1
|
Choudhary RK, Kumar B. V. S, Sekhar Mukhopadhyay C, Kashyap N, Sharma V, Singh N, Salajegheh Tazerji S, Kalantari R, Hajipour P, Singh Malik Y. Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health. Vet Med Int 2024; 2024:4125118. [PMID: 39484643 PMCID: PMC11527549 DOI: 10.1155/2024/4125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.
Collapse
Affiliation(s)
- Ratan Kumar Choudhary
- Department of Bioinformatics, Animal Stem Cells Laboratory, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sunil Kumar B. V.
- Department of Animal Biotechnology, Proteomics & Metabolomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Neeraj Kashyap
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Vishal Sharma
- Department of Animal Biotechnology, Reproductive Biotechnology Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Nisha Singh
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sina Salajegheh Tazerji
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roozbeh Kalantari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouneh Hajipour
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yashpal Singh Malik
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
2
|
Chatterjee B, Thakur SS. miRNA-protein-metabolite interaction network reveals the regulatory network and players of pregnancy regulation in dairy cows. Front Cell Dev Biol 2024; 12:1377172. [PMID: 39156977 PMCID: PMC11329941 DOI: 10.3389/fcell.2024.1377172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Pregnancy is a complex process involving complex molecular interaction networks, such as between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite interactions. Advances in technology have led to the identification of many pregnancy-associated microRNA (miRNA), protein, and metabolite fingerprints in dairy cows. An array of miRNA, protein, and metabolite fingerprints produced during the early pregnancy of dairy cows were described. We have found the in silico interaction networks between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite. We have manually constructed miRNA-protein-metabolite interaction networks such as bta-miR-423-3p-IGFBP2-PGF2α interactomes. This interactome is obtained by manually combining the interaction network formed between bta-miR-423-3p-IGFBP2 and the interaction network between IGFBP2-PGF2α with IGFBP2 as a common interactor with bta-miR-423-3p and PGF2α with the provided sources of evidence. The interaction between bta-miR-423-3p and IGFBP2 has many sources of evidence including a high miRanda score of 169, minimum free energy (MFE) score of -25.14, binding probability (p) of 1, and energy of -25.5. The interaction between IGFBP2 and PGF2α occurs at high confidence scores (≥0.7 or 70%). Interestingly, PGF2α is also found to interact with different metabolites, such as PGF2α-PGD2, PGF2α-thromboxane B2, PGF2α-PGE2, and PGF2α-6-keto-PGF1α at high confidence scores (≥0.7 or 70%). Furthermore, the interactions between C3-PGE2, C3-PGD2, PGE2-PGD2, PGD2-thromboxane B2, PGE2-thromboxane B2, 6-keto-PGF1α-thromboxane B2, and PGE2-6-keto-PGF1α were also obtained at high confidence scores (≥0.7 or 70%). Therefore, we propose that miRNA-protein-metabolite interactomes involving miRNA, protein, and metabolite fingerprints of early pregnancy of dairy cows such as bta-miR-423-3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-keto-PGF1 alpha, and thromboxane B2 may form the key regulatory networks and players of pregnancy regulation in dairy cows. This is the first study involving miRNA-protein-metabolite interactomes obtained in the early pregnancy stage of dairy cows.
Collapse
|
3
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Esteves Trindade PH, da Rosa Filho RR, de Oliveira DJB, Oba E. Proteomics approach reveals urinary markers for early pregnancy diagnosis in buffaloes. J Proteomics 2024; 290:105036. [PMID: 37879565 DOI: 10.1016/j.jprot.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to compare urine proteomics from non- and pregnant buffaloes in order to identify potential biomarkers of early pregnancy. Forty-four females underwent hormonal ovulation synchronization and were randomly divided into two experimental groups: inseminated (n = 30) and non-inseminated (n = 14). The pregnant females were further divided into two groups: pregnant at Day 12 (P12; n = 8) and at Day 18 (P18; n = 8) post-ovulation. The non-pregnant group was also subdivided into two groups: non-pregnant at Day 12 (NP12; n = 7) and at Day 18 (NP18; n = 7). Urine was collected from all females on Days 12 or 18. The samples were processed for proteomics. A total of 798 proteins were reported in the urine considering all groups. The differential proteins play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that some proteins from our study can be considered biomarkers for early pregnancy diagnosis, since they were increased in pregnant buffaloes. SIGNIFICANCE: Macromolecules have been studied for early pregnancy diagnosis, aiming to increase reproductive efficiency in cattle and buffaloes. Direct methods such as rectal palpation and ultrasonography have been considered late. Thus, this study aimed to compare urine proteomics from non- and pregnant buffaloes to identify potential biomarkers of early pregnancy. The differential proteins found in our study play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that these proteins can be considered possible biomarkers for early pregnancy diagnosis since they were increased in the pregnant buffaloes.
