1
|
Zhao J, Yang J, Yang F, Wang Y, Xia Q, Ren F, Zhang Y. An integrated zebrafish model and network pharmacology to investigate the mechanism of Chrysanthemum for treating metabolic dysfunction-associated fatty liver disease. Food Chem 2025; 473:143134. [PMID: 39893923 DOI: 10.1016/j.foodchem.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat) is a food, which serves both as a medicinal and culinary resource in China; however, its active ingredients and mechanisms underlying its hepatoprotective effects remain elusive. This study aimed to investigate the protective effect of water extract from chrysanthemum flowers (WEFC) against metabolic dysfunction-associated fatty liver induced by thioacetamide (TAA) in zebrafish and its underlying mechanisms. The protective effect of WEFC against TAA-induced liver injury was investigated using the liver-specific transgenic zebrafish line, Tg(fabp10a:DsRed). Network pharmacology was used to analyze the potential targets and ingredients. Quantitative polymerase chain reaction was used to verify the associated mechanisms. Molecular protein docking was performed to identify the targets. WEFC and its component prunin attenuated TAA-induced liver injury and reversed the changes in lipid pathway-related gene expression induced by TAA. Therefore, prunin may play an important role in protecting the liver through RAC-alpha serine/threonine-protein kinase (AKT1) activation.
Collapse
Affiliation(s)
- Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China; Uygur Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830049, China
| | - Jing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Yuanhao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fengming Ren
- Chongqing Pharmaceutical Planting Research Institute, Chongqing 408435, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China.
| |
Collapse
|
2
|
Carpi S, Daniele S, de Almeida JFM, Gabbia D. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. Int J Mol Sci 2024; 25:12229. [PMID: 39596297 PMCID: PMC11595301 DOI: 10.3390/ijms252212229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, 41125 Modena, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (J.F.M.d.A.)
| | | | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Carciero L, Di Giuseppe G, Di Piazza E, Parand E, Soldovieri L, Ciccarelli G, Brunetti M, Gasbarrini A, Nista EC, Pani G, Pontecorvi A, Giaccari A, Mezza T. The interplay of extracellular vesicles in the pathogenesis of metabolic impairment and type 2 diabetes. Diabetes Res Clin Pract 2024; 216:111837. [PMID: 39173679 DOI: 10.1016/j.diabres.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) involves dysfunction in multiple organs, including the liver, muscle, adipose tissue, and pancreas, leading to insulin resistance and β cell failure. Recent studies highlight the significant role of extracellular vesicles (EVs) in mediating inter-organ communication in T2D. This review investigates the role of EVs, focusing on their presence and biological significance in human plasma and tissues affected by T2D. We explore specific EV cargo, such as miRNAs and proteins, which affect insulin signaling and glucose metabolism, emphasizing their potential as biomarkers. By highlighting the diagnostic and therapeutic potential of EVs, we aim to provide new insights into their role in early detection, disease monitoring, and innovative treatment strategies for T2D.
Collapse
Affiliation(s)
- Lorenzo Carciero
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Di Piazza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erfan Parand
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Enrico C Nista
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovambattista Pani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Wan Z, Liu X, Yang X, Huang Z, Chen X, Feng Q, Cao H, Deng H. MicroRNA-411-5p alleviates lipid deposition in metabolic dysfunction-associated steatotic liver disease by targeting the EIF4G2/FOXO3 axis. Cell Mol Life Sci 2024; 81:398. [PMID: 39261317 PMCID: PMC11391004 DOI: 10.1007/s00018-024-05434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Abnormal lipid deposition is an important driver of the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). MicroRNA-411-5p (miR-411-5p) and eukaryotic translation initiation factor 4γ2 (EIF4G2) are related to abnormal lipid deposition, but the specific mechanism is unknown. METHODS A high-fat, high-cholesterol diet (HFHCD) and a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) and a high-fructose diet (HFrD) were used to establish MASLD rat and mouse models, respectively. MiR-411-5p agomir and mimic were used to upregulate the miR-411-5p in vivo and in vitro, respectively. Adeno-associated virus type 8 (AAV8) carrying EIF4G2 short hairpin RNA (shRNA) and small interfering RNA (siRNA) were used to downregulate the EIF4G2 expression in vivo and in vitro, respectively. Liver histopathological analysis, Biochemical analysis and other experiments were used to explore the functions of miR-411-5p and EIF4G2. RESULTS MiR-411-5p was decreased in both MASLD rats and mice, and was negatively correlated with liver triglycerides and serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. Upregulation of miR-411-5p alleviated liver lipid deposition and hepatocellular steatosis. Moreover, miR-411-5p targeted and downregulated EIF4G2. Downregulation of EIF4G2 not only reduced liver triglycerides and serum ALT and AST levels in MASLD model, but also alleviated lipid deposition. Notably, upregulation of miR-411-5p and downregulation of EIF4G2 led to the reduction of forkhead box class O3 (FOXO3) and inhibited the expression of sterol regulatory-element binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN), thereby reducing fatty acid synthesis. CONCLUSIONS Upregulation of miR-411-5p inhibits EIF4G2 to reduce the FOXO3 expression, thereby reducing fatty acid synthesis and alleviating abnormal lipid deposition in MASLD.