1
|
Shi Y, Min X, Li Y, Guo L, Cai Z, Li D, Jiang X, Feng N, Li X, Yang X. Yinjia pills inhibits the malignant biological behavior of HeLa cells through PKM2-medicated inhibition of JAK/STAT3 pathway. Cytotechnology 2025; 77:5. [PMID: 39575323 PMCID: PMC11579276 DOI: 10.1007/s10616-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Cervical cancer is one of the most common tumors in women and is a major problem in gynecological health. Studies have shown that Yinjia pills (YJP), a traditional Chinese medicine, can effectively slow the progression of cervical cancer. Therefore, this study mainly explored the molecular mechanism by which YJP delays the progression of cervical cancer. The expression level of PKM2 in cervical cancer was evaluated by the gene expression profiling interactive analysis (GEPIA) database, and the prognostic value of the PKM2 gene was evaluated by the Kaplan‒Meier plotter database. HeLa cervical cancer cells were treated with different concentrations of YJP (2.5, 5, 10, and 20 mg/mL). The levels of the inflammatory factors were detected by ELISA. Cell proliferation activity, migration and invasion were detected by CCK-8 assay, Transwell assays and cell scratch experiment. Apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of proteins. In this study, PKM2 was upregulated in both cervical squamous cell carcinoma (CESC) and endometrial adenocarcinoma tissues, and a Kaplan‒Meier analysis showed that higher PKM2 expression was associated with lower patient survival. YJP inhibited the proliferation, migration and invasion of HeLa cells in a dose-dependent manner, promoted the apoptosis of HeLa cells, and inhibited the expression of inflammatory factors. In addition, YJP inhibited the activation of the JAK/STAT3 pathway and the occurrence of EMT. Knockdown of PKM2 also inhibited the malignant biological behavior of HeLa cells, but overexpression of PKM2 weakened the inhibitory effect of YJP on the malignant biological behavior of HeLa cells. Angoline, a JAK/STAT3 pathway inhibitor, attenuated the effect of PKM2 overexpression on the efficacy of YJP. In conclusion, YJP can inhibit the activation of the JAK/STAT3 pathway by regulating PKM2, thereby inhibiting the malignant biological behavior of HeLa cells.
Collapse
Affiliation(s)
- Ying Shi
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoli Min
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan China
| | - Yi Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Lihua Guo
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Zheng Cai
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Dongge Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xueying Jiang
- The First Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan China
| | - Ni Feng
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaolin Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoxia Yang
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| |
Collapse
|
2
|
Xu D, Yuan L, Meng F, Lu D, Che M, Yang Y, Liu W, Nan Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front Nutr 2024; 11:1430768. [PMID: 39045282 PMCID: PMC11263281 DOI: 10.3389/fnut.2024.1430768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Li X, Jiang Y, Wang Y, Li N, Zhang S, Lv K, Jia R, Wei T, Li X, Han C, Lin J. KLF4 suppresses anticancer effects of brusatol via transcriptional upregulating NCK2 expression in melanoma. Biochem Pharmacol 2024; 223:116197. [PMID: 38583810 DOI: 10.1016/j.bcp.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China; Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Ying Wang
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, PR China
| | - Shumeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Kejia Lv
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Renchuan Jia
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Tianfu Wei
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Xiaojie Li
- College of Stomatology Dalian Medical University, Dalian 116044, PR China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China.
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
4
|
Wu J, Ma X, Wang X, Zhu G, Wang H, Li J. Efficacy and safety of compound kushen injection for treating advanced colorectal cancer: A protocol for a systematic review and meta-analysis. Heliyon 2024; 10:e26981. [PMID: 38463847 PMCID: PMC10923683 DOI: 10.1016/j.heliyon.2024.e26981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Compound Kushen Injection (CKI) is a traditional Chinese medicine extracted from Sophora flavescens Aiton and Heterosmilax japonica Kunth. Widely utilized in China for the comprehensive treatment of colorectal cancer (CRC), this study aims to systematically assess the efficacy and safety of CKI when combined with chemotherapy for the treatment of advanced CRC, based on available data. Methods Randomized controlled trials investigating the efficacy and safety of CKI combined with chemotherapy in the treatment of advanced CRC will be comprehensively searched from databases, including PubMed, Web of Science, Cochrane Library, EMBASE, China National Knowledge Infrastructure, Chinese Scientific Journal Database, Wanfang, Chinese Biomedicine Database Searches, Chinese Clinical Trial Registry, and ClinicalTrials.gov until November 2022. Two independent reviewers will screen the studies, assess the risk of bias, and extract data in duplicate. The ROB2 tool will be employed to assess the quality of included studies. Stata 16 will be used for data analysis, and publication bias will be assessed using funnel plots and Egger's test. The quality of evidence will be evaluated according to GRADE, and trial sequence analysis (TSA) will be utilized to calculate the final total sample size required for the meta-analysis. The results of this systematic review will be published in a peer-reviewed journal. The proposed review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO; CRD42022380106). Discussion This systematic review will integrate current evidence on CKI in advanced CRC and analyze the clinical efficacy and safety of CKI combined with different chemotherapy regimens, providing valuable guidance on the use of CKI in CRC patients.
Collapse
Affiliation(s)
- Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Xinyi Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinmiao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Heping Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
5
|
Zhou J, Li H, Wu B, Zhu L, Huang Q, Guo Z, He Q, Wang L, Peng X, Guo T. Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer. Sci Rep 2024; 14:1860. [PMID: 38253629 PMCID: PMC10803340 DOI: 10.1038/s41598-024-52413-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Cervical cancer is the second leading cause of morbidity and mortality in women worldwide. Traditional treatment methods have become limited. Naringenin, a flavonoid abundant in various fruits and herbal medicines, has demonstrated anti-tumor properties among other effects. This research undertook to elucidate the mechanism of naringenin in the context of cervical cancer treatment by leveraging network pharmacology and performing experimental validation. Initial steps involved predicting potential naringenin targets and subsequently screening for overlaps between these targets and those related to cervical cancer, followed by analysis of their interrelationships. Molecular docking was subsequently utilized to verify the binding effect of the central target. Within the framework of network pharmacology, it was discovered that naringenin might possess anti-cancer properties specific to cervical cancer. Following this, the anti-tumor effects of naringenin on Hela cell viability, migration, and invasion were assessed employing CCK-8, transwell, wound healing assays, and western blotting. Experimental data indicated that naringenin attenuates the migration and invasion of Hela cells via downregulation EGFR/PI3K/AKT signaling pathway. Thus, our findings suggest that naringenin has therapeutic impacts on cervical cancer via multiple mechanisms, primarily by inhibiting the migration and invasion through the EGFR/PI3K/AKT/mTOR pathway. This study offers fresh insights for future clinical studies.