Collapse
Affiliation(s)
- Viviane M Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana F de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Thais R Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carlos A Labate
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laíza S de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Pedro H Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto R da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Diego J B de Oliveira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
DAS MONTI, DE ANKAN, BEHERA PARTHASARATHI, ALI MOHAMMADAYUB, SUBUDHI PRASANTKUMAR, KALITA GIRIN, KAYINA ASHULIKHOZHIIO, GALI JAGANMOHANARAO. Porcine salivary proteome analysis identifies potential early pregnancy-specific protein biomarkers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.119316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Early diagnosis of pregnancy is of utmost importance to optimize profit in pig husbandry. Identifying candidate protein biomarkers for early diagnosis of pregnancy in a non-invasive sample such as saliva may produce a colossallead to accomplish the purpose. Therefore, in this study, comparative salivary proteome profile of day 12 of gestation, representing elongation of blastocysts stage and non-pregnant sows was explored by label-free quantitation (LFQ) based mass spectrometry approach to identify early pregnancy biomarkers. A total of 115 proteins were identified as differentially expressed proteins (DEPs) with significant difference between non-pregnant and early pregnancy groups. Among the DEPs, majority of the proteins (82 out of 115 DEPs) were found to be down-regulated in early pregnancy group (fold change >2) compared to non-pregnant control. Functional classification and pathway analysis of the DEPs revealed involvement of most of the proteins in integrin signalling pathways, blood coagulation, carbohydrate metabolism, oxidative stress response and regulation of protein folding. Few DEPs with higher fold change during early pregnancy such as thioredoxin, heat shock 70 kDa protein 1A, alpha 1-S haptoglobin, and glutathione S-transferase pi 1 may have potential as biomarkers for early pregnancy diagnosis in pigs based on their recognized role in different pregnancy related activities. Overall, our results provide a set of salivary proteins which can be used as potential biomarkers for early pregnancy diagnosis after large scale validation.
Collapse
|
5
|
Ye J, Liu P, Li R, Liu H, Pei W, Ma C, Shen B, Zhao D, Chen X. Biomarkers of connective tissue disease-associated interstitial lung disease in bronchoalveolar lavage fluid: A label-free mass spectrometry-based relative quantification study. J Clin Lab Anal 2022; 36:e24367. [PMID: 35334492 PMCID: PMC9102639 DOI: 10.1002/jcla.24367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The pathogenesis of connective tissue disease-associated interstitial lung disease (CTD-ILD) is unclear. This study aims to identify differentially expressed proteins (DEPs) in CTD-ILD to determine the potential role of these DEPs that may play in the pathogenesis of CTD-ILD and to offer potential therapeutic targets. METHODS Bronchoalveolar lavage fluid (BALF) samples were collected from four patients with CTD-ILD and four patients without CTD-ILD. Label-free mass spectrometry-based relative quantification was used to identify the DEPs. Bioinformatics were used to determine the potential biological processes and signaling pathways associated with these DEPs. RESULTS We found 65 upregulated DEPs including SFTPD, CADM1, ACSL4, TSTD1, CD163, LUM, SIGLEC1, CPB2, TGFBI and HGD, and 67 downregulated DEPs including SGSH, WIPF1, SIL1, RAB20, OAS3, GMPR2, PLBD1, DNAJC3, RNASET2 and OAS2. The results of GO functional annotation for the DEPs showed that the DEPS were mainly enriched in the binding, cellular anatomical entity, cellular processes, and biological regulation GO terms. The results of KEGG analyses showed that the pathways most annotated with the DEPs were complement and coagulation cascades, metabolic pathways, pathways in cancer, and PPAR signaling pathway. COG analyses further informed the functions associated with these DEPs, with most focused on signal transduction mechanisms; posttranslational modification, protein turnover, chaperones; intracellular trafficking, secretion, and vesicular transport; amino acid transport and metabolism; and lipid transport and metabolism. CONCLUSIONS DEPs identified between patients with vs. without CTD-ILD may play important roles in the development of CTD-ILD and are potential new biomarkers for early diagnosis of CTD-ILD.