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoman Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qingqing Feng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M, Krause KH, Gjorgjieva M, Foti M. Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids. JHEP Rep 2024; 6:101126. [PMID: 39263327 PMCID: PMC11388170 DOI: 10.1016/j.jhepr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Alterations of hepatic microRNA (miRNA) expression/activity significantly contribute to the development and progression of MASLD. Genetic polymorphisms of miR-149 are associated with an increased susceptibility to MASLD development in humans. Aberrant expression of miR-149 was also associated with metabolic alterations in several organs, but the impact of hepatic miR-149-5p deregulation in MASLD remains poorly characterized. Methods MiR-149-5p was downregulated in the livers of mice by in vivo transduction with hepatotropic adeno-associated virus 8 harboring short-hairpin RNAs (shRNAs) specific for miR-149-5p (shmiR149) or scrambled shRNAs (shCTL). MASLD was then induced with a methionine/choline-deficient (MCD, n = 7 per group) diet or a fructose/palmitate/cholesterol-enriched (FPC, n = 8-12 per group, per protocol) diet. The impact of miR-149-5p modulation on MASLD development was assessed in vivo and in vitro using multi-lineage 3D human liver organoids (HLOs) and Huh7 cells. Results MiR-149-5p expression was strongly upregulated in mouse livers from different models of MASLD (2-4-fold increase in ob/ob, db/db mice, high-fat and FPC-fed mice). In vivo downregulation of miR-149-5p led to an amelioration of diet-induced hepatic steatosis, inflammation/fibrosis, and to increased whole-body fatty acid consumption. In HLOs, miR-149-5p overexpression promoted lipid accumulation, inflammation and fibrosis. In vitro analyses of human Huh7 cells overexpressing miR-149-5p indicated that glycolysis and intracellular lipid accumulation was promoted, while mitochondrial respiration was impaired. Translatomic analyses highlighted deregulation of multiple potential miR-149-5p targets in hepatocytes involved in MASLD development. Conclusions MiR-149-5p upregulation contributes to MASLD development by affecting multiple metabolic/inflammatory/fibrotic pathways in hepatocytes. Our results further demonstrate that HLOs are a relevant 3D in vitro model to investigate hepatic steatosis and inflammation/fibrosis development. Impact and implications Our research shows compelling evidence that miR-149-5p plays a pivotal role in the development and progression of MASLD. By employing in vivo and innovative in vitro models using multi-lineage human liver organoids, we demonstrate that miR-149-5p upregulation significantly impacts hepatocyte energy metabolism, exacerbating hepatic steatosis and inflammation/fibrosis by modulating a wide network of target genes. These findings not only shed light on the intricate miR-149-5p-dependent molecular mechanisms underlying MASLD, but also underscore the importance of human liver organoids as valuable 3D in vitro models for studying the disease's pathogenesis.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A disease perspective. Life Sci 2024; 351:122824. [PMID: 38862061 DOI: 10.1016/j.lfs.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.
Collapse
Affiliation(s)
- Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Zheng Y, Song J, Qian Q, Wang H. Silver nanoparticles induce liver inflammation through ferroptosis in zebrafish. CHEMOSPHERE 2024; 362:142673. [PMID: 38945227 DOI: 10.1016/j.chemosphere.2024.142673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
As the most widely employed artificial nanomaterials, silver nanoparticles (AgNPs) have been implicated in oxidative stress-induced liver injury. Despite these observations, the precise mechanisms underpinning AgNPs-induced hepatotoxicity have yet to be fully elucidated. This study embarked on an intersectional analysis of the GEO dataset (GSE139560), which encompassed murine liver tissues subjected to AgNPs, alongside datasets related to ferroptosis. Through this approach, three pivotal ferroptosis-associated genes (Arrdc3, Txnip, and Egfr) were identified. Further integration with disease model analysis from GSE111407 and GSE183158 unveiled a significant association between AgNPs exposure and alterations in glucose metabolism and insulin signaling pathways, intricately linked with the identified key ferroptosis genes. This correlation fostered the hypothesis that ferroptosis significantly contributed to the hepatotoxicity triggered by AgNPs. Subsequent Gene Set Enrichment Analysis (GSEA) pointed to the activation of ferroptosis-associated pathways, specifically MAPK and PPAR, under AgNPs exposure. Examination of the miRNA-mRNA interaction network revealed co-regulated upstream miRNAs targeting these pivotal genes, establishing a nexus to ferroptosis and heightened liver susceptibility. Experimental validation employing an adult zebrafish model exposed to AgNPs from 90 to 120 dpf demonstrated elevated levels of Fe2+ and MDA in the zebrafish livers, along with conspicuous mitochondrial morphological alterations, thereby reinforcing the notion that AgNPs precipitate liver dysfunction predominantly through the induction of ferroptosis. These insights collectively underscore the role of ferroptosis in mediating the adverse effects of AgNPs on liver glucose metabolism and insulin sensitivity, culminating in liver dysfunction. Overall, these results enhance the understanding of nanomaterial-induced hepatotoxicity and inform strategies to mitigate such health risks.