Collapse
Affiliation(s)
- Ji Zhou
- Medical School, Changsha Social Work College, Changsha, China
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Haoying Li
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Ben Wu
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
- Wuzhou Medical college, Wuzhou, China
| | - Lemei Zhu
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Qiao Huang
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Zhenyu Guo
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Qizhi He
- The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Lin Wang
- The First Affiliated Hospital of Changsha Medical University, Changsha, China.
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China.
| | - Tianyao Guo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
6
|
Ma W, Ren F, Yan X, Wang X, Wu T, Li N. Cytotoxic and anti-inflammatory constituents from roots of Hypericum beanii and the antitumor potential under the view of cancer-related inflammation. Fitoterapia 2024; 172:105745. [PMID: 37967771 DOI: 10.1016/j.fitote.2023.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Hypericum beanii, a traditional folk medicine plant, has been employed in the treatment of various inflammation-related diseases and has demonstrated promising potential as an herbal remedy for cancer. In this study, we isolated 29 compounds from the roots of H. beanii. We evaluated their cytotoxic effects on five human cancer cell lines, which revealed that the ethanol extract, along with compounds 4 and 14, exhibited significant cytotoxic activity. Additionally, we assessed their anti-inflammatory properties by measuring the inhibition of nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. Our findings showed that the ethanol extract (IC50 = 7.41 ± 0.38 μg/mL), compound 4 (IC50 = 7.82 ± 0.42 μM), and compound 14 (IC50 = 3.05 ± 0.06 μM) displayed substantial anti-inflammatory activity. ELISA assays and qPCR analysis revealed that compounds 4 and 14 may exert their anti-inflammatory and antitumor effects by inhibiting the expression of iNOS, TNF-α, IL-1β, and IL-6 mRNA, shedding light on their role in cancer-related inflammation.
Collapse
Affiliation(s)
- Wei Ma
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China
| | - Fucai Ren
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China.
| | - Xiaowei Yan
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China
| | - Xueru Wang
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China
| | - Tingni Wu
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China.
| | - Ning Li
- School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei 230032, Anhui, China.
| |
Collapse
|
7
|
Mohanty S, Ray A, Sahoo C, Sahoo A, Jena S, Panda PC, Nayak S. Volatile profiling coupled with multivariate analysis, antiproliferative and anti-inflammatory activities of rhizome essential oil of four Hedychium species from India. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116835. [PMID: 37355085 DOI: 10.1016/j.jep.2023.116835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Hedychium of family Zingiberaceae comprises several perennial rhizomatous species widely used in perfumery and traditional folk medicine to treat diseases related to asthma, diarrhoea, nausea, stomach disorders, inflammation and tumours. Several species of Hedychium have remained under-explored with respect to their chemical composition and biological activities. AIM OF THE STUDY The current research aimed to explore the chemical composition and evaluate the antiproliferative and anti-inflammatory activities of rhizome essential oil from four Hedychium species (H. coccineum, H. gardnerianum, H. greenii and H. griffithianum). MATERIALS AND METHODS Compound identification was accomplished using a Clarus 580 gas chromatography system in conjunction with mass spectrometry (GC-MS). The multivariate data statistics using chemometrics (PCA, PLS-DA, sPLS-DA) and cluster analysis (Dendrogram, Heat maps, K-means) were used to compare the similarity and relationship among Hedychium metabolomes. MTT assay was employed to visualize the antiproliferative property against MCF7, HepG2 and PC3 cancerous cell lines. The toxicity of essential oils was determined using 3T3-L1 non-tumorigenic/normal cells. Lipopolysaccharide (LPS)-induced RAW 264.7 cells were used to investigate the anti-inflammatory properties of Hedychium essential oils by measuring the production of nitric oxide (NO) using the Griess reagent method. Furthermore, the levels of prostaglandin (PGE2) and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) was assessed using the ELISA technique. RESULTS In total, 82 compounds were identified in four targeted species of Hedychium from which 1,8-cineole (52.71%), β-pinene (32.83%), α-pinene (19.62%), humulene epoxide II (19.86%) and humulene epoxide I (19.10%) were the major constituents. Monoterpenes (8.5-59.9%) and sesquiterpenes (2.87-54.11%) were the two class of compounds, found as the most prevalent in the extracted essential oils. The multivariate analysis classified the four Hedychium species into three different clusters. Hedychium essential oils exhibited potent antiproliferative activity against MCF7, HepG2 and PC3 cancer cell lines with IC50 values less than 150 μg/mL where H. gardnerianum exhibited the highest selective cytotoxicity against human breast and prostate adenocarcinoma cells with an IC50 value of 44.04 ± 1.07 μg/mL and 56.11 ± 1.44 μg/mL, respectively. The essential oils on normal (3T3-L1) cells displayed no toxicity with higher IC50 values thereby concluding as safe to use for normal human health without causing any side effects. Besides, the essential oils at 100 μg/mL concentration revealed remarkable anti-inflammatory activity in LPS-activated RAW 264.7 murine macrophages by inhibiting the production of inflammatory mediators, with H. greenii exhibiting the maximum anti-inflammation response by significantly suppressing the levels of NO (84%), PGE2 (87%), TNF-α (94.3%), IL-6 (95%) and IL-1β (85%) as compared to LPS treated group. CONCLUSION The present findings revealed that the Hedychium species traditionally used in therapeutics could be a potential source of active compounds with antiproliferative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Swagat Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Zhang Q, Chen X, Palen K, Johnson B, Bui D, Xiong D, Pan J, Hu M, Wang Y, You M. Cancer chemoprevention with PV-1, a novel Prunella vulgaris-containing herbal mixture that remodels the tumor immune microenvironment in mice. Front Immunol 2023; 14:1196434. [PMID: 38077406 PMCID: PMC10704350 DOI: 10.3389/fimmu.2023.1196434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/20/2023] [Indexed: 12/18/2023] Open
Abstract
The herb Prunella vulgaris has shown significant immune-stimulatory and anti-inflammatory effects in mouse models. Here, the effects of a novel Prunella vulgaris-containing herbal mixture, PV-1, were examined in several mouse models for cancer, including chemically induced models of lung and oral cancers as well as syngraft models for lung cancer and melanoma. PV-1, consisting of extracts from Prunella vulgaris, Polygonum bistorta, Sonchus brachyotus and Dictamnus dasycarpus, exhibited no toxicity in a dose escalation study in A/J mice. PV-1 significantly inhibited mouse lung tumor development induced by the lung carcinogens vinyl carbamate and benzo[a]pyrene. PV-1 also hindered the induction of oral squamous cell carcinomas in C57BL/6 mice caused by 4-nitroquinoline-1-oxide. Flow cytometry analysis showed that PV-1 increased the numbers of CD8+ tumor-infiltrating lymphocytes (TILs) and increased the production of granzyme B, TNF-α, and IFN-γ by CD8+ TILs. PV-1 also suppressed granulocytic myeloid-derived suppressor cell numbers (g-MDSCs) and improved the anti-cancer activity of anti-PD-1 immunotherapy. These results indicate that PV-1 remodels the tumor immune microenvironment by selectively inhibiting g-MDSCs and increasing CD8+ TILs within tumors, resulting in decreased immune suppression and enhanced cancer chemopreventive efficacy.