Collapse
Affiliation(s)
- Jing Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengcheng Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renming Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjing Pei
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changxiu Ma
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Dahai Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyu Chen
- School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Jamwal S, Ansari S, Malakar D, Kaushik JK, Kumar S, Mohanty AK. Production of biologically active recombinant buffalo leukemia inhibitory factor (BuLIF) in Escherichia Coli. J Genet Eng Biotechnol 2022; 20:47. [PMID: 35294648 PMCID: PMC8927517 DOI: 10.1186/s43141-022-00328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Background Leukemia inhibitory factor (LIF) is a multifunctional cytokine which plays multiple roles in different biological processes such as implantation, bone remodeling, and hematopoiesis. The buESCs are difficult to culture due to lack of proper understanding of the culture conditions. LIF is one of the important factors which maintain the pluripotency in embryonic stem cells and commercial LIF from murine and human origin is used in the establishment of buffalo embryonic stem cells (buESCs). The LIF from a foreign origin is not able to maintain pluripotency and proliferation in buESCs for a long term which is contributed by difference in the binding sites on LIF; therefore, culture medium supplemented with buffalo-specific LIF may enhance the efficiency of buESCs by improving the environment of culture conditions. The high cost of LIF is another major drawback which restricts buESCs research, thus limits the scope of buffalo stem cell use. Various methods have been developed to produce human and murine LIF in prokaryotic system. However, Buffalo leukemia inhibitory factor (BuLIF) has not been yet produced in prokaryotic system. Here, we describe a simple strategy for the expression and purification of biologically active BuLIF in Escherichia coli (E. coli). Results The BuLIF cDNA from buffalo (Bubalus bubalis) was cloned into pET22b(+) and expressed in E. coli Lemo-21(DE3). The expression of BuLIF was directed into periplasmic space of E. coli which resulted in the formation of soluble recombinant protein. One step immobilized metal affinity chromatography (IMAC chromatography) was performed for purification of BuLIF with ≥ 95% of homogeneity. The recombinant protein was confirmed by western blot and identified by mass spectroscopy. The biological activity of recombinant BuLIF was determined on murine myeloid leukemic cells (M1 cells) by MTT proliferation assay. The addition of BuLIF increased the reduction of MTT by stimulated M1 cells in a dose-dependent manner. The BuLIF induced the formation of macrophage like structures from M1 cells where they engulfed fluorescent latex beads. The recombinant BuLIF successfully maintained pluripotency in buffalo embryonic stem cells (buESCs) and were positive for stem cells markers such as Oct-4, Sox-2, Nanog, and alkaline phosphatase activity. Conclusions The present study demonstrated a simple method for the production of bioactive BuLIF in E. coli through single step purification. BuLIF effectively maintained buffalo embryonic stem cells pluripotency. Thus, this purified BuLIF can be used in stem cell study, biomedical, and agricultural research. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00328-1.
Collapse
Affiliation(s)
- Shradha Jamwal
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Shama Ansari
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.
| | - Ashok Kumar Mohanty
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Mukteshwar, India.