Collapse
Affiliation(s)
- Yuansi Zheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
9
|
Wang S, Wang R, Hu Y, Zhang Y, Yuan Q, Luo Y, Yuan C. Long noncoding RNA AI504432 upregulates FASN expression by sponging miR-1a-3p to promote lipogenesis in senescent adipocytes. Cell Signal 2024; 120:111232. [PMID: 38763183 DOI: 10.1016/j.cellsig.2024.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Aging affects lipid metabolism and can cause obesity as it is closely related to the disorder of many lipogenic regulatory factors. LncRNAs have been recognized as pivotal regulators across diverse biological processes, but their effects on lipogenesis in aging remain to be further studied. In this work, using RNA sequencing (RNA-Seq), we found that the expression of lncRNA AI504432 was significantly upregulated in the eWAT (epididymal white adipose tissue) of aging mice, and the knockdown of AI504432 notably reduced the expression of several adipogenic genes (e.g., Cebp/α, Srebp-1c, Fasn, Acaca, and Scd1) in senescent adipocytes. The bioinformatics investigation revealed that AI504432 possessed a binding site for miR-1a-3p, and the discovery was verified by the luciferase reporter assay. The expression of Fasn was increased upon the inhibition of miR-1a-3p but restored upon the simultaneous silencing of AI504432. Taken together, our results suggested that AI504432 controlled lipogenesis through the miR-1a-3p/Fasn signaling pathway. The findings may inspire new therapeutic approaches to target imbalanced lipid homeostasis due to aging.
Collapse
Affiliation(s)
- Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
10
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
11
|
Ju Z, Cui F, Mao Z, Li Z, Yi X, Zhou J, Cao J, Li X, Qian Z. miR-335-3p improves type II diabetes mellitus by IGF-1 regulating macrophage polarization. Open Med (Wars) 2024; 19:20240912. [PMID: 38463527 PMCID: PMC10921448 DOI: 10.1515/med-2024-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Previous studies have found that miR-335 is highly expressed in type II diabetes mellitus (T2DM) models and is related to insulin secretion, but there are few studies on the regulatory effects of miR-335-3p on insulin resistance and macrophage polarization in T2DM patients. This study aims to explore the effects of miR-335-3p on insulin resistance and macrophage polarization in T2DM patients. Blood glucose (insulin tolerance tests, glucose tolerance tests) and body weight of the T2DM model were measured; macrophages from adipose tissue were isolated and cultured, and the number of macrophages was detected by F4/80 immunofluorescence assay; the Real-time quantitative polymerase chain reaction (qPCR) assay and Western blot assay were used to detect the miR-335-3p expression levels, insulin-like growth factor 1 (IGF-1), M1-polarizing genes (inducible nitric oxide synthase [iNOS] and TNF-α) as well as M2-polarizing genes (IL-10 and ARG-1). The targeting link between miR-335-3p and IGF-1 was confirmed using bioinformatics and dual luciferase assay. The results showed that miR-335-3p expression level in adipose tissue of the T2DM model was significantly decreased, and the mice's body weight and blood glucose levels dropped considerably, miR-335-3p inhibited the number of macrophages, inhibiting the iNOS and TNF-α relative mRNA expression levels, and up-regulated the IL-10 and ARG-1 relative mRNA expression levels, miR-335-3p negatively regulated target gene IGF-1, IGF-1 significantly increased the iNOS and TNF-α mRNA and protein expression levels, decreasing the IL-10 and ARG-1 mRNA and protein expression levels, indicating that miR-335-3p could affect the T2DM process by regulating macrophage polarization via IGF-1.
Collapse
Affiliation(s)
- Zhengzheng Ju
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Xiayu Yi
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Xiaoqin Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People’s Hospital of Wuhu), Wuhu, Anhui, China
| |
Collapse
|
12
|
Qin M, Ren X, Zhang M, Chen Z, Shen J. Molecular mechanism of microRNA-mediated hypoglycemic effect of whole grain highland barley. Gene 2024; 895:148021. [PMID: 38007158 DOI: 10.1016/j.gene.2023.148021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
As a non-coding RNA, microRNA (miRNA) has been proven to play an important role in the development and progression of type 2 diabetes mellitus (T2DM). Highland barley is a whole grain from the Tibetan areas of China. Our previous studies have demonstrated its hypoglycemic effect. To further explore the underlining molecular mechanism, we investigated the effect of highland barley intervention on liver miRNA expression profiles in diabetic mice. Our results showed that ten differentially expressed miRNA among different groups were identified and their target genes were predicted. Remarkably, many glycometabolism-associated genes, including Foxo3, Nras, Rptor, Igf1r, Tsc2 and Braf, were negatively regulated by miR-122-5p, miR-503-5p, miR-455-5p and miR-210-3p, respectively. Pathway enrichment analysis revealed these target genes were mainly involved in AMPK, MAPK and FOXO signaling pathways. Thereby, these miRNA and mRNA were validated using qRT-PCR, and the results were consistent with the small RNA-seq and expectations. Highland barley could regulate the MAPK, AMPK, and FOXO signaling pathways by regulating critical miRNA-mRNA pairs, e.x. miR-210-3p-Tsc2/Braf, miR-122-5p-Foxo3, and miR-455-5p-Igf1r, thereby improving blood glucose metabolism in diabetic mice. The present study preliminarily explored the hypoglycaemic effects of highland barley based on transcriptomics, and more detailed and in-depth studies on this topic are needed in the future.