Collapse
Affiliation(s)
- Qi Zhang
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Xu Chen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie Palen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bryon Johnson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dinh Bui
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Donghai Xiong
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Jing Pan
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Ming Hu
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Yian Wang
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Ming You
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
9
|
Huang L, Ye X, Wu F, Wang X, Qiu M. Study of prevalence and risk factors of chemotherapy-induced mucositis in gastrointestinal cancer using machine learning models. Front Oncol 2023; 13:1138992. [PMID: 37841443 PMCID: PMC10569816 DOI: 10.3389/fonc.2023.1138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Chemotherapy-induced mucositis (CIM) significantly impacts clinical outcomes and diminishes the quality of life in patients with gastrointestinal cancer. This study aims to prospectively determine the incidence, severity, and underlying risk factors associated with CIM in this patient population. Methods To achieve this objective, we introduce a novel Machine Learning-based Toxicity Prediction Model (ML-TPM) designed to analyze the risk factors contributing to CIM development in gastrointestinal cancer patients. Within the winter season spanning from December 15th, 2018 to January 14th, 2019, we conducted in-person interviews with patients undergoing chemotherapy for gastrointestinal cancer. These interviews encompassed comprehensive questionnaires pertaining to patient demographics, CIM incidence, severity, and any supplementary prophylactic measures employed. Results The study encompassed a cohort of 447 participating patients who provided complete questionnaire responses (100%). Of these, 328 patients (73.4%) reported experiencing CIM during the course of their treatment. Notably, CIM-induced complications led to treatment discontinuation in 14 patients (3%). The most frequently encountered CIM symptoms were diarrhea (41.6%), followed by nausea (37.8%), vomiting (25.1%), abdominal pain (21%), gastritis (10.5%), and oral pain (10.3%). Supplementary prophylaxis was administered to approximately 62% of the patients. The analysis revealed significant correlations between the overall incidence of CIM and gender (p=0.015), number of chemotherapy cycles exceeding one (p=0.039), utilization of platinum-based regimens (p=0.039), and administration of irinotecan (p=0.003). Specifically, the incidence of diarrhea exhibited positive correlations with prior surgical history (p=0.037), irinotecan treatment (p=0.021), and probiotics usage (p=0.035). Conversely, diarrhea incidence demonstrated an adverse correlation with platinum-based treatment (p=0.026). Conclusion In conclusion, this study demonstrates the successful implementation of the ML-TPM model for automating toxicity prediction with accuracy comparable to conventional physical analyses. Our findings provide valuable insights into the identification of CIM risk factors among gastrointestinal cancer patients undergoing chemotherapy. Furthermore, the results underscore the potential of machine learning in enhancing our understanding of chemotherapy-induced mucositis and advancing personalized patient care strategies.
Collapse
Affiliation(s)
- Lin Huang
- Division of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xianhui Ye
- Division of Medical Oncology, Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengqing Wu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiuyun Wang
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meng Qiu
- Division of Medical Oncology, Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhang M, Ding Y, Hu S, Li F, Wang Y, Zhou Y, Qi M, Ni H, Fang S, Chen Q. Transcriptomics and systems network-based molecular mechanism of herbal formula Huosu-Yangwei inhibited gastric cancer in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023:116674. [PMID: 37277085 DOI: 10.1016/j.jep.2023.116674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of the herbal formula Huosu-Yangwei (HSYW) in the treatment of advanced gastric cancer and chronic atrophic gastritis with precancerous lesions has been reported in clinical trials. However, the molecular mechanisms underlying its inhibition of gastric tumor are not well-understood. AIM OF THE STUDY Combined with transcriptomics and systems network-based molecular mechanism to explore the potential circRNA-miRNA-mRNA network of HSYW in the treatment of gastric cancer. MATERIALS AND METHODS Animal experiments were conducted to investigate the effect of HSYW on tumor growth in vivo. RNA sequencing (RNA-seq) was implemented to identify the differentially expressed (DE) genes. Predictive miRNA targets and mRNA were used to construct circRNA-miRNA-mRNA networks and protein-protein interaction (PPI) networks. Quantitative real-time PCR (qRT-PCR) was utilized to verify the accuracy of the proposed circRNA-miRNA-mRNA networks. Additionally, the differentially expressed target proteins between gastric cancer (GC) and normal patients were assessed using data from the TCGA (The Cancer Genome Atlas) and HPA (The Human Protein Atlas) databases. RESULTS We demonstrate HSYW significantly inhibits tumor growth of N87 cell-bearing Balb/c mice. Transcriptomic analysis revealed the existence of 119 differentially expressed (DE) circRNAs and 200 DE mRNAs between HSYW-treated and model mice. By associating predicted circRNA-miRNA pairs and miRNA-mRNA pairs, we constructed a circRNA-miRNA-mRNA (CMM) network. Furthermore, a protein-protein interaction (PPI) network was developed using the differential expressed mRNAs. Consequently, the reconstructed core CMM network and qRT-PCR validation indicated that 4 circRNAs, 5 miRNAs and 6 mRNAs could potentially serve as biomarkers to assess the therapeutic effects of HSYW-treated N87-bearing Balb/c mice. The TCGA and HPA databases also demonstrated that mRNA KLF15 and PREX1 had substantial differences between gastric cancer (GC) and healthy controls. CONCLUSIONS By combining the experimental and bioinformatics analysis, this study confirms that the circRNA_00240/hsa-miR-642a-5p/KLF15 and circRNA_07980/hsa-miR-766-3p/PREX1 pathways play critical roles in HSYW-treated gastric cancer.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yujie Ding
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fulong Li
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Mei Qi
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - HongMei Ni
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
11
|