| |
Collapse
|
7
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
8
|
Kumar R, Ali SA, Singh SK, Bhushan V, Kaushik JK, Mohanty AK, Kumar S. Peptide profiling in cow urine reveals molecular signature of physiology-driven pathways and in-silico predicted bioactive properties. Sci Rep 2021; 11:12427. [PMID: 34127704 PMCID: PMC8203733 DOI: 10.1038/s41598-021-91684-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 12/05/2022] Open
Abstract
Peptidomics allows the identification of peptides that are derived from proteins. Urinary peptidomics has revolutionized the field of diagnostics as the samples represent complete systemic changes happening in the body. Moreover, it can be collected in a non-invasive manner. We profiled the peptides in urine collected from different physiological states (heifer, pregnancy, and lactation) of Sahiwal cows. Endogenous peptides were extracted from 30 individual cows belonging to three groups, each group comprising of ten animals (biological replicates n = 10). Nano Liquid chromatography Mass spectrometry (nLC-MS/MS) experiments revealed 5239, 4774, and 5466 peptides in the heifer, pregnant and lactating animals respectively. Urinary peptides of <10 kDa size were considered for the study. Peptides were extracted by 10 kDa MWCO filter. Sequences were identified by scanning the MS spectra ranging from 200 to 2200 m/z. The peptides exhibited diversity in sequences across different physiological states and in-silico experiments were conducted to classify the bioactive peptides into anti-microbial, anti-inflammatory, anti-hypertensive, and anti-cancerous groups. We have validated the antimicrobial effect of urinary peptides on Staphylococcus aureus and Escherichia coli under an in-vitro experimental set up. The origin of these peptides was traced back to certain proteases viz. MMPs, KLKs, CASPs, ADAMs etc. which were found responsible for the physiology-specific peptide signature of urine. Proteins involved in extracellular matrix structural constituent (GO:0005201) were found significant during pregnancy and lactation in which tissue remodeling is extensive. Collagen trimers were prominent molecules under cellular component category during lactation. Homophilic cell adhesion was found to be an important biological process involved in embryo attachment during pregnancy. The in-silico study also highlighted the enrichment of progenitor proteins on specific chromosomes and their relative expression in context to specific physiology. The urinary peptides, precursor proteins, and proteases identified in the study offers a base line information in healthy cows which can be utilized in biomarker discovery research for several pathophysiological studies.
Collapse
Affiliation(s)
- Rohit Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sumit Kumar Singh
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Vanya Bhushan
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Jai Kumar Kaushik
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Ashok Kumar Mohanty
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sudarshan Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India.
| |
Collapse
|
9
|
Murugesan KD, Gupta ID, Onteru SK, Dash A, Sukhija N, Sivalingam J, Mohanty AK. Profiling and integrated analysis of whole-transcriptome changes in uterine caruncles of pregnant and non-pregnant buffaloes. Genomics 2021; 113:2338-2349. [PMID: 34022349 DOI: 10.1016/j.ygeno.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Improved reproductive performance in buffaloes can be achieved by understanding the basic mechanism governing the embryonic attachment and feto-maternal communication. Considering this, trascriptomic profiling and integrative analysis of long intergenic non-coding RNAs were carried out in the uterine caruncles of pregnant and non-pregnant buffaloes. Transcriptome data of pregnant and non-pregnant uterine caruncles after quality control was used to perform the analysis. Total of 86 novel lincRNAs expressed in uterine caruncular tissues were identified and characterized. Differential expression analysis revealed that 447 mRNAs and 185 mRNAs were up- and down- regulated, respectively. The number of up- and down- regulated lincRNAs were 114 and 13, respectively. Of the identified 86 novel lincRNAs, six novel lincRNAs were up-regulated in the pregnant uterine caruncles. GO terms (biological process) and PANTHER pathways associated with reproduction and embryogenesis were over-represented in differentially expressed genes. Through miRNA interaction analysis, interactions of 16 differentially expressed lincRNAs with mi-RNAs involved in reproduction were identified. This study has provided a catalogue of differentially expressed genes and novel regions previously unknown to play a significant role in buffalo reproduction. The results from the current study extends the buffalo uterine lncRNAs database and provides candidate regulators for future molecular genetic studies on buffalo uterine physiology to improve the embryo implantation and successful completion of pregnancy.