Collapse
Affiliation(s)
- Mengyuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Shen
- Ningjin County Market Supervision Administration, Dezhou, Shandong 253400, China
| |
Collapse
|
13
|
Wang Y, Zhao X, Zhang L, Yang C, Zhang K, Gu Z, Ding H, Li S, Qin J, Chu X. MicroRNA-34a Mediates High-Fat-Induced Hepatic Insulin Resistance by Targeting ENO3. Nutrients 2023; 15:4616. [PMID: 37960269 PMCID: PMC10650923 DOI: 10.3390/nu15214616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The etiology of numerous metabolic disorders is characterized by hepatic insulin resistance (IR). Uncertainty surrounds miR-34a's contribution to high-fat-induced hepatic IR and its probable mechanism. The role and mechanism of miR-34a and its target gene ENO3 in high-fat-induced hepatic IR were explored by overexpressing/suppressing miR-34a and ENO3 levels in in vivo and in vitro experiments. Moreover, as a human hepatic IR model, the miR-34a/ENO3 pathway was validated in patients with non-alcoholic fatty liver disease (NAFLD). The overexpression of hepatic miR-34a lowered insulin signaling and altered glucose metabolism in hepatocytes. In contrast, reducing miR-34a expression significantly reversed hepatic IR indices induced by palmitic acid (PA)/HFD. ENO3 was identified as a direct target gene of miR-34a. Overexpression of ENO3 effectively inhibited high-fat-induced hepatic IR-related indices both in vitro and in vivo. Moreover, the expression patterns of members of the miR-34a/ENO3 pathway in the liver tissues of NAFLD patients was in line with the findings of both cellular and animal studies. A high-fat-induced increase in hepatic miR-34a levels attenuates insulin signaling and impairs glucose metabolism by suppressing the expression of its target gene ENO3, ultimately leading to hepatic IR. The miR-34a/ENO3 pathway may be a potential therapeutic target for hepatic IR and related metabolic diseases.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Xue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Liuchao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China;
| | - Chunxiao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Kening Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Zhuo Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Haiyan Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Shuangshuang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Jian Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| | - Xia Chu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150081, China; (Y.W.); (X.Z.); (C.Y.); (K.Z.); (Z.G.); (H.D.); (S.L.); (J.Q.)
| |
Collapse
|
14
|
Mo F, Lv B, Zhao D, Xi Z, Qian Y, Ge D, Yang N, Zhang D, Jiang G, Gao S. Small RNA Sequencing Analysis of STZ-Injured Pancreas Reveals Novel MicroRNA and Transfer RNA-Derived RNA with Biomarker Potential for Diabetes Mellitus. Int J Mol Sci 2023; 24:10323. [PMID: 37373469 DOI: 10.3390/ijms241210323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) play critical roles in the regulation of different biological processes, but their underlying mechanisms in diabetes mellitus (DM) are still largely unknown. This study aimed to gain a better understanding of the functions of miRNAs and tsRNAs in the pathogenesis of DM. A high-fat diet (HFD) and streptozocin (STZ)-induced DM rat model was established. Pancreatic tissues were obtained for subsequent studies. The miRNA and tsRNA expression profiles in the DM and control groups were obtained by RNA sequencing and validated with quantitative reverse transcription-PCR (qRT-PCR). Subsequently, bioinformatics methods were used to predict target genes and the biological functions of differentially expressed miRNAs and tsRNAs. We identified 17 miRNAs and 28 tsRNAs that were significantly differentiated between the DM and control group. Subsequently, target genes were predicted for these altered miRNAs and tsRNAs, including Nalcn, Lpin2 and E2f3. These target genes were significantly enriched in localization as well as intracellular and protein binding. In addition, the results of KEGG analysis showed that the target genes were significantly enriched in the Wnt signaling pathway, insulin pathway, MAPK signaling pathway and Hippo signaling pathway. This study revealed the expression profiles of miRNAs and tsRNAs in the pancreas of a DM rat model using small RNA-Seq and predicted the target genes and associated pathways using bioinformatics analysis. Our findings provide a novel aspect in understanding the mechanisms of DM and identify potential targets for the diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Fangfang Mo
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziye Xi
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yining Qian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongyu Ge
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
15
|
Alexanova A, Raitoharju E, Valtonen J, Aalto-Setälä K, Viiri LE. Coronary artery disease patient-derived iPSC-hepatocytes have distinct miRNA profile that may alter lipid metabolism. Sci Rep 2023; 13:1706. [PMID: 36717592 PMCID: PMC9886909 DOI: 10.1038/s41598-023-28981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Metabolic dysfunction, partly driven by altered liver function, predisposes to coronary artery disease (CAD), but the role of liver in vulnerable atherosclerotic plaque development remains unclear. Here we produced hepatocyte-like cells (HLCs) from 27 induced pluripotent stem cell (iPSC) lines derived from 15 study subjects with stable CAD (n = 5), acute CAD (n = 5) or healthy controls (n = 5). We performed a miRNA microarray screening throughout the differentiation, as well as compared iPSC-HLCs miRNA profiles of the patient groups to identify miRNAs involved in the development of CAD. MicroRNA profile changed during differentiation and started to resemble that of the primary human hepatocytes. In the microarray, 35 and 87 miRNAs were statistically significantly deregulated in the acute and stable CAD patients, respectively, compared to controls. Down-regulation of miR-149-5p, -92a-3p and -221-3p, and up-regulation of miR-122-5p was verified in the stable CAD patients when compared to other groups. The predicted targets of deregulated miRNAs were enriched in pathways connected to insulin signalling, inflammation and lipid metabolism. The iPSC-HLCs derived from stable CAD patients with extensive lesions had a distinct genetic miRNA profile possibly linked to metabolic dysfunction, potentially explaining the susceptibility to developing CAD. The iPSC-HLCs from acute CAD patients with only the acute rupture in otherwise healthy coronaries did not present a distinct miRNA profile, suggesting that hepatic miRNAs do not explain susceptibility to plaque rupture.