Jin Y, Liu B, Li C, Shi S. Origin identification of Cornus officinalis based on PCA-SVM combined model. PLoS One 2023; 18:e0282429. [PMID: 36854014 PMCID: PMC9974136 DOI: 10.1371/journal.pone.0282429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Infrared spectroscopy can quickly and non-destructively extract analytical information from samples. It can be applied to the authenticity identification of various Chinese herbal medicines, the prediction of the mixing amount of defective products, and the analysis of the origin. In this paper, the spectral information of Cornus officinalis from 11 origins was used as the research object, and the origin identification model of Cornus officinalis based on mid-infrared spectroscopy was established. First, principal component analysis was used to extract the absorbance data of Cornus officinalis in the wavenumber range of 551~3998 cm-1. The extracted principal components contain more than 99.8% of the information of the original data. Second, the extracted principal component information was used as input, and the origin category was used as output, and the origin identification model was trained with the help of support vector machine. In this paper, this combined model is called PCA-SVM combined model. Finally, the generalization ability of the PCA-SVM model is evaluated through an external test set. The three indicators of Accuracy, F1-Score, and Kappa coefficient are used to compare this model with other commonly used classification models such as naive Bayes model, decision trees, linear discriminant analysis, radial basis function neural network and partial least square discriminant analysis. The results show that PCA-SVM model is superior to other commonly used models in accuracy, F1 score and Kappa coefficient. In addition, compared with the SVM model with full spectrum data, the PCA-SVM model not only reduces the redundant variables in the model, but also has higher accuracy. Using this model to identify the origin of Cornus officinalis, the accuracy rate is 84.8%.
Collapse
Affiliation(s)
- Yueqiang Jin
- Public Foundational Courses Department, Nanjing Vocational University of Industry Technology, Nanjing, China
- * E-mail:
| | - Bing Liu
- Public Foundational Courses Department, Nanjing Vocational University of Industry Technology, Nanjing, China
| | - Chaoning Li
- Research and Development Department, Nanjing Changxingyang Intelligent Home Company Limited, Nanjing, China
| | - Shasha Shi
- School of Science, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
12
|
Naghashpour M, Dayer D, Karami H, Naghashpour M, Moghadam MT, Haeri SMJ, Suzuki K. Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020286. [PMID: 36837487 PMCID: PMC9963572 DOI: 10.3390/medicina59020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Background and Objectives: Combination therapy improves the effect of chemotherapy on tumor cells. Magnolol, used in treating gastrointestinal disorders, has been shown to have anti-cancer properties. We investigated the synergistic effect of cisplatin and magnolol on the viability and maintenance of MKN-45 gastric cancer cells. Materials and Methods: The toxicity of magnolol and/or cisplatin was determined using the MTT technique. The trypan blue method was used to test magnolol and/or cisplatin's effect on MKN-45 cell growth. Crystal violet staining was used to assess the treated cells' tendency for colony formation. The expression of genes linked to apoptosis, cell cycle arrest, and cell migration was examined using the qPCR method. Results: According to MTT data, using magnolol and/or cisplatin significantly reduced cell viability. The ability of the treated cells to proliferate and form colonies was also reduced considerably. Magnolol and/or cisplatin treatment resulted in a considerable elevation in Bax expression. However, the level of Bcl2 expression was dramatically reduced. p21 and p53 expression levels were significantly increased in the treated cells, while MMP-9 expression was significantly reduced. Conclusions: These findings show that magnolol has a remarkable anti-tumor effect on MKN-45 cells. In combination with cisplatin, magnolol may be utilized to overcome cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Mahsa Naghashpour
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Mahshid Naghashpour
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15753, Iran
| | - Seyed Mohammad Jafar Haeri
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| |
Collapse
|
13
|
Li Z, Spoelstra NS, Sikora MJ, Sams SB, Elias A, Richer JK, Lee AV, Oesterreich S. Mutual exclusivity of ESR1 and TP53 mutations in endocrine resistant metastatic breast cancer. NPJ Breast Cancer 2022; 8:62. [PMID: 35538119 PMCID: PMC9090919 DOI: 10.1038/s41523-022-00426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Guo G, Tan Z, Liu Y, Shi F, She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther 2022; 13:138. [PMID: 35365226 PMCID: PMC8973885 DOI: 10.1186/s13287-022-02811-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy is a novel treatment strategy for cancer and a wide range of diseases with an excessive immune response such as ulcerative colitis (UC), due to its powerful immunomodulatory properties and its capacity for tissue regeneration and repair. One of the promising therapeutic options can focus on MSC-secreted exosomes (MSC-Exo), which have been identified as a type of paracrine interaction. In light of a wide variety of recent experimental studies, the present review aims to seek the recent research advances of therapies based on the MSC-Exo for treating UC and colorectal cancer (CRC). METHODS A systematic literature search in MEDLINE, Scopus, and Google Scholar was performed from inception to December 2021 using the terms [("colorectal cancer" OR "bowel cancer" OR "colon cancer" OR "rectal cancer") AND (exosome) AND (stem cell) AND ("inflammatory bowel disease" OR "Crohn's disease" OR "colitis")] in titles and abstracts. FINDINGS Exosomes derived from various sources of MSCs, including human umbilical cord-derived MSCs (hUC-MSCs), human adipose-derived MSCs (hAD-MSCs), human bone marrow-derived MSCs (hBM-MSCs), and olfactory ecto-MSCs (OE-MSCs), have shown the protective role against UC and CRC. Exosomes from hUC-MSCs, hBM-MSCs, AD-MSCs, and OE-MSCs have been found to ameliorate the experimental UC through suppressing inflammatory cells including macrophages, Th1/Th17 cells, reducing the expression of proinflammatory cytokines, as well as inducing the anti-inflammatory function of Treg and Th2 cells and enhancing the expression of anti-inflammatory cytokines. In addition, hBM-MSC-Exo and hUC-MSC-Exo containing tumor-suppressive miRs (miR-3940-5p/miR-22-3p/miR-16-5p) have been shown to suppress proliferation, migration, and invasion of CRC cells via regulation of RAP2B/PI3K/AKT signaling pathway and ITGA2/ITGA6. KEY MESSAGES The MSC-Exo can exert beneficial effects on UC and CRC through two different mechanisms including modulating immune responses and inducing anti-tumor responses, respectively.
