1
|
Hajfathalian M, Ghelichi S, Jacobsen C. Anti-obesity peptides from food: Production, evaluation, sources, and commercialization. Compr Rev Food Sci Food Saf 2025; 24:e70158. [PMID: 40111015 PMCID: PMC11924896 DOI: 10.1111/1541-4337.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
The global obesity epidemic has heightened interest in natural solutions, with anti-obesity peptides emerging as promising candidates. Derived from food sources such as plants, algae, marine organisms, and products like milk and eggs, these peptides combat obesity through various mechanisms but face challenges in production and scalability. The aim of this review is to explore their sources, mechanisms, measurement, and synthesis methods, including innovative approaches such as de novo synthesis, proteomics, and bioinformatics. Its unique contribution lies in critically analyzing the current state of research while highlighting novel synthesis techniques and their practical relevance in addressing commercialization challenges, offering valuable insights for advancing anti-obesity peptide development. Diverse methods for assessing the anti-obesity properties of these peptides are discussed, encompassing both in vitro and in vivo experimental approaches, as well as emerging alternatives. The review also explores the integration of cutting-edge technologies in peptide synthesis with the potential to revolutionize scalability and cost-effectiveness. Key findings assert that despite the great potential of peptides from various food sources to fight against obesity and advances in their identification and analysis, challenges like scalability, regulatory hurdles, bioavailability issues, high production costs, and consumer appeal persist. Future research should explore the use of bioinformatics tools and advanced peptide screening technologies to identify and design peptides with enhanced efficacy and bioavailability, efficient and cost-effective extraction and purification methods, sustainable practices such as utilizing byproducts from the food industry, and the efficacy of products containing isolated anti-obesity peptides versus whole materials in clinical settings.
Collapse
Affiliation(s)
- Mona Hajfathalian
- National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Sakhi Ghelichi
- National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Charlotte Jacobsen
- National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
2
|
Dubois N, Muñoz-Garcia J, Heymann D, Renodon-Cornière A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem Pharmacol 2023; 216:115765. [PMID: 37619641 DOI: 10.1016/j.bcp.2023.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
High dietary glucose consumption and hyperglycemia can result in chronic complications. Several studies suggest that high glucose (HG) induces dysfunction of the intestinal barrier. However, the precise changes remain unclear. In our study, we used in vitro models composed of Caco-2 and/or HT29-MTX cells in both monoculture and co-culture to assess the effects of long-term HG exposure on the morphological, structural, and functional properties of the intestinal barrier. Cells were grown in medium containing normal physiologic glucose (NG, 5.5 mM) or a clinically relevant HG (25 mM) concentration until 21 days. Results demonstrated that HG induced morphological changes, with the layers appearing denser and less organized than under physiological conditions, which is in accordance with the increased migration capacity of Caco-2 cells and proliferation properties of HT29-MTX cells. Although we mostly observed a small decrease in mRNA and protein expressions of three junction proteins (ZO-1, OCLN and E-cad) in both Caco-2 and HT29-MTX cells cultured in HG medium, confocal microscopy showed that HG induced a remarkable reduction in their immunofluorescence intensity, triggering disruption of their associated structural network. In addition, we highlighted that HG affected different functionalities (permeability, mucus production and alkaline phosphatase activity) of monolayers with Caco-2 and HT29-MTX cells. Interestingly, these alterations were stronger in co-culture than in monoculture, suggesting a cross-relationship between enterocytes and goblet cells. Controlling hyperglycemia remains a major therapeutical method for reducing damage to the intestinal barrier and improving therapies.
Collapse
Affiliation(s)
- Nolwenn Dubois
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France; The University of Sheffield, Dept of Oncology and Metabolism, S102RX Sheffield, UK
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France.