Collapse
Affiliation(s)
- Kousalya Devi Murugesan
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - I D Gupta
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Aishwarya Dash
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Nidhi Sukhija
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jayakumar Sivalingam
- Animal Genetics and Breeding Division, National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
10
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
11
|
Almeida AM, Ali SA, Ceciliani F, Eckersall PD, Hernández-Castellano LE, Han R, Hodnik JJ, Jaswal S, Lippolis JD, McLaughlin M, Miller I, Mohanty AK, Mrljak V, Nally JE, Nanni P, Plowman JE, Poleti MD, Ribeiro DM, Rodrigues P, Roschitzki B, Schlapbach R, Starič J, Yang Y, Zachut M. Domestic animal proteomics in the 21st century: A global retrospective and viewpoint analysis. J Proteomics 2021; 241:104220. [PMID: 33838350 DOI: 10.1016/j.jprot.2021.104220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Animal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics' use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researchers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics. SIGNIFICANCE: Animal production and health are very important for food supply worldwide particularly as a source of proteinaceous foods. Animal and veterinary sciences have evolved immensely in the last decades. In order to address the major contemporary challenges facing animal and veterinary sciences, it is of utmost importance to use state-of-the-art research tools such as Proteomics and other Omics. Herein, we focus on the major developments in domestic animal proteomics worldwide during the last decade and how different regions of the world have used the technology in this specific research field. We address also major international efforts aiming to increase the research output in this area and highlight the importance of international cooperation to address specific problems inherent to domestic animal proteomics.
Collapse
Affiliation(s)
- André M Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy
| | - P David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lorenzo E Hernández-Castellano
- Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jaka J Hodnik
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Jarlath E Nally
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Paolo Nanni
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | - Mirele D Poleti
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - David M Ribeiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Pedro Rodrigues
- CCMAR - Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Jože Starič
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization/Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
12
|
Li M, Wu M, Qin Y, Liu H, Tu C, Shen B, Xu X, Chen H. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ 2020; 8:e9971. [PMID: 33194371 PMCID: PMC7646293 DOI: 10.7717/peerj.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma. Methods Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and analyses, we determined the biological processes associated with these DEPs. Key protein glucose-6-phosphate dehydrogenase (G6PD) was verified by enzyme linked immunosorbent assay (ELISA). Results We found 46 DEPs in serum samples of children with asthma vs. children without asthma. Among these DEPs, 12 proteins were significantly (>1.5 fold change) upregulated and 34 proteins were downregulated. The results of GO analyses showed that the DEPs were mainly involved in binding, the immune system, or responding to stimuli or were part of a cellular anatomical entity. In the KEGG signaling pathway analysis, most of the downregulated DEPs were associated with cardiomyopathy, phagosomes, viral infections, and regulation of the actin cytoskeleton. The results of a COG analysis showed that the DEPs were primarily involved in signal transduction mechanisms and posttranslational modifications. These DEPs were associated with and may play important roles in the immune response, the inflammatory response, extracellular matrix degradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment. Conclusion After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Liu
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Fasoli S, Andreani G, Dondi F, Ferlizza E, Bellei E, Isani G. Urinary Reference Values and First Insight into the Urinary Proteome of Captive Giraffes. Animals (Basel) 2020; 10:E1696. [PMID: 32961670 PMCID: PMC7552697 DOI: 10.3390/ani10091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Urinalysis is widely recognized to be a useful tool in routine health investigations, since it can diagnose numerous pathologies. Considering the paucity of knowledge concerning giraffes, urine from 44 giraffes (Giraffa camelopardalis) (18 males and 26 females, from 3 months of age to 21 years of age) underwent routine urinalysis, 1D-electrophoresis, and protein identification using mass spectrometry, with the aim of identifying the urinary reference values and the urine proteome. The urine specific gravity (USG), urine total proteins (uTP), urine creatinine (uCr), and urine protein:creatinine ratio (UPC) reference values, reported as the median, and lower limit (LL) and upper limit (UL), were 1.030 (1006-1.049), 17.58 (4.54-35.31) mg/dL, 154.62 (39.59-357.95) mg/dL, and 0.11 (0.07-0.16), respectively. Mass spectrometry, together with electrophoresis, revealed a pattern of common urinary proteins; albumin, lysozyme C, and ubiquitin were the most represented proteins in the giraffe urine. It has been hypothesized that these proteins could act as a defense against microbes. Moreover, in giraffes, urinalysis could be a valid tool for gauging renal function and physiological status changes.