Collapse
Affiliation(s)
- Anna Alexanova
- The Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Emma Raitoharju
- The Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Joona Valtonen
- The Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Katriina Aalto-Setälä
- The Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Leena E Viiri
- The Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
| |
Collapse
|
16
|
Alamro H, Bajic V, Macvanin MT, Isenovic ER, Gojobori T, Essack M, Gao X. Type 2 Diabetes Mellitus and its comorbidity, Alzheimer's disease: Identifying critical microRNA using machine learning. Front Endocrinol (Lausanne) 2023; 13:1084656. [PMID: 36743910 PMCID: PMC9893111 DOI: 10.3389/fendo.2022.1084656] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this via two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer's disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs' potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease's comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods.
Collapse
Affiliation(s)
- Hind Alamro
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vladan Bajic
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana T. Macvanin
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Tao YC, Wang YH, Wang ML, Jiang W, Wu DB, Chen EQ, Tang H. Upregulation of microRNA-125b-5p alleviates acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway. Front Immunol 2022; 13:988668. [PMID: 36268033 PMCID: PMC9578503 DOI: 10.3389/fimmu.2022.988668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are the two most common subtypes of liver failure. They are both life-threatening clinical problems with high short-term mortality. Although liver transplantation is an effective therapeutic, its application is limited due to the shortage of donor organs. Given that both ACLF and ALF are driven by excessive inflammation in the initial stage, molecules targeting inflammation may benefit the two conditions. MicroRNAs (miRNAs) are a group of small endogenous noncoding interfering RNA molecules. Regulation of miRNAs related to inflammation may serve as promising interventions for the treatment of liver failure. AIMS To explore the role and mechanism of miR-125b-5p in the development of liver failure. METHODS Six human liver tissues were categorized into HBV-non-ACLF and HBV-ACLF groups. Differentially expressed miRNAs (DE-miRNAs) were screened and identified through high-throughput sequencing analysis. Among these DE-miRNAs, miR-125b-5p was selected for further study of its role and mechanism in lipopolysaccharide (LPS)/D-galactosamine (D-GalN) -challenged Huh7 cells and mice in vitro and in vivo. RESULTS A total of 75 DE-miRNAs were obtained. Of these DE-miRNAs, miR-125b-5p was the focus of further investigation based on our previous findings and preliminary results. We preliminarily observed that the levels of miR-125b-5p were lower in the HBV-ACLF group than in the HBV-non-ACLF group. Meanwhile, LPS/D-GalN-challenged mice and Huh7 cells both showed decreased miR-125b-5p levels when compared to their untreated control group, suggesting that miR-125b-5p may have a protective role against liver injury, regardless of ACLF or ALF. Subsequent results revealed that miR-125b-5p not only inhibited Huh7 cell apoptosis in vitro but also relieved mouse ALF in vivo with evidence of improved liver histology, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced tumor necrosis factor-α (TNF-α) and IL-1β levels. Based on the results of a biological prediction website, microRNA.org, Kelch-like ECH-associated protein 1 (Keap1) was predicted to be one of the target genes of miR-125b-5p, which was verified by a dual-luciferase reporter gene assay. Western blot results in vitro and in vivo showed that miR-125b-5p could decrease the expression of Keap1 and cleaved caspase-3 while upregulating the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1(HO-1). CONCLUSION Upregulation of miR-125b-5p can alleviate acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway, and regulation of miR-125b-5p may serve as an alternative intervention for liver failure.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Shu J, Li N, Wei W, Zhang L. Detection of molecular signatures and pathways shared by Alzheimer's disease and type 2 diabetes. Gene 2022; 810:146070. [PMID: 34813915 DOI: 10.1016/j.gene.2021.146070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are common in the general elderly population, conferring heavy individual, social, and economic stresses on families and society. Accumulating evidence indicates T2D to be a risk factor for AD. However, the underlying mechanisms for this association are largely unknown. This study aimed to identify the shared molecular signatures between AD and T2D through integrated analysis of temporal cortex gene expression data. Gene Ontology (GO) and pathway enrichment analysis, protein over-representation analysis, protein-protein interaction, DEG-transcription factor interactions, DEG-microRNA interactions, protein-drug interactions, gene-disease association analysis, and protein subcellular localization analysis of the common DEGs were performed. We identified 16 common DEGs between the two datasets, which were mainly enriched in the biological processes of apoptosis, autophagy, inflammation, and hemostasis. We also identified five hub proteins encoded by the DEGs, five central regulatory transcription factors, and six microRNAs. Protein-drug interaction analysis showed C1QB to be associated with different drugs. Gene-disease association analysis revealed that hub genes, SFN and ITGB2, were actively engaged in other diseases. Collectively, these findings provide new insights into shared molecular mechanisms between AD and T2D and provide novel candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Shu
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Nan Li
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| | - Li Zhang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| |
Collapse
|
19
|
López-Pastor AR, Infante-Menéndez J, González-Illanes T, González-López P, González-Rodríguez Á, García-Monzón C, Vega de Céniga M, Esparza L, Gómez-Hernández A, Escribano Ó. Concerted regulation of non-alcoholic fatty liver disease progression by microRNAs in apolipoprotein E-deficient mice. Dis Model Mech 2021; 14:273592. [PMID: 34850865 PMCID: PMC8713993 DOI: 10.1242/dmm.049173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly increasing, and altered expression of microRNAs (miRNAs) fosters the development and progression of many pathologies, including NAFLD. Therefore, we explored the role of new miRNAs involved in the molecular mechanisms that trigger NAFLD progression and evaluated them as biomarkers for diagnosis. As a NAFLD model, we used apolipoprotein E-deficient mice administered a high-fat diet for 8 or 18 weeks. We demonstrated that insulin resistance and decreased lipogenesis and autophagy observed after 18 weeks on the diet are related to a concerted regulation carried out by miR-26b-5p, miR-34a-5p, miR-149-5p and miR-375-3p. We also propose circulating let-7d-5p and miR-146b-5p as potential biomarkers of early stages of NAFLD. Finally, we confirmed that circulating miR-34a-5p and miR-375-3p are elevated in the late stages of NAFLD and that miR-27b-3p and miR-122-5p are increased with disease progression. Our results reveal a synergistic regulation of key processes in NAFLD development and progression by miRNAs. Further investigation is needed to unravel the roles of these miRNAs for developing new strategies for NAFLD treatment. This article has an associated First Person interview with the joint first authors of the paper. Summary:Apoe−/− mice administered a high-fat diet represent a model of non-alcoholic fatty liver disease, revealing the synergistic regulation of key processes in disease progression by miRNAs and indicating some miRNAs as biomarkers for diagnosis.