| |
Collapse
|
3
|
Mitchell SB, Hung YH, Thorn TL, Zou J, Baser F, Gulec S, Cheung C, Aydemir TB. Sucrose-induced hyperglycemia dysregulates intestinal zinc metabolism and integrity: risk factors for chronic diseases. Front Nutr 2023; 10:1220533. [PMID: 37637953 PMCID: PMC10450956 DOI: 10.3389/fnut.2023.1220533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Zinc is an essential micronutrient that is critical for many physiological processes, including glucose metabolism, regulation of inflammation, and intestinal barrier function. Further, zinc dysregulation is associated with an increased risk of chronic inflammatory diseases such as type II diabetes, obesity, and inflammatory bowel disease. However, whether altered zinc status is a symptom or cause of disease onset remains unclear. Common symptoms of these three chronic diseases include the onset of increased intestinal permeability and zinc dyshomeostasis. The specific focus of this work is to investigate how dietary sources of intestinal permeability, such as high sucrose consumption, impact transporter-mediated zinc homeostasis and subsequent zinc-dependent physiology contributing to disease development. Method We used in vivo subchronic sucrose treatment, ex vivo intestinal organoid culture, and in vitro cell systems. We analyze the alterations in zinc metabolism and intestinal permeability and metabolic outcomes. Results We found that subchronic sucrose treatment resulted in systemic changes in steady-state zinc distribution and increased 65Zn transport (blood-to-intestine) along with greater ZIP14 expression at the basolateral membrane of the intestine. Further, sucrose treatment enhanced cell survival of intestinal epithelial cells, activation of the EGFR-AKT-STAT3 pathway, and intestinal permeability. Conclusion Our work suggests that subchronic high sucrose consumption alters systemic and intestinal zinc homeostasis linking diet-induced changes in zinc homeostasis to the intestinal permeability and onset of precursors for chronic disease.
Collapse
Affiliation(s)
| | - Yu-Han Hung
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Trista Lee Thorn
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiaqi Zou
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Filiz Baser
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, İzmir, Türkiye
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, İzmir, Türkiye
| | - Celeste Cheung
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
4
|
Protective effects of Acetobacter ghanensis against gliadin toxicity in intestinal epithelial cells with immunoregulatory and gluten-digestive properties. Eur J Nutr 2023; 62:605-614. [PMID: 36175797 DOI: 10.1007/s00394-022-03015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The aim of this study was to establish whether Acetobacter ghanensis, the probiotic characteristics of which were evaluated previously, attenuates gliadin-induced toxicity in intestinal epithelial cells with gluten-digestive and immunoregulatory properties. METHODS A co-culture model of human intestinal epithelial cell (Caco-2) monolayers on top of peripheral blood mononuclear cells (PBMCs) obtained from patients with celiac disease (CD) was established. The gluten-digestive properties of A. ghanensis were determined by checking bacterial growth in a medium containing gluten as the main nitrogen source. The mRNA levels of genes encoding TJ-associated proteins were measured by quantitative real-time PCR (qRT-PCR). The concentrations of IL-6 and TNFα were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS We found that PT-gliadin disrupted intestinal barrier integrity by modulating the expression of TJ-associated genes encoding zonulin (increased by ~ 60%), zonula occludens-1 (ZO-1) (decreased by ~ 22%), and occludin (decreased by ~ 28%) in Caco-2 cells. Furthermore, PT-gliadin treatment in Caco-2 cells was associated with increased concentrations of IL-6 (~ 1.6-fold) and TNFα (~ twofold) from PBMCs. These modulatory effects of PT-gliadin, however, were suppressed when Caco-2 cells were subjected to A. ghanensis in the presence of PT-gliadin. As a factor underlying these protective effects, we showed that A. ghanensis could digest gluten peptides. CONCLUSIONS To our knowledge, the current study is the first to demonstrate that A. ghanensis improves intestinal barrier functions by attenuating the modulatory effects of PT-gliadin with immunoregulatory and gluten-digestive properties.
Collapse
|
5
|
Yano S, Suzuki K, Hara T. Proteomic profiling of intestinal epithelial-like cell-derived exosomes regulated by epigallocatechin gallate. Biofactors 2022; 49:390-404. [PMID: 36342745 DOI: 10.1002/biof.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Exosomes are extracellular vesicles primarily responsible for intercellular communication, and they contain nucleic acids and proteins. Exosome secretion has been observed in the intestines, suggesting their physiological effects on the receptor cells of target tissues. It is possible that intestinal epithelial cells recognize food components as ligands, resulting in exosome secretion. However, research on intestine-derived exosomes regulated by food ingredients is limited. In this study, Caco-2 cells were utilized as an intestinal epithelial model for proteomic profiling. NanoLC-MS/MS analysis revealed the alteration of exosome properties by epigallocatechin gallate (EGCG) in differentiated Caco-2 cells. This natural polyphenol reduced both the number and size of secreted exosomes and altered the expression of exosomal proteins. The enriched proteins in exosomes were involved in immune response and cell proliferation. In contrast, those in the EGCG-treated group had distinctive functions in the maintenance of skin homeostasis. We also found variable expression of galectin-3-binding protein and fibronectin as molecular signatures in exosomes derived from EGCG-treated cells. These results could help elucidate the expression and mechanism of exosomal proteins related to food components.
