cellular metabolic alterations, underscoring its importance in the onset and progression of MAFLD. However, the specific impact of m6A modification on the progression of MAFLD to HCC remains unclear. Can targeting m6A effectively halt the progression of MAFLD-related HCC? In this review, we investigated the pivotal role of abnormal m6A modification in the transition from MAFLD to HCC, explored the potential of m6A modification as a therapeutic target for MAFLD-related HCC, and proposed possible directions for future investigations.
Collapse
Affiliation(s)
- Xuan Zha
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zewei Gao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Cao Y, Qiu G, Dong Y, Zhao W, Wang Y. Exploring the role of m 6 A writer RBM15 in cancer: a systematic review. Front Oncol 2024; 14:1375942. [PMID: 38915367 PMCID: PMC11194397 DOI: 10.3389/fonc.2024.1375942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.
Collapse
Affiliation(s)
- Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Yu Dong
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Zhao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
7
|
You G, Li Z, Li L, Xu C. Overexpression of RBM15 modulated the effect of trophoblast cells by promoting the binding ability between YTHDF2 and the CD82 3'UTR to decrease the expression of CD82. Heliyon 2024; 10:e30702. [PMID: 38765115 PMCID: PMC11098837 DOI: 10.1016/j.heliyon.2024.e30702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Background Pre-eclampsia (PE) is a syndrome with no specific pathological mechanism and is specific to pregnancy. The combined analysis of proteomics and transcriptomics possesses many benefits for treating this disease. m6A modification plays a major role in PE; however, mechanism have not been studied clearly. This study investigated the potential mechanism underlying the role of m6A in PE. Methods Mass spectrometry-based label-free quantitative proteomics and transcriptomics experiments were conducted on the placenta of patients with pre-eclampsia and normal pregnancies, and the two omics were followed by joint analysis. Total m6A modification in placental tissues, HTR8/SVneo cells, and JEG-3 cells was measured by dot blot. The levels of RBM15 and CD82 in tissues and cells were detected using qPCR. The protein levels of G3BP1, RBM15, MMP-2, YTHDF2, and MMP-9 were measured by western blotting. The function, migration, and invasion characteristics of HTR8/SVneo and JEG-3 cells were measured using Transwell assays. SRAMP predicted the m6A modification site in the CD82 mRNA 3'UTR, and this was confirmed using luciferase activity and YTHDF2-RIP. Results m6A modification was promoted in the PE group, and the RBM15 abundance was increased. Overexpression of RBM15 increased m6A modification. However, overexpression of RBM15 suppressed the expression of MMP-2 and MMP-9 and also the migratory and invasive capabilities of HTR8/SVneo and JEG-3 cells. CD82 expression levels were decreased in PE, and CD82 expression was confirmed via qPCR, western blotting and immunofluorescence. Furthermore, RBM15 overexpression reduced CD82 mRNA and protein levels. Luciferase activity and YTHDF2-RIP results verified that overexpression of RBM15 promoted the binding ability between YTHDF2 and the CD82 3'UTR, thereby decreasing CD82 expression. Finally, CD82 overexpression reversed the effect of RBM15 overexpression on the expression of MMP-2 and MMP-9 and on the migratory and invasive capabilities of the cells. Conclusions Overexpression of RBM15 hindered the migratory and invasive capabilities of trophoblasts, while concurrently enhancing m6A modification. The potential mechanism was that overexpression of RBM15 promoted the binding capability between YTHDF2 and CD82 3'UTR and decrease the expression of CD82. Thus, this study provides a theoretical basis for the treatment of PE.
Collapse
Affiliation(s)
| | | | - Ling Li
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| | - Chengfang Xu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
8
|
Li S, Lian S, Cheng W, Zhang T, Gong X. THE ROLE OF N6-METHYLADENOSINE METHYLTRANSFERASE RBM15 IN NONALCOHOLIC FATTY LIVER DISEASE. Shock 2024; 61:311-321. [PMID: 38150369 DOI: 10.1097/shk.0000000000002294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder with significant health implications. N6-methyladenosine (m6A) methyltransferase is known to exert regulatory functions in liver-related diseases. This study investigates the intricate role of RNA binding motif protein 15 (RBM15) in modulating inflammation and oxidative stress in NAFLD. An NAFLD model was induced in mice (male, C57BL/6J, 72 mice in the sham group) through a high-fat diet for 9 weeks, and hepatocytes were exposed to long chain-free fatty acids. The expression levels of RBM15, ring finger protein 5 (RNF5), and rho-kinase 1 (ROCK1) were assessed. RBM15 expression was intervened (injection of AAV9 virus at week 9 and detection at week 11). Liver damage was evaluated using staining assays, along with assessments of weight changes and lipid levels. Notably, RBM15 (decreased approximately 40%/60%) and RNF5 (decreased approximately 60%/75%) were poorly expressed while ROCK1 (increased approximately 2.5-fold) was highly expressed in liver tissues and cells. RBM15 overexpression mitigated liver damage, inflammation, and oxidative stress in NAFLD mice, resulting in reduced liver-to-body weight ratio (20%) and decreased levels of alanine aminotransferase (54%), aspartate aminotransferase (36%), total cholesterol (30%), and triglycerides (30%), and inhibited inflammation and oxidative stress levels. Mechanistically, RBM15 upregulated RNF5 expression through m6A methylation modification, and RNF5 suppressed ROCK1 protein levels through ubiquitination modification. RNF5 knockdown or ROCK1 overexpression accelerated inflammation and oxidative stress in NAFLD. Taken together, RBM15 upregulated RNF5 expression through m6A methylation modification. RNF5 inhibited ROCK1 expression through ubiquitination modification to mitigate NAFLD.