Collapse
Affiliation(s)
- Gang Guo
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Zhaobang Tan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China
| | - Yaping Liu
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Feiyu Shi
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| |
Collapse
|
15
|
Du J, Tao Q, Liu Y, Huang Z, Jin H, Lin W, Huang X, Zeng J, Zhao Y, Liu L, Xu Q, Han X, Chen L, Chen XL, Wen Y. Assessment of the targeted effect of Sijunzi decoction on the colorectal cancer microenvironment via the ESTIMATE algorithm. PLoS One 2022; 17:e0264720. [PMID: 35303006 PMCID: PMC8932555 DOI: 10.1371/journal.pone.0264720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Sijunzi decoction (SJZD) was used to treat patients with colorectal cancer (CRC) as an adjuvant method. The aim of the study was to investigate the therapeutic targets and pathways of SJZD towards the tumor microenvironment of CRC via network pharmacology and the ESTIMATE algorithm. Methods The ESTIMATE algorithm was used to calculate immune and stromal scores to predict the level of infiltrating immune and stromal cells. The active targets of SJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and UniProt database. The core targets were obtained by matching the differentially expressed genes in CRC tissues and the targets of SJZD. Then, GO, KEGG and validation in TCGA were carried out. Results According to the ESTIMATE algorithm and survival analysis, the median survival time of the low stromal score group was significantly higher than that of the high stromal score group (P = 0.018), while the patients showed no significant difference of OS between different immune groups (P = 0.19). A total of 929 genes were upregulated and 115 genes were downregulated between the stromal score groups (|logFC| > 2, adjusted P < 0.05); 357 genes were upregulated and 472 genes were downregulated between the immune score groups. The component-target network included 139 active components and 52 related targets. The core targets were HSPB1, SPP1, IGFBP3, and TGFB1, which were significantly associated with poor prognosis in TCGA validation. GO terms included the response to hypoxia, the extracellular space, protein binding and the TNF signaling pathway. Immunoreaction was the main enriched pathway identified by KEGG analysis. Conclusion The core genes (HSPB1, SPP1, IGFBP3 and TGFB1) affected CRC development and prognosis by regulating hypoxia, protein binding and epithelial-mesenchymal transition in the extracellular matrix.
Collapse
Affiliation(s)
- Jiaxin Du
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quyuan Tao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanming Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Jin
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinying Huang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyan Zeng
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongchang Zhao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyu Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Xu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Han
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XC); (YW)
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XC); (YW)
| |
Collapse
|
16
|
Matsumoto H, Ando S, Yoshimoto E, Numano T, Sultana N, Fukamachi K, Iinuma M, Okuda K, Kimura K, Suzui M. Extracts of Musa basjoo induce growth inhibition and changes in the protein expression of cell cycle control molecules in human colorectal cancer cell lines. Oncol Lett 2022; 23:99. [PMID: 35154430 PMCID: PMC8822496 DOI: 10.3892/ol.2022.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/23/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Harutoshi Matsumoto
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Saeko Ando
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Eri Yoshimoto
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Takamasa Numano
- Research and Development Division, DIMS Institute of Medical Science, Ichinomiya, Aichi 491‑0113, Japan
| | - Nahida Sultana
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Katsumi Fukamachi
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Munekazu Iinuma
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu-shi, Gifu 501‑1196, Japan
| | - Kensuke Okuda
- Laboratory of Bioorganic and Natural Products Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658‑8558, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| | - Masumi Suzui
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Aichi 467‑8601, Japan
| |
Collapse
|
17
|
Kim JY, Kim J, Bandara BMR, Tilakaratne WM, Kim D. Leaf extract of Osbeckia octandra induces apoptosis in oral squamous cell carcinoma cells. BMC Complement Med Ther 2022; 22:20. [PMID: 35078428 PMCID: PMC8787916 DOI: 10.1186/s12906-022-03505-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Osbeckia octandra is a plant endemic to Sri Lanka and is used in ethnomedicine for treating various diseases. However, the anti-cancer properties of O. octandra are yet to be fully investigated. In the present study, we evaluated the anti-cancer effects of O. octandra on oral cancer cells. Methods Human oral cancer cell lines (HSC2, YD10B, YD38, YD9, and YD32) were used in this study. BrdU incorporation, cell cycle and annexin-V/PI staining were all evaluated using flow cytometry to determine the extent to which O. octandra leaf extract inhibits cell proliferation and induces apoptosis. Cell viability and reactive oxygen species (ROS) were also measured in order to investigate the anti-cancer effects of O. octandra extracts. Western blotting was performed to detect cell cycle related protein such as cyclin d1 and cdk4, and to detect apoptosis-related proteins such as Bcl-2, Bcl-XL, Bax, Caspase-9, Cleaved caspase-3, Fas, Caspase-8, and Bid. Results Leaf extract of O. octandra reduced oral squamous cell carcinoma (OSCC) cell viability in a dose-dependent manner. Leaf extract of O. octandra has non-toxic in normal keratinocytes. Also, O. octandra extract interrupted the DNA replication via G1 phase arrests, and this effect was independent of ROS generation. In the apoptosis-related experiments, the population of annexin V-positive cells increased upon treatment with O. octandra extract. Furthermore, the expression of anti-apoptotic protein (Bcl-2 and Bcl-xL) was decreased, whereas the expression of cleaved caspase-3 protein was increased in O. octandra-treated OSCC cells. Conclusions The results suggest that a leaf extract of O. octandra inhibited the proliferation of OSCC cells through G1 phase arrest and interrupting DNA replication. The leaf extract of O. octandra could trigger the apoptotic response via caspase 3 activation in OSCC cells. These results suggest that O. octandra has the potential to be developed as an alternative medicine for treating OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03505-4.