Collapse
Affiliation(s)
- Satoshi Yano
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | | | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
6
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
7
|
Filippello A, Di Mauro S, Scamporrino A, Torrisi SA, Leggio GM, Di Pino A, Scicali R, Di Marco M, Malaguarnera R, Purrello F, Piro S. Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. Int J Mol Sci 2022; 23:ijms23147751. [PMID: 35887100 PMCID: PMC9320247 DOI: 10.3390/ijms23147751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Maurizio Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | | | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
- Correspondence: ; Tel.: +39-09-5759-8401
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| |
Collapse
|
8
|
Vinnicombe KRT, Volkoff H. Possible role of transcription factors (BSX, NKX2.1, IRX3 and SIRT1) in the regulation of appetite in goldfish (Carassius auratus). Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111189. [PMID: 35307341 DOI: 10.1016/j.cbpa.2022.111189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
The homeobox genes play important roles in the embryonic development of animals. Recent evidence suggests they might also regulate feeding and act as transcription factors of appetite regulators. Examples of these genes are a brain-specific homeobox transcription factor (BSX), NK2 homeobox 1 (NKX2.1) and the Iroquois homeobox 3 (IRX3). Sirtuin1 (SIRT1) acts as a transcription factor for nutrient (e.g. lipid, glucose) homeostasis and responds to stress and nutrient availability, and has been shown to interact with appetite regulators. Very little is known about the role of these genes in the regulation of feeding and nutrient homeostasis in fish. In this study, we assessed the roles of BSX, NKX2.1, IRX3 and SIRT1 in the central regulation of feeding in goldfish by examining their mRNA brain distribution, assessing the effects of fasting on their brain expression and assessing the effects of peripheral injections of cholecystokinin (CCK, a brain-gut peptide), on their brain expression. All genes showed a widespread distribution in the brain, with high levels in the hypothalamus. In both hypothalamus and telencephalon, fasting induced increases in BSX, IRX3 and NKX2.1 expressions but had no effect on SIRT1 expression levels. CCK injections increased hypothalamic expression levels of IRX3 and SIRT1, and telencephalic expression levels of NKX2.1 and SIRT1, with no effect on either hypothalamic BSX or NKX2.1 expression levels or telencephalon BSX or IRX3 expression levels. Our results suggest that, in goldfish as in mammals, central BSX, NKX2.1, IRX3 and SIRT1 are present in regions of the brain regulating feeding, are sensitive to nutrient status and interact with appetite-regulating peptides.
Collapse
Affiliation(s)
- Kelsey R T Vinnicombe
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
9
|
Gryllus bimaculatus Extract Protects against Lipopolysaccharide-Derived Inflammatory Response in Human Colon Epithelial Caco-2 Cells. INSECTS 2021; 12:insects12100873. [PMID: 34680642 PMCID: PMC8540076 DOI: 10.3390/insects12100873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Inflammatory bowel disease (IBD), a potentially life-threatening disease, is characterized by increased tight junction permeability and overproduction of proinflammatory cytokines. The long-term administration of recognized chemotherapeutic agents can cause serious potential side effects. As such, increasing attention has been paid to natural, low-toxicity products with anti-inflammatory properties for treating IBD. We assessed the potential utility of the edible cricket species Gryllus bimaculatus for anti-inflammatory and cytoprotective effects in the human epithelial cell line Caco-2, following treatment with an inflammatory lipopolysaccharide stimulus. We found that aqueous ethanolic G. bimaculatus extract (AE-GBE) treatment increased cell viability and significantly reduced inflammatory mediators. Moreover, AE-GBE significantly reduced inflammatory cytokine expression levels, intestinal epithelial permeability, and related tight junction protein expression levels. In conclusion, AE-GBE can protect epithelial cells from lipopolysaccharide-induced impaired barrier integrity by increasing tight junction proteins and preventing various inflammatory mediators. These results may be used to pursue further use of natural insect extracts in treating IBD. Abstract Increased tight junction permeability and overproduction of proinflammatory cytokines are crucial pathophysiological mechanisms in inflammatory bowel disease (IBD). This study evaluated anti-inflammatory effects of aqueous ethanolic Gryllus bimaculatus extract (AE-GBE) against intestinal permeability on lipopolysaccharide (LPS)-treated Caco-2 cells. Treatment with AE-GBE increased cell viability and significantly reduced inflammatory mediators such as nitric oxide and LPS-induced reactive oxidative stress. LPS increased the expression levels of iNOS, Cox-2, and 4-hydroxylnonenal; however, these levels were attenuated by AE-GBE treatment. Moreover, the mRNA and protein expression levels of the inflammatory cytokines TNFα, IL-6, IL-1β, and IFNγ were increased by LPS, but were significantly reduced by AE-GBE treatment. Intestinal epithelial permeability and the related expression of the proteins Zoula ocludence-1, occludin, and claudin-1 was increased by LPS treatment, and this effect was significantly reduced by AE-GBE treatment. The reduction in AMPK phosphorylation in LPS-treated Caco-2 cells was reversed in activation by co-treatment with AE-GBE. In conclusion, AE-GBE can protect epithelial cells from LPS-induced impaired barrier integrity by increasing tight junction proteins and preventing various inflammatory mediators. Thus, AE-GBE has the potential to improve inflammation-related diseases, including IBD, by inhibiting excessive production of inflammation-inducing mediators.