Collapse
Affiliation(s)
- Sabrina Fasoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| |
Collapse
|
14
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
15
|
Na Nakorn P, Pannengpetch S, Isarankura-Na-Ayudhya P, Thippakorn C, Lawung R, Sathirapongsasuti N, Kitiyakara C, Sritara P, Vathesatogkit P, Isarankura-Na-Ayudhya C. Roles of kininogen-1, basement membrane specific heparan sulfate proteoglycan core protein, and roundabout homolog 4 as potential urinary protein biomarkers in diabetic nephropathy. EXCLI JOURNAL 2020; 19:872-891. [PMID: 32665774 PMCID: PMC7355151 DOI: 10.17179/excli2020-1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy, a major complication of diabetes mellitus (DM), is increasing worldwide and the large majority of patients have type 2 DM. Microalbuminuria has been used as a diagnostic marker of diabetic nephropathy. But owing to its insufficient sensitivity and specificity, other biomarkers are being sought. In addition, the pathophysiology of diabetic nephropathy is not fully understood and declines in renal function occur even without microalbuminuria. In this study, we investigated urinary proteins from three study groups (controls, and type 2 diabetic subjects with or without microalbuminuria). Non-targeted label-free Nano-LC QTOF analysis was conducted to discover underlying mechanisms and protein networks, and targeted label-free Nano-LC QTOF with SWATH was performed to qualify discovered protein candidates. Twenty-eight proteins were identified as candidates and functionally analyzed via String DB, gene ontology and pathway analysis. Four predictive mechanisms were analyzed: i) response to stimulus, ii) platelet activation, signaling and aggregation, iii) ECM-receptor interaction, and iv) angiogenesis. These mechanisms can provoke kidney dysfunction in type 2 diabetic patients via endothelial cell damage and glomerulus structural alteration. Based on these analyses, three proteins (kininogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, and roundabout homolog 4) were proposed for further study as potential biomarkers. Our findings provide insights that may improve methods for both prevention and diagnosis of diabetic nephropathy.
Collapse
Affiliation(s)
- Piyada Na Nakorn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | | | - Chadinee Thippakorn
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | - Ratana Lawung
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nuankanya Sathirapongsasuti
- Section for Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prin Vathesatogkit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
16
|
In-depth proteome analysis of more than 12,500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation. Sci Rep 2020; 10:4834. [PMID: 32179766 PMCID: PMC7075962 DOI: 10.1038/s41598-020-61521-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The mature mammary gland is made up of a network of ducts that terminates in alveoli. The innermost layer of alveoli is surrounded by the differentiated mammary epithelial cells (MECs), which are responsible for milk synthesis and secretion during lactation. However, the MECs are in a state of active proliferation during pregnancy, when they give rise to network like structures in the mammary gland. Buffalo (Bubalus bubalis) constitute a major source of milk for human consumption, and the MECs are the major precursor cells which are mainly responsible for their lactation potential. The proteome of MECs defines their functional state and suggests their role in various cellular activities such as proliferation and lactation. To date, the proteome profile of MECs from buffalo origin is not available. In the present study, we have profiled in-depth proteome of in vitro cultured buffalo MECs (BuMECs) during active proliferation using high throughput tandem mass spectrometry (MS). MS analysis identified a total of 8330, 5970, 5289, 4818 proteins in four sub-cellular fractions (SCFs) that included cytosolic (SCF-I), membranous and membranous organelle’s (SCF-II), nuclear (SCF-III), and cytoskeletal (SCF-IV). However, 792 proteins were identified in the conditioned media, which represented the secretome. Altogether, combined analysis of all the five fractions (SCFs- I to IV, and secretome) revealed a total of 12,609 non-redundant proteins. The KEGG analysis suggested that these proteins were associated with 325 molecular pathways. Some of the highly enriched molecular pathways observed were metabolic, MAPK, PI3-AKT, insulin, estrogen, and cGMP-PKG signalling pathway. The newly identified proteins in this study are reported to be involved in NOTCH signalling, transport and secretion processes.