Collapse
Affiliation(s)
- Jue Young Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - B M Ratnayake Bandara
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Wanninayake M Tilakaratne
- Department of Oral Pathology, Faculty of Dental Sciences, Center for Research in Oral Cancer, University of Peradeniya, Peradeniya, 20400, Sri Lanka.,Department of Oral Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Dokyeong Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea. .,Precision Medicine Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Chen LJ, Hsu TC, Yeh PJ, Yow JL, Chang CL, Lin CH, Tzang BS. Differential Effects of Wedelia chinensis on Human Glioblastoma Multiforme Cells. Integr Cancer Ther 2021; 20:15347354211000119. [PMID: 33729002 PMCID: PMC7983241 DOI: 10.1177/15347354211000119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Glioblastoma multiforme (GBM) is the most aggressive glioma, and its diffuse
nature makes resection of it difficult. Moreover, even with the
administration of postoperative radiotherapy and chemotherapy, prolonged
remission is often not achieved. Hence, innovative or alternative treatments
for GBM are urgently required. Traditional Chinese herbs and their
functional components have long been used in the treatment of various
cancers, including GBM. The current study investigated the antitumor
activity of Wedelia chinensis and its major functional
components, luteolin and apigenin, on GBM. Materials and Methods: MTT assay, Transwell migration assay, and flow cytometry analysis were
adopted to assess the cell viability, invasive capability, and cell cycle.
Immunofluorescence staining and Western blotting were used to detect the
expressions of apoptotic and autophagy-related signaling molecules. Results: The W. chinensis extract (WCE) significantly inhibited the
proliferation and invasive ability of both GBM8401 and U-87MG cells in a
dose-dependent manner. Moreover, differential effects of WCE on GBM8401 and
U-87MG cells were observed: WCE induced apoptosis in GBM8401 cells and
autophagy in U-87MG cells. Notably, WCE had significant effects in reducing
the cell survival and invasive capability of both GBM8401 and U-87MG cells
than the combination of luteolin and apigenin. Conclusions: Taken together, these findings indicate the potential of using WCE and the
combination of luteolin and apigenin for GBM treatment. However, further
investigations are warranted before considering recommending the clinical
use of WCE or the combination of luteolin and apigenin as the standard for
GBM treatment.
Collapse
Affiliation(s)
- Li-Jeng Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan, R.O.C.,Immunology Research Center, Chung Shan Medical University, Taichung city, Taiwan, R.O.C
| | - Pei-Jung Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Jia Le Yow
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Chia-Ling Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Cheng-Hui Lin
- Division of Rheumatology Immunology Clinic, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan, R.O.C.,Immunology Research Center, Chung Shan Medical University, Taichung city, Taiwan, R.O.C.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| |
Collapse
|
19
|
Chen YS, Cheng CH, Hung WL. A systematic review to identify the effects of tea by integrating an intelligence-based hybrid text mining and topic model. Soft comput 2021. [DOI: 10.1007/s00500-020-05377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Feng PP, Qi YK, Li N, Fei HR. Scutebarbatine A induces cytotoxicity in hepatocellular carcinoma via activation of the MAPK and ER stress signaling pathways. J Biochem Mol Toxicol 2021; 35:e22731. [PMID: 33512038 DOI: 10.1002/jbt.22731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
Scutebarbatine A (SBT-A), a diterpenoid alkaloid found in the root of Scutellaria barbata D. Don, has been reported to induce the apoptosis of A549 cells. In this study, we investigated the antitumor activity of SBT-A in human hepatocellular carcinoma (HCC) cells and the potential underlying mechanisms. Our results showed that SBT-A inhibited the growth of HCC cells in a dose-dependent manner. SBT-A treatment caused cell cycle arrest and decreased the expression of cyclin B1, cyclin D1, p-Cdc2, and p-Cdc25C. SBT-A triggered cell apoptosis via a caspase-dependent pathway, and cell viability was partially restored by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. In HCC cells, treatment with SBT-A increased the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase 1 and 2 (JNK1/2), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, SBT-A activated endoplasmic reticulum (ER) stress through the upregulation of protein kinase RNA-like ER kinase (PERK), activating transcription factor 4 (ATF-4), and CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP). Our data indicate that SBT-A inhibits the proliferation of HCC cells and triggers their apoptosis via the activation of MAPK and ER stress. SBT-A is a potential agent for the treatment of HCC.
Collapse
Affiliation(s)
- Pan-Pan Feng
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - You-Kun Qi
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Na Li
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Hong-Rong Fei
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
21
|
Fani Pakdel A, Hatami A, Salek R, Taghizadeh-Kermani A, Javadinia SA, Ghorbani A. Effects of a polyherbal formulation on the quality of life and survival of patients with common upper gastrointestinal cancers: A randomized placebo-controlled trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:566-575. [PMID: 34804894 PMCID: PMC8588958 DOI: 10.22038/ajp.2021.18132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Previous clinical trials have suggested that herbal medicines can improve the quality of life (QOL) and survival of cancer patients. This study was aimed to evaluate the effects of a polyherbal compound (PHC, formulated as syrup) consisting of Allium sativum, Curcuma longa, Panax ginseng, and Camellia sinensis on the quality of life (QOL) and survival in patients with upper gastrointestinal cancers. MATERIALS AND METHODS A randomized placebo-controlled trial was carried out on patients with esophageal or gastric cancer who had finished their oncological treatments. The patients were randomly assigned to PHC (n=20) or placebo (n=20) group. The PHC group was treated with the PHC for 12 weeks, while the placebo group received 70% sucrose syrup. The QOL was assessed at baseline and after 12 weeks. The patients were followed for up to 24 months to determine overall survival. RESULTS PHC significantly improved cancer-related symptoms, physical performance, and psychological and social functions of the patients (p<0.05 for all cases). Death occurred in 33 and 22% of cases in the placebo and PHC group, respectively. The mean survival time was 16.8 months (95% CI: 12.8-20.9) in the placebo group and 21.4 months (95% CI: 19.1-23.6) in the PHC group but the difference was not statistically significant. CONCLUSION The PHC improved cancer-related symptoms, physical performance, and psychological and social functions in patients with gastrointestinal cancers. It seems that this herbal compound has the potential to be used as a supplement in the management of cancer.