Collapse
|
10
|
Bornholdt J, Broholm C, Chen Y, Rago A, Sloth S, Hendel J, Melsæther C, Müller CV, Juul Nielsen M, Strickertsson J, Engelholm L, Vitting-Seerup K, Jensen KB, Baker A, Sandelin A. Personalized B cell response to the Lactobacillus rhamnosus GG probiotic in healthy human subjects: a randomized trial. Gut Microbes 2020; 12:1-14. [PMID: 33274667 PMCID: PMC7722709 DOI: 10.1080/19490976.2020.1854639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The specific effects of administering live probiotics in the human gut are not well characterized. To this end, we investigated the immediate effect of Lactobacillus rhamnosus GG (LGG) in the jejunum of 27 healthy volunteers 2 h after ingestion using a combination of global RNA sequencing of human biopsies and bacterial DNA sequencing in a multi-visit, randomized, cross-over design (ClinicalTrials.gov number NCT03140878). While LGG was detectable in jejunum after 2 h in treated subjects, the gene expression response vs. placebo was subtle if assessed across all subjects. However, clustering analysis revealed that one-third of subjects exhibited a strong and consistent LGG response involving hundreds of genes, where genes related to B cell activation were upregulated, consistent with prior results in mice. Immunohistochemistry and single cell-based deconvolution analyses showed that this B cell signature likely is due to activation and proliferation of existing B cells rather than B cell immigration to the tissue. Our results indicate that the LGG strain has an immediate effect in the human gut in a subpopulation of individuals. In extension, our data strongly suggest that studies on in vivo probiotic effects in humans require large cohorts and must take individual variation into account.
Collapse
Affiliation(s)
- Jette Bornholdt
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Christa Broholm
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Yun Chen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Alfredo Rago
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Stine Sloth
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jakob Hendel
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Christina V. Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Maria Juul Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper Strickertsson
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Lars Engelholm
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Finsen Laboratory, University of Copenhagen, Copenhagen N, Denmark
| | - Kristoffer Vitting-Seerup
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Danish Cancer Society, Copenhagen Ø, Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen N, Denmark,CONTACT Kim B. Jensen kim Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen NDK2200, Denmark
| | - Adam Baker
- Human Health Discovery, Hørsholm, Denmark,Adam Baker Human Health Discovery, Chr. Hansen A/S, Kogle Alle 6, Hørsholm2970, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Albin Sandelin The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen NDK2200, Denmark
| |
Collapse
|
11
|
Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int J Mol Sci 2020; 21:ijms21155439. [PMID: 32751630 PMCID: PMC7432297 DOI: 10.3390/ijms21155439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this review article is to introduce the reader to the state-of-the-art of the contribution that proteomics and metabolomics sciences are currently providing for cystic fibrosis (CF) research: from the understanding of cystic fibrosis transmembrane conductance regulator (CFTR) biology to biomarker discovery for CF diagnosis. Our work particularly focuses on CFTR post-translational modifications and their role in cellular trafficking as well as on studies that allowed the identification of CFTR molecular interactors. We also show how metabolomics is currently helping biomarker discovery in CF. The most recent advances in these fields are covered by this review, as well as some considerations on possible future scenarios for new applications.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
- Correspondence: ; Tel.: +39-010-2896-938
| | - Clarissa Braccia
- D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
12
|
Beumer J, Puschhof J, Bauzá-Martinez J, Martínez-Silgado A, Elmentaite R, James KR, Ross A, Hendriks D, Artegiani B, Busslinger GA, Ponsioen B, Andersson-Rolf A, Saftien A, Boot C, Kretzschmar K, Geurts MH, Bar-Ephraim YE, Pleguezuelos-Manzano C, Post Y, Begthel H, van der Linden F, Lopez-Iglesias C, van de Wetering WJ, van der Linden R, Peters PJ, Heck AJR, Goedhart J, Snippert H, Zilbauer M, Teichmann SA, Wu W, Clevers H. High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell 2020; 181:1291-1306.e19. [PMID: 32407674 DOI: 10.1016/j.cell.2020.04.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexander Ross
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Benedetta Artegiani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Georg A Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Bas Ponsioen
- Oncode Institute, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Aurelia Saftien
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Yotam E Bar-Ephraim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Yorick Post
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Franka van der Linden