Collapse
Affiliation(s)
- Andrea R López-Pastor
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González-Illanes
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paula González-López
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Melina Vega de Céniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Almudena Gómez-Hernández
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Óscar Escribano
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
20
|
Gong H, Zhang M, Han Y, Zhang Y, Pang J, Zhao Y, Chen B, Wu W, Qi R, Zhang T. Differential microRNAs expression profiles in liver from three different lifestyle modification mice models. BMC Genomics 2021; 22:196. [PMID: 33740891 PMCID: PMC7977600 DOI: 10.1186/s12864-021-07507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs play an important role in many fundamental biological and pathological processes. Defining the microRNAs profile underlying the processes by beneficial and detrimental lifestyles, including caloric restriction (CR), exercise and high-fat diet (HF), is necessary for understanding both normal physiology and the pathogenesis of metabolic disease. We used the microarray to detect microRNAs expression in livers from CR, EX and HF mice models. After predicted potential target genes of differentially expressed microRNAs with four algorithms, we applied GO and KEGG to analyze the function of predicted microRNA targets. Results We describe the overall microRNAs expression pattern, and identified 84 differentially expressed microRNAs changed by one or two or even all the three lifestyle modifications. The common and different enriched categories of gene function and main biochemical and signal transduction pathways were presented. Conclusions We provided for the first time a comprehensive and thorough comparison of microRNAs expression profiles in liver among these lifestyle modifications. With this knowledge, our findings provide us with an overall vision of microRNAs in the molecular impact of lifestyle on health as well as useful clues for future and thorough research of the role of microRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07507-3.
Collapse
Affiliation(s)
- Huan Gong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Ming Zhang
- Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Yiwen Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Wei Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Tiemei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
21
|
Zhou Z, Zhao X, Chen L, Li Y, Chen Z, Wang Y, Zhou Z, Chu X. Integrated analysis of differentially expressed long noncoding RNAs and mRNAs associated with high-fat diet-induced hepatic insulin resistance in mice. Nutr Metab (Lond) 2020; 17:45. [PMID: 32565875 PMCID: PMC7302146 DOI: 10.1186/s12986-020-00467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hepatic insulin resistance (IR) is an early pathological characteristic of many metabolic diseases, such as type 2 diabetes. Long noncoding RNAs (lncRNAs) have been identified as mediators of IR and related diseases. However, the roles of lncRNAs in hepatic IR remain largely unknown. Method High-throughput sequencing was performed on ten liver tissue samples from five normal diet (ND)-fed mice and five high-fat diet (HFD)-induced hepatic IR mice, respectively. lncRNAs and mRNAs that were differentially expressed (DE) between the two groups were identified by bioinformatic analyses. Seven DE lncRNAs were validated by quantitative real-time PCR (q-PCR). The potential functions of the DE lncRNAs were predicted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of target genes. In addition, integrated analysis was performed for the DE lncRNAs and mRNAs to predict their interaction relationships. Results A total of 232 DE lncRNAs were identified in the HFD-induced hepatic IR mice compared with the ND-fed mice. These DE lncRNAs included 108 upregulated and 124 downregulated lncRNAs, and 7 of the DE lncRNAs were validated by q-PCR. In addition, 291 DE mRNAs including 166 upregulated and 125 downregulated mRNAs were identified in the HFD group. Furthermore, target genes of the DE lncRNAs were predicted, and functional enrichment results showed that the enriched genes were involved in IR- and glycolipid metabolism-related processes. Additionally, the coexpression network was also constructed to further reflect the potential functions of the DE lncRNAs. Conclusion The study describes the expression profiles of lncRNAs and mRNAs and the functional networks involved in HFD-induced hepatic IR. These findings may provide a new perspective for the study of lncRNAs in hepatic IR- and glycolipid metabolism-related diseases.