Collapse
|
17
|
Wawrzykowski J, Franczyk M, Ner-Kluza J, Silberring J, Kankofer M. 2D Electrophoretic pattern of bovine placental proteins during early-mid pregnancy. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4483. [PMID: 31786808 DOI: 10.1002/jms.4483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The Placenta, like every tissue, possesses its own characteristic protein profile, which may change within the course of pregnancy. These changes can be used for the elucidation of the mechanisms related to both physiology of pregnancy and pathological events. The aim of the study was to describe proteinergic profiles of maternal and fetal parts of bovine placenta during early-mid pregnancy by the use of 2D electrophoresis and MALDI TOF/TOF MS identification to evaluate dynamics of the possible changes necessary for placentation. Placental samples were collected from six pregnant cows (3-5 months) in the local abattoir. Placentomes were separated, and proteins were extracted and subjected to 2D electrophoresis and MALDI TOF/TOF identification. Out of 907 spots identified by the statistical analysis of gels, 54 were identified. Out of this number, 36 spots were significantly different between examined samples. Moreover, the obtained patterns differed between maternal and fetal parts of the placenta with regard to the intensity of staining, suggesting quantitative differences in protein content. These preliminary results are unique for this period of pregnancy. Such data are important for further experiments to obtain full protein profiles necessary to understand biochemical mechanisms underlying the attachment between fetal and maternal parts of the placenta during placentation. Moreover, the outcomes may help in elucidating pregnancy biomarkers in the future.
Collapse
Affiliation(s)
- Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka 12, Lublin, 20-033, Poland
| | - Monika Franczyk
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka 12, Lublin, 20-033, Poland
| | - Joanna Ner-Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Avenue, Krakow, 30-059, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Avenue, Krakow, 30-059, Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
18
|
Honan MC, Greenwood SL. Characterization of variations within the rumen metaproteome of Holstein dairy cattle relative to morning feed offering. Sci Rep 2020; 10:3179. [PMID: 32081893 PMCID: PMC7035244 DOI: 10.1038/s41598-020-59974-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Few studies have utilized proteomic techniques to progress our knowledge of protein-mediated pathways within the rumen microbial community, and no previous research has used these techniques to investigate the patterns or variations of these proteins within this community. It was hypothesized that there would be fluctuations of rumen microbial protein abundances due to feed intake-mediated nutrient availability and that these could be identified using non gel-based proteomic techniques. This study investigated the fluctuations of bovine rumen metaproteome utilizing three mid to late-lactation Holsteins. Rumen fluid was collected at three timepoints on three days relative to their first morning feed offering (0 h, 4 h, and 6 h). Samples were pooled within timepoint within cow across day, analyzed using LC-MS/MS techniques, and analyzed for variations across hour of sampling using PROC MIXED of SAS with orthogonal contrasts to determine linear and quadratic effects. A total of 658 proteins were characterized across 19 microbial species, with 68 proteins identified from a variety of 15 species affected by time of collection. Translation-related proteins such as 50S and 30S ribosomal protein subunit variants and elongation factors were positively correlated with hour of sampling. Results suggest that as nutrients become more readily available, microbes shift from conversion-focused biosynthetic routes to more encompassing DNA-driven pathways.
Collapse
Affiliation(s)
- Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA
| | - Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
19
|
Boy GFT, Codognoto VM, Faleiros-Lima MCM, Yamada PH, de Ruediger FR, Paranzini CS, Souza FF, do Carmo LM, Vieira AF, Oba E. Proteomic analysis of amniotic and allantoic fluid from buffaloes during foetal development. Reprod Domest Anim 2019; 54:1507-1515. [PMID: 31465588 DOI: 10.1111/rda.13557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
The objective of this study was to describe the dynamic changes in protein composition and protein abundance in amniotic and allantoic fluids from buffaloes during gestation. Amniotic and allantoic fluids were collected during the first, second and third trimesters of gestation. The foetuses were measured and weighed. Fluid samples were centrifuged at 800 g for 10 min and then at 10,000 g for 60 min at 4°C. The supernatant was collected to determine the total protein concentration. Based on total protein concentration, an aliquot (50 μg) was used for in-solution tryptic digestion, and mass spectrometry analysis (nano-LC-MS/MS) was performed. A multivariate statistical analysis of the proteomic data was conducted. Across the different stages of buffalo gestation, fifty-one proteins were found in the amniotic fluid, and twenty-one were found in the allantoic fluid. A total of twelve proteins were common among the stages, and four presented significant differences (VIP score α > 1). Fibronectin and alpha-1-antiproteinase were more abundant in the amniotic fluid than in the allantoic fluid. Alpha-2-macroglobulin and alpha-2-HS-glycoprotein were more abundant in the allantoic fluid than in the amniotic fluid. Alpha-2-macroglobulin participates in remodelling and growth of the uterus at beginning of the gestation (first trimester), and these findings indicate that can serve as a potential tool for the early diagnosis of pregnancy in buffaloes.