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Willine J van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Reinier van der Linden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugo Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
13
|
Zhu M, Li M, Zhou W, Ge G, Zhang L, Ji G. Metabolomic Analysis Identifies Glycometabolism Pathways as Potential Targets of Qianggan Extract in Hyperglycemia Rats. Front Pharmacol 2020; 11:671. [PMID: 32477136 PMCID: PMC7235344 DOI: 10.3389/fphar.2020.00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Qianggan formula, a designed prescription according to the Traditional Chinese Medicine (TCM) theory, is widely used in treating chronic liver diseases, and indicated to prevent blood glucose increase in patients via unknown mechanisms. To unravel the effects and underlying mechanisms of Qianggan formula on hyperglycemia, we administrated Qianggan extract to high fat and high sucrose (HFHS) diet rats. Results showed that four-week Qianggan extract intervention significantly decreased serum fasting blood glucose, hemoglobin A1c, and liver glycogen levels. Gas chromatography-mass spectrometry (GC-MS) approach was employed to explore metabolomic profiles in liver and fecal samples. By multivariate and univariate statistical analysis (variable importance of projection value > 1 and p value < 0.05), 44 metabolites (18 in liver and 30 in feces) were identified as significantly different. Hierarchical cluster analysis revealed that most differential metabolites had opposite patterns between pair-wise groups. Qianggan extract restored the diet induced metabolite perturbations. Metabolite sets enrichment and pathway enrichment analysis revealed that the affected metabolites were mainly enriched in glycometabolism pathways such as glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. By compound-reaction-enzyme-gene network analysis, batches of genes (e.g. Hk1, Gck, Rpia, etc) or enzymes (e.g. hexokinase and glucokinase) related to metabolites in enriched pathways were obtained. Our findings demonstrated that Qianggan extract alleviated hyperglycemia, and the effects might be partially due to the regulation of glycometabolism related pathways.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Li
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
15
|
Yin T, Jaeger M, Scheper C, Grodkowski G, Sakowski T, Klopčič M, Bapst B, König S. Multi-breed genome-wide association studies across countries for electronically recorded behavior traits in local dual-purpose cows. PLoS One 2019; 14:e0221973. [PMID: 31665138 PMCID: PMC6821105 DOI: 10.1371/journal.pone.0221973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Basic bovine behavior is a crucial parameter influencing cattle domestication. In addition, behavior has an impact on cattle productivity, welfare and adaptation. The aim of the present study was to infer quantitative genetic and genomic mechanisms contributing to natural dual-purpose cow behavior in grazing systems. In this regard, we genotyped five dual-purpose breeds for a dense SNP marker panel from four different European countries. All cows from the across-country study were equipped with the same electronic recording devices. In this regard, we analyzed 97,049 longitudinal sensor behavior observations from 319 local dual-purpose cows for rumination, feeding, basic activity, high active, not active and ear temperature. According to the specific sensor behaviors and following a welfare protocol, we computed two different welfare indices. For genomic breed characterizations and multi-breed genome-wide association studies, sensor traits and test-day production records were merged with 35,826 SNP markers per cow. For the estimation of variance components, we used the pedigree relationship matrix and a combined similarity matrix that simultaneously included both pedigree and genotypes. Heritabilities for feeding, high active and not active were in a moderate range from 0.16 to 0.20. Estimates were very similar from both relationship matrix-modeling approaches and had quite small standard errors. Heritabilities for the remaining sensor traits (feeding, basic activity, ear temperature) and welfare indices were lower than 0.09. Five significant SNPs on chromosomes 11, 17, 27 and 29 were associated with rumination, and two different SNPs significantly influenced the sensor traits “not active” (chromosome 13) and “feeding” (chromosome 23). Gene annotation analyses inferred 22 potential candidate genes with a false discovery rate lower than 20%, mostly associated with rumination (13 genes) and feeding (8 genes). Mendelian randomization based on genomic variants (i.e., the instrumental variables) was used to infer causal inference between an exposure and an outcome. Significant regression coefficients among behavior traits indicate that all specific behavioral mechanisms contribute to similar physiological processes. The regression coefficients of rumination and feeding on milk yield were 0.10 kg/% and 0.12 kg/%, respectively, indicating their positive influence on dual-purpose cow productivity. Genomically, an improved welfare behavior of grazing cattle, i.e., a higher score for welfare indices, was significantly associated with increased fat and protein percentages.