Collapse
Affiliation(s)
- Zengyuan Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Xue Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Liang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Yuzheng Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Zihao Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang province 150081 P. R. China
| |
Collapse
|
22
|
Parrizas M, Mundet X, Castaño C, Canivell S, Cos X, Brugnara L, Giráldez-García C, Regidor E, Mata-Cases M, Franch-Nadal J, Novials A. miR-10b and miR-223-3p in serum microvesicles signal progression from prediabetes to type 2 diabetes. J Endocrinol Invest 2020; 43:451-459. [PMID: 31721085 DOI: 10.1007/s40618-019-01129-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Type 2 diabetes frequently remains undiagnosed for years, whereas early detection of affected individuals would facilitate the implementation of timely and cost-effective therapies, hence decreasing morbidity. With the intention of identifying novel diagnostic biomarkers, we characterized the miRNA profile of microvesicles isolated from retroactive serum samples of normoglycemic individuals and two groups of subjects with prediabetes that in the following 4 years either progressed to overt diabetes or remained stable. METHODS We profiled miRNAs in serum microvesicles of a selected group of control and prediabetic individuals participating in the PREDAPS cohort study. Half of the subjects with prediabetes were diagnosed with diabetes during the 4 years of follow-up, while the glycemic status of the other half remained unchanged. RESULTS We identified two miRNAs, miR-10b and miR-223-3p, which target components of the insulin signaling pathway and whose ratio discriminates between these two subgroups of prediabetic individuals at a stage at which other features, including glycemia, are less proficient at separating them. In global, the profile of miRNAs in microvesicles of prediabetic subjects primed to progress to overt diabetes was more similar to that of diabetic patients than the profile of prediabetic subjects who did not progress. CONCLUSION We have identified a miRNA signature in serum microvesicles that can be used as a new screening biomarker to identify subjects with prediabetes at high risk of developing diabetes, hence allowing the implementation of earlier, and probably more effective, therapeutic interventions.
Collapse
Affiliation(s)
- M Parrizas
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
| | - X Mundet
- redGDPS Foundation, Madrid, Spain
- DAP-Cat Group, Research Support Unit, University Institute for Research in Primary Care Jordi Gol (IDIAPJGol), Gran Via de les Corts Catalanes, 587, 08007, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - C Castaño
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
| | - S Canivell
- DAP-Cat Group, Research Support Unit, University Institute for Research in Primary Care Jordi Gol (IDIAPJGol), Gran Via de les Corts Catalanes, 587, 08007, Barcelona, Spain
- Primary Health Care Center Sant Martí de Provençals, Catalan Health Institute, Barcelona, Spain
- Department of Internal Medicine, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - X Cos
- DAP-Cat Group, Research Support Unit, University Institute for Research in Primary Care Jordi Gol (IDIAPJGol), Gran Via de les Corts Catalanes, 587, 08007, Barcelona, Spain
- Primary Health Care Center Sant Martí de Provençals, Catalan Health Institute, Barcelona, Spain
| | - L Brugnara
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
| | - C Giráldez-García
- redGDPS Foundation, Madrid, Spain
- Preventive Medicine Service, University Hospital Infanta Elena, Madrid, Spain
- Preventive Medicine, Public Health and History of Science Department, Complutense University of Madrid, Madrid, Spain
| | - E Regidor
- redGDPS Foundation, Madrid, Spain
- Preventive Medicine, Public Health and History of Science Department, Complutense University of Madrid, Madrid, Spain
- Epidemiology and Public Health Networking Biomedical Research Centre (CIBERESP), Madrid, Spain
- Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M Mata-Cases
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- redGDPS Foundation, Madrid, Spain
- DAP-Cat Group, Research Support Unit, University Institute for Research in Primary Care Jordi Gol (IDIAPJGol), Gran Via de les Corts Catalanes, 587, 08007, Barcelona, Spain
- Primary Health Care Center La Mina, Catalan Health Institute, Sant Adrià De Besòs, Barcelona, Spain
| | - J Franch-Nadal
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
- redGDPS Foundation, Madrid, Spain.
- DAP-Cat Group, Research Support Unit, University Institute for Research in Primary Care Jordi Gol (IDIAPJGol), Gran Via de les Corts Catalanes, 587, 08007, Barcelona, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
| | - A Novials
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
- Pathogenesis and Prevention of Diabetes Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|
23
|
Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes (Basel) 2020; 11:genes11020211. [PMID: 32085655 PMCID: PMC7074526 DOI: 10.3390/genes11020211] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Two class of drugs 1) angiotensin-converting enzyme inhibitors (ACEis) and 2) angiotensin II receptor blockers (ARBs) are well-known conventional drugs that can retard the progression of chronic nephropathies to end-stage renal disease. However, there is a lack of comparative studies on the effects of ACEi versus ARB on renal fibrosis. Here, we observed that ACEi ameliorated renal fibrosis by mitigating DPP-4 and TGFβ signaling, whereas, ARB did not show. Moreover, the combination of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), one of the substrates of ACE, with ACEi slightly enhanced the inhibitory effects of ACEi on DPP-4 and associated-TGFβ signaling. Further, the comprehensive miRome analysis in kidneys of ACEi+AcSDKP (combination) treatment revealed the emergence of miR-29s and miR-let-7s as key antifibrotic players. Treatment of cultured cells with ACEi alone or in combination with AcSDKP prevented the downregulated expression of miR-29s and miR-let-7s induced by TGFβ stimulation. Interestingly, ACEi also restored miR-29 and miR-let-7 family cross-talk in endothelial cells, an effect that is shared by AcSDKP suggesting that AcSDKP may be partially involved in the anti-mesenchymal action of ACEi. The results of the present study promise to advance our understanding of how ACEi regulates antifibrotic microRNAs crosstalk and DPP-4 associated-fibrogenic processes which is a critical event in the development of diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.P.S.); (D.K.)