Collapse
Affiliation(s)
- Gabriela Ferreira Tavares Boy
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Viviane Maria Codognoto
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maria Carolina M Faleiros-Lima
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Paulo Henrique Yamada
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cristiane S Paranzini
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Fabiana F Souza
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Monteiro do Carmo
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Andressa Filaz Vieira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Eunice Oba
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
20
|
Ner-Kluza J, Wawrzykowski J, Franczyk M, Siberring J, Kankofer M. Identification of protein patterns in bovine placenta at early-mid pregnancy - Pilot studies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1084-1090. [PMID: 30912867 DOI: 10.1002/rcm.8444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Placenta is a crucial tissue for an appropriate development of the fetus and the course of pregnancy. Its composition and structure change dynamically along pregnancy but the full pattern of these changes is not fully described in cows yet. The aim of the present study was to detect qualitative and quantitative protein profiles of bovine placenta during early-mid pregnancy at the time of placental formation. METHODS Placental tissues from healthy cows (n = 3) in early pregnancy (3-5 months) were collected at the slaughterhouse. Maternal and fetal parts were manually divided prior to homogenization. Further analysis was done in triplicates on the maternal and fetal parts separately and subjected to one-dimensional (1D) electrophoretic separation, followed by identification of peptide maps by nanospray liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS). Proteins were identified by use of the MASCOT software with the SwissProt database. RESULTS Proteomic analysis showed more than 4000 differentially expressed proteins in maternal and fetal parts of placenta. Each part expressed around 900 proteins, of which ca. 90 were common. The identified proteins were analyzed in accordance to molecular function and their participation in biological processes. CONCLUSIONS The obtained results provide new insight into the knowledge about biochemical characteristics of placenta (new proteins) and serve for further studies on the possible markers of physiological/pathological pregnancy or function of placenta. Moreover, our data can be a good starting point for further studies on the processes underlying the attachment of placenta.
Collapse
Affiliation(s)
- Joanna Ner-Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059, Krakow, Mickiewicza 30 ave., Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, 20-033, Lublin, Akademicka 12, Poland
| | - Monika Franczyk
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, 20-033, Lublin, Akademicka 12, Poland
| | - Jerzy Siberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059, Krakow, Mickiewicza 30 ave., Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, 20-033, Lublin, Akademicka 12, Poland
| |
Collapse
|
21
|
De A, Ali MA, Chutia T, Onteru SK, Behera P, Kalita G, Kumar S, Gali JM. Comparative serum proteome analysis reveals potential early pregnancy-specific protein biomarkers in pigs. Reprod Fertil Dev 2019; 31:613-631. [DOI: 10.1071/rd18227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
In this study, the comparative serum proteome profile of Day 5, 12 and 16 of gestation, representing three early embryonic events, namely formation, elongation and implantation of blastocysts, and non-pregnant control were explored by a label-free quantitation-based mass spectrometric approach to identify early pregnancy biomarkers in pigs. A total of 131 proteins were identified with respect to different groups, out of which 105 were found to be differentially expressed proteins (DEPs). Among the DEPs, 54 and 66 proteins were found to be up and downregulated respectively in early pregnancy groups (fold change >2) and the maximum number of upregulated proteins was observed in the Day 12 pregnancy stage. Functional classification and pathway analysis of the DEPs revealed involvement of most of the proteins in complement and coagulation cascades, metabolic processes and immune and inflammatory responses. Proteins such as glutathione peroxidise (GPX), pregnancy zone protein (PZP), thrombospondin-1 (THBS1), α-1-antitrypsin (AAT) and mannose-binding lectin C (MBLC) were differentially expressed during early pregnancy and actively involved in different pregnancy-related activities. To the best of our knowledge, this is the first report on comparative serum protein profiling of different early pregnancy stages in pigs and our results provide a set of proteins that can be used as potential biomarkers for early pregnancy diagnosis in pigs.
Collapse
|
22
|
Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle. Theriogenology 2018; 114:301-307. [DOI: 10.1016/j.theriogenology.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022]
|