Collapse
Affiliation(s)
- Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Gießen, Germany
| | - Maria Jaeger
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Gießen, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Gießen, Germany
| | - Gregorz Grodkowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Tomasz Sakowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Marija Klopčič
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domzale, Slovenia
| | - Beat Bapst
- Genetic evaluation center, Qualitas AG, Switzerland
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Gießen, Germany
- * E-mail:
| |
Collapse
|
16
|
Mehraban MH, Mansourian M, Ahrari S, HajiEbrahimi A, Odooli S, Motovali-Bashi M, Yousefi R, Ghasemi Y. Maltase-glucoamylase inhibition potency and cytotoxicity of pyrimidine-fused compounds: An in silico and in vitro approach. Comput Biol Chem 2019; 82:25-36. [PMID: 31255972 DOI: 10.1016/j.compbiolchem.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/29/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022]
Abstract
The prevalence of diabetes mellitus has been incremented in the current century and the need for novel therapeutic compounds to treat this disease has been significantly increased. One of the most promising approaches is to inhibit intestinal alpha glucosidases. Based on our previous studies, four pyrimidine-fused heterocycles (PFH) were selected as they revealed satisfactory inhibitory action against mammalian α-glucosidase. The interaction of these compounds with both active domains of human maltase-glucoamylase (MGAM) and their effect on human Caco-2 cell line were investigated. The docking assessments suggested that binding properties of these ligands were almost similar to that of acarbose by establishing hydrogen bonds especially with Tyr1251 and Arg526 in both C-terminal and N-terminal MGAM, respectively. Also, these compounds indicated a stronger affinity for C-terminal of MGAM. L2 and L4 made tightly complexes with both terminals of MGAM which in turn revealed the importance of introducing pyrimidine scaffold and its hinge compartment. The results of molecular dynamics simulation analyses confirmed the docking data and showed deep penetration of L2 and L4 into the active site of MGAM. Based on cell cytotoxicity assessments, no significant cell death induction was observed. Hence, these functional MGAM inhibitors might be considered as new potential therapeutic compounds in treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajjad Ahrari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali HajiEbrahimi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salman Odooli
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Motovali-Bashi
- Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Reboul E. Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand? Nutrients 2019; 11:nu11040838. [PMID: 31013870 PMCID: PMC6520933 DOI: 10.3390/nu11040838] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
A growing literature is dedicated to the understanding of carotenoid beneficial health effects. However, the absorption process of this broad family of molecules is still poorly understood. These highly lipophilic plant metabolites are usually weakly absorbed. It was long believed that β-carotene absorption (the principal provitamin A carotenoid in the human diet), and thus all other carotenoid absorption, was driven by passive diffusion through the brush border of the enterocytes. The identification of transporters able to facilitate carotenoid uptake by the enterocytes has challenged established statements. After a brief overview of carotenoid metabolism in the human upper gastrointestinal tract, a focus will be put on the identified proteins participating in the transport and the metabolism of carotenoids in intestinal cells and the regulation of these processes. Further progress in the understanding of the molecular mechanisms regulating carotenoid intestinal absorption is still required to optimize their bioavailability and, thus, their health effects.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- Aix-Marseille University, INRA, INSERM, C2VN, 13005 Marseille, France.
| |
Collapse
|
18
|
Reboul E. Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life 2018; 71:416-423. [PMID: 30308094 DOI: 10.1002/iub.1955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR-BI), CD36 molecule (CD36), NPC1-like transporter 1 (NPC1L1), and ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat-soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability. © 2018 IUBMB Life, 71(4):416-423, 2019.
Collapse
|