- Department of Pediatrics Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Julie E. Goodwin
- Department of Pediatrics Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.P.S.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Shimane University Faculty of M2dicine, Internal Medicine 1, Enya-cho, Izumo, Shimane 693-8501, Japan
- Correspondence: ; Tel.: +81-76-286-2211(Ex3305); Fax: 81-76-286-6927
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.P.S.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
24
|
Zhuo LA, Wen YT, Wang Y, Liang ZF, Wu G, Nong MD, Miao L. LncRNA SNHG8 is identified as a key regulator of acute myocardial infarction by RNA-seq analysis. Lipids Health Dis 2019; 18:201. [PMID: 31739782 PMCID: PMC6862811 DOI: 10.1186/s12944-019-1142-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/27/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in numerous physiological functions. However, their mechanisms in acute myocardial infarction (AMI) are not well understood. METHODS We performed an RNA-seq analysis to explore the molecular mechanism of AMI by constructing a lncRNA-miRNA-mRNA axis based on the ceRNA hypothesis. The target microRNA data were used to design a global AMI triple network. Thereafter, a functional enrichment analysis and clustering topological analyses were conducted by using the triple network. The expression of lncRNA SNHG8, SOCS3 and ICAM1 was measured by qRT-PCR. The prognostic values of lncRNA SNHG8, SOCS3 and ICAM1 were evaluated using a receiver operating characteristic (ROC) curve. RESULTS An AMI lncRNA-miRNA-mRNA network was constructed that included two mRNAs, one miRNA and one lncRNA. After RT-PCR validation of lncRNA SNHG8, SOCS3 and ICAM1 between the AMI and normal samples, only lncRNA SNHG8 had significant diagnostic value for further analysis. The ROC curve showed that SNHG8 presented an AUC of 0.850, while the AUC of SOCS3 was 0.633 and that of ICAM1 was 0.594. After a pairwise comparison, we found that SNHG8 was statistically significant (P SNHG8-ICAM1 = 0.002; P SNHG8-SOCS3 = 0.031). The results of a functional enrichment analysis of the interacting genes and microRNAs showed that the shared lncRNA SNHG8 may be a new factor in AMI. CONCLUSIONS Our investigation of the lncRNA-miRNA-mRNA regulatory networks in AMI revealed a novel lncRNA, lncRNA SNHG8, as a risk factor for AMI and expanded our understanding of the mechanisms involved in the pathogenesis of AMI.
Collapse
Affiliation(s)
- Liu-An Zhuo
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Yi-Tao Wen
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Yong Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Zhi-Fang Liang
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Gang Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Mei-Dan Nong
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China
| | - Liu Miao
- Department of Cardiology, Institute of Cardiovascular Diseases, the Liu Zhou People's Hospital, 8 Wenchang Road, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
25
|
Xia H, Zhu X, Zhang X, Jiang H, Li B, Wang Z, Li D, Jin Y. Alpha-naphthoflavone attenuates non-alcoholic fatty liver disease in oleic acid-treated HepG2 hepatocytes and in high fat diet-fed mice. Biomed Pharmacother 2019; 118:109287. [DOI: 10.1016/j.biopha.2019.109287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
|
26
|
miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM. Exp Mol Pathol 2019; 110:104279. [PMID: 31260649 DOI: 10.1016/j.yexmp.2019.104279] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is characterized by the elevated blood glucose levels and is regarded as one of the most threatening diseases worldwide. The dysfunction of pancreatic beta cells is a key contributor for the pathophysiology of DM. There is growing evidence showing the role of microRNAs (miRNAs) in the regulation of pancreatic beta cell functions. In the present study, we determined the expression of miR-149-5p in pancreatic beta cells under high-glucose (HG) stimulation and explored the underlying mechanism of miR-149-5p-mediated functions of pancreatic beta cells. The results showed the down-regulation of miR-149-5p in the pancreatic beta cell line (MIN6 cells) under HG stimulation. Overexpression of miR-149-5p protected against HG-induced cell apoptosis and impairment of insulin secretion, and attenuated HG-induced an increase in reactive oxygen species (ROS) production in MIN6 cells; while inhibition of miR-149-5p suppressed cell viability, induced cell apoptosis, inhibited insulin secretion and enhanced ROS production in MIN6 cells. Further mechanistic studies revealed that miR-149-5p targeted the BH3-only protein BIM 3' untranslated region and suppressed BIM expression in MIN6 cells. The rescue experimental assays showed that enforced expression of BIM attenuated the miR-149-5p-mediated effects in HG-stimulated pancreatic beta cells. In conclusion, the present study for the first time elucidated the biological functions of miR-149-5p in regulating pancreatic beta cell functions. The data from the present study provided evidence showing that miR-149-5p protected against HG-induced pancreatic beta cell apoptosis partly via suppressing BIM expression. The therapeutic potential of miR-149-5p in the treatment of DM still requires further detailed investigations.
Collapse
|