Collapse
Affiliation(s)
- Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Hatami
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roham Salek
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghizadeh-Kermani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5138002278, Fax: +98-5138828566,
| |
Collapse
|
22
|
Li W, Guo J, Wang Q, Tang J, You F. The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: A protocol for systematic review of randomized controlled trials. Medicine (Baltimore) 2020; 99:e23216. [PMID: 33371062 PMCID: PMC7748206 DOI: 10.1097/md.0000000000023216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a public health problem and the world's leading cancer killer. It is a disease with high incidence and mortality. Although chemotherapy has achieved some success in the treatment of CRC, drug resistance and tumor metastasis caused by chemotherapy are still the main causes of death in patients with CRC. Notably, many side effects associated with chemotherapy, such as nausea, vomiting, and peripheral neurotoxicity, are major challenges in the treatment of patients with CRC. Chinese herbal medicine (CHM) has been widely used as an adjunctive therapy for CRC, but its efficacy and safety are still uncertain. The aim of this systematic review is to assess the efficacy and safety of CHM for the treatment of CRC. METHODS A comprehensive retrieval will be performed in the following electronic databases: PubMed, Cochrane Library, EMBASE, Web of Science, CNKI, SinoMed, VIP, and Wan Fang Data. The methodologic quality of randomized controlled trials will be assessed using the Cochrane risk assessment tool. Review Manager 5.3 software will be used for data synthesis and analysis. Funnel plot analysis and Egger test will be used to assess publication bias. The Grading of Recommendations Assessment, Development and Evaluation standard will be used to generate summary of finding table. RESULTS The results of this systematic review will be used to summarize and evaluate the evidence from randomized controlled clinical trials of CHM as adjuvant therapy for CRC. CONCLUSION This review will provide a detailed summary of the evidence to assess the efficacy and safety of CHM for CRC. OSF REGISTRATION DOI 10.17605/OSF.IO/X2SKJ.
Collapse
Affiliation(s)
- Wenyuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine
- Evidence-Based Traditional Chinese Medicine Center of Sichuan Province, No.39 Shi-er-qiao Road, Chengdu, Sichuan Province, P.R. China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Qiaoling Wang
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine
- Evidence-Based Traditional Chinese Medicine Center of Sichuan Province, No.39 Shi-er-qiao Road, Chengdu, Sichuan Province, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
23
|
Lin T, Liang C, Peng W, Qiu Y, Peng L. Mechanisms of Core Chinese Herbs against Colorectal Cancer: A Study Based on Data Mining and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8325076. [PMID: 33193800 PMCID: PMC7641702 DOI: 10.1155/2020/8325076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is now the second most deadly cancer globally. Chinese herbal medicine (CHM) plays an indispensable role in CRC treatment in China. However, the core herbs (the CHs) in the treatment of CRC and their underlying therapeutic mechanisms remain unclear. This study aims to uncovering the CHs and their mechanisms of action of CRC treatment, applying data mining and network pharmacology approach. First, CHM prescriptions treating CRC were collected from clinical studies from the Chinese National Knowledge Infrastructure (CNKI) and MEDLINE databases, and the CHs were identified through data mining. Then, the bioactive compounds and the corresponding putative targets of the CHs were obtained from three traditional Chinese medicine (TCM) databases. CRC related targets were acquired from three disease databases; the overlapping targets between the CHs and CRC were identified as the therapeutic targets. Subsequently, functional enrichment analysis was performed to elucidate the mechanisms of the CHs on CRC. Moreover, networks were constructed to screen the major bioactive compounds and therapeutic targets. Finally, prognostic values of the major target genes were evaluated by survival analysis, and molecular docking simulation was performed to assess the binding affinity of key targets and major bioactive compounds. It came out that 10 the CHs from 113 prescriptions and 190 bioactive compounds with 118 therapeutic targets were identified. The therapeutic targets were mainly enriched in the biological progress of transcription, apoptosis, and response to cytokine. Various cancer-associated signaling pathways, including microRNAs, TNF, apoptosis, PI3K-Akt, and p53, were involved. Furthermore, 15 major bioactive compounds and five key target genes (VEGFA, CASP3, MYC, CYP1Y1, and NFKB1) with prognostic significance were identified. Additionally, most major bioactive compounds might bind firmly to the key target proteins. This study provided an overview of the anti-CRC mechanisms of the CHs, which might refer to the regulation of apoptosis, transcription, and inflammation.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Caijun Liang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenya Peng
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yuqin Qiu
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Lisheng Peng
- Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|
24
|
Chen Q, Di L, Zhang Y, Li N. Chemical constituents with cytotoxic and anti-inflammatory activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112948. [PMID: 32417427 DOI: 10.1016/j.jep.2020.112948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic inflammation has an important role in the development of cancers. Hypericum sampsonii, known as "Yuanbao Cao", is mainly distributed in the southwest of China. As a folk medicinal plant, "Yuanbao Cao" is traditionally used for treatment of various inflammation-related diseases including swelling, burns, arthritis, and dermatitis, etc. The plant is a promising anticancer herb. However, there is no research on the antitumor potential of this plant from the view of cancer-related inflammation strategy. AIM OF THE STUDY To explore the H. sampsonii in relation to cancer-related chemical constituents with anti-inflammatory and cytotoxic activity in cancer-related inflammation. MATERIALS AND METHODS The chemical constituents of H. sampsonii were isolated by repeated chromatography techniques, and their structures were identified mainly by spectroscopic methods and compared to published data. The chemical profile of the herb was analyzed using HPLC. The cytotoxicities of compounds against five cancer cell lines: human melanoma cell (A375), human breast cancer cell (MDA-MB-231), human gastric cancer cell (SGC-7901), human colon cancer cell (SiHa), and human bone marrow neuroblastoma cell (SHSY-5Y), were tested using MTT assay; their anti-inflammatory activities were evaluated by inhibition on NO production in LPS-stimulated RAW 264.7, THP-1 and BV-2 microglial cells. RESULTS Twenty-five compounds, including four phenols (1-4), two anthraquinonoids (5 and 6), six xanthones (7-12), one benzophenone (13), one phloroglucinol (14), nine flavonoids (15-23), one sterol (24) and one alkaloid (25), were isolated from the EtOH extract of H. sampsonii. Of them, compounds 3, 4, 6, 7, 10-14, 17, 19, 22 and 23 were reported in H. sampsonii for the first time. HPLC analysis showed that flavonoids were the main constituents in the herb. MTT assay revealed that compounds 1, 2, 5-14, 15, 17, 18, 20, 21, 22 and 25 had selective cytotoxic activities (IC50: 7.52-158.90 μM) against tested cancer cells, in which compound 5, 6, 13 and 14 displayed high activities against A375, MDA-MB-231, SiHa and SHSY-5Y. In the screening experiment of anti-inflammatory activity, most compounds (1-2, 5-23) showed considerable high anti-inflammatory activities (IC50: 10.59-42.75 μM), in which compounds 5, 6, 13, 14, and 15 exhibited high anti-inflammatory activities in LPS-stimulated RAW264.7, THP-1 and BV-2 microglial cells. CONCLUSIONS Compounds 3, 4, 6, 7, 10-14, 17, 19, 22 and 23 were isolated for the first time from H. sampsonii. Compound 5, 6, 13 and 14 displayed high cytotoxic activities against the tested cancer cell lines. Compounds (1-2, 5-23) showed anti-inflammatory activities, of them, compounds 5, 6, 13, 14 and 15 exhibited the high activity. From the view of cancer-related inflammation point, not only the compounds with high cytotoxicity, but those compounds with anti-inflammatory activities, especially the flavonoids, contribute to the antitumor potential of H. sampsonii. The results and viewpoint of present study provide a different insight to better understand the antitumor potential of H. sampsonii, and may also promote the reasonable usage of this folk medical herb.