Collapse
Affiliation(s)
| | - Shengyi Lian
- Department of General Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Cheng
- Teaching and Research Section of Pathophysiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhang
- Department of Gastroenterology, the Second Clinical College of North Sichuan Medical College-Nanchong City Central Hospital (Beijing Anzhen Hospital, Nanchong Hospital), Nanchong, China
| | - Xiaobing Gong
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
10
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
11
|
Luo P, Li S, Jing W, Tu J, Long X. N 6-methyladenosine RNA modification in nonalcoholic fatty liver disease. Trends Endocrinol Metab 2023; 34:838-848. [PMID: 37758602 DOI: 10.1016/j.tem.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, influencing numerous regulatory axes and extrahepatic vital organs. The molecular mechanisms that lead to the progression of NAFLD remain unclear and knowledge on the pathways causing hepatocellular damage followed by lipid accumulation is limited. Recently, a number of studies have shown that mRNA N6-methyladenosine (m6A) modification contributes to the progression of NAFLD. In this review, we summarize current knowledge on m6A modification in the metabolic processes associated with NAFLD and discuss the challenges of and prospects for therapeutic avenues based on m6A regulation for the treatment of liver disease.
Collapse
Affiliation(s)
- Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jing
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan, Zhengzhou, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Yuan J, Guan W, Li X, Wang F, Liu H, Xu G. RBM15‑mediating MDR1 mRNA m 6A methylation regulated by the TGF‑β signaling pathway in paclitaxel‑resistant ovarian cancer. Int J Oncol 2023; 63:112. [PMID: 37594126 PMCID: PMC10552772 DOI: 10.3892/ijo.2023.5560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ovarian cancer (OC) lacks effective biomarkers for diagnosis at an early stage and often develops chemoresistance after the initial treatment at an advanced stage. RNA‑binding motif protein 15 (RBM15) is an RNA m6A methylation mediator that serves an oncogenic role in some cancers. However, the function and molecular mechanisms of RBM15 in ovarian tumorigenesis and chemoresistance remain to be elucidated. The present study identified the overexpression of RBM15 in OC tissues and paclitaxel (PTX)‑resistant cells using reverse transcription‑quantitative (q)PCR, western blotting and immunohistochemistry. Clinical data analyses showed that high expression of RBM15 was associated with poor prognosis in patients with OC. Overexpression of RBM15 led to an increase in cell viability and colony formation and a decrease in cell sensitivity to PTX and apoptosis, whereas the knockdown of RBM15 resulted in the inhibition of cell viability and colony formation in vitro and tumor formation in vivo and increased cell apoptosis and sensitivity to PTX in a time‑ and dose‑dependent manner. Furthermore, RBM15 knockdown reduced the spheroid formation of PTX‑resistant OC cells. Silencing of RBM15 decreased multidrug resistance 1 (MDR1) mRNA m6A methylation detected by the methylated RNA immunoprecipitation‑qPCR assay and downregulated the expression of a chemo‑drug efflux pump MDR1 at the mRNA and protein levels. Finally, RBM15 expression was suppressed by the activation of the TGF‑β signaling pathway. Thus, the findings revealed a TGF‑β/RBM15/MDR1 regulatory mechanism. Targeting RBM15 may provide a novel therapeutic strategy for the treatment of PTX‑resistant OC.
Collapse
Affiliation(s)
- Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
13
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
14
|
Zhang H, Gu Y, Gang Q, Huang J, Xiao Q, Ha X. N6-methyladenosine RNA modification: an emerging molecule in type 2 diabetes metabolism. Front Endocrinol (Lausanne) 2023; 14:1166756. [PMID: 37484964 PMCID: PMC10360191 DOI: 10.3389/fendo.2023.1166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence worldwide. Despite the considerable progress in the prevention and intervention, T2D and its complications cannot be reversed easily after diagnosis, thereby necessitating an in-depth investigation of the pathophysiology. In recent years, the role of epigenetics has been increasingly demonstrated in the disease, of which N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications. Interestingly, patients with T2D show a low m6A abundance. Thus, a comprehensive analysis and understanding of this phenomenon would improve our understanding of the pathophysiology, as well as the search for new biomarkers and therapeutic approaches for T2D. In this review, we systematically introduced the metabolic roles of m6A modification in organs, the metabolic signaling pathways involved, and the effects of clinical drugs on T2D.
Collapse
Affiliation(s)
- Haocheng Zhang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| | - Yan Gu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaojian Gang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Huang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Qian Xiao
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|