Collapse
Affiliation(s)
- Qian Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Lei Di
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Yi Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
25
|
Hou D, Yang L, Xiong J, Xiong L. Efficacy and safety of Kanglaite injection for gastric cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21619. [PMID: 32769923 PMCID: PMC7593039 DOI: 10.1097/md.0000000000021619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kanglaite injection is a broad-spectrum anti-tumor drug, which is extracted from the seeds of the Chinese medicinal herb Coix lacryma-jobi, and has been widely used for the treatment of gastric cancer (GC). This study aimed to systematically investigate the efficacy and safety of Kanglaite injection for the treatment of GC. METHODS We will perform the comprehensive literature search in English and Chinese electronic database from its inception to June 2020. Two trained researchers will independently select the qualified studies for data extraction and assess the quality and risk of bias. Cochrane Risk of Bias tool will be used to assess the risk of bias of included studies. The outcomes included overall response rate, complete response rate, 3-year progression-free survival rate, 3-year overall survival rate, and different types of treatment-related adverse events. Funnel plot analysis and Egger test will be used to assess the publication bias. Finally, the quality of evidence will be assessed by the grading of recommendations assessment, development, and evaluate system . We will calculate the risk ratio as well as their 95% confidence intervals of these outcomes and pool the results using RevMan 5.4 software and STATA 16.0 software. RESULTS The results of our research will be published in a peer-reviewed journal. CONCLUSION The conclusion of our systematic review will provide evidence to judge whether Kanglaite injection is an effective intervention for patient with GC. OSF REGISTRATION NUMBER 10.17605/OSF.IO/HF679.
Collapse
Affiliation(s)
- Daorui Hou
- Department of Traditional Chinese Medicine Oncology, The First People's Hospital of Xiangtan City, Xiangtan 411101, Hunan Province
| | - Liangjun Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province
| | - Jian Xiong
- Department of Oncology, Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiong
- Department of Oncology, Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
26
|
Chan CWH, Law BMH, Wong MMH, Chan DNS, Ng MSN, So WKW, Wong CL, Chow KM. Oral mucositis among Chinese cancer patients receiving chemotherapy: Effects and management strategies. Asia Pac J Clin Oncol 2020; 17:e10-e17. [PMID: 32700818 DOI: 10.1111/ajco.13349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
Oral mucositis is a painful and distressing complication of chemotherapy-induced toxicity in cancer patients that can develop early during the treatment regimen. Previous studies have demonstrated that both oxidative stress and inflammation play a role in the development of the ulceration that is a characteristic of oral mucositis. To date, a few studies have investigated the effect of this complication on the well-being of patients, demonstrating its negative impact on patients' functional ability and quality of life. This effect may entail chemotherapeutic drug dose reduction among patients, in turn reducing their cancer survival rates. Therefore, interventions to address the detrimental effects of oral mucositis on the well-being of cancer patients are required. This review provides an overview of the studies that have examined the negative effects of oral mucositis on Chinese cancer patients undergoing chemotherapy, as well as the interventions shown to be effective in treating this complication, with a focus on interventions utilizing traditional Chinese medicine. Overall, both traditional Chinese medicine-based interventions and interventions involving patient education about effective oral care led by trained nurses were found to be useful in reducing the incidence and severity of oral mucositis among Chinese patients undergoing chemotherapy. Future oral mucositis management plans aiming at effective oral care among cancer patients undergoing chemotherapy should incorporate these types of interventions as integral components to enhance the well-being of these patients.
Collapse
Affiliation(s)
- Carmen W H Chan
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Bernard M H Law
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin M H Wong
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Dorothy N S Chan
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Marques S N Ng
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie K W So
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Cho Lee Wong
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Ming Chow
- Faculty of Medicine, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Arsakhant P, Sirion U, Chairoungdua A, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R. Design and synthesis of C-12 dithiocarbamate andrographolide analogues as an anticancer agent. Bioorg Med Chem Lett 2020; 30:127263. [DOI: 10.1016/j.bmcl.2020.127263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
|
28
|
Ashraf-Uz-Zaman M, Bhalerao A, Mikelis CM, Cucullo L, German NA. Assessing the Current State of Lung Cancer Chemoprevention: A Comprehensive Overview. Cancers (Basel) 2020; 12:E1265. [PMID: 32429547 PMCID: PMC7281533 DOI: 10.3390/cancers12051265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chemoprevention of lung cancer is thought to significantly reduce the risk of acquiring these conditions in the subpopulation of patients with underlying health issues, such as chronic obstructive pulmonary disorder and smoking-associated lung problems. Many strategies have been tested in the previous decades, with very few translating to successful clinical trials in specific subpopulations of patients. In this review, we analyze these strategies, as well as new approaches that have emerged throughout the last few years, including synthetic lethality concept and microbiome-induced regulation of lung carcinogenesis. Overall, the continuous effort in the area of lung chemoprevention is required to develop practical therapeutical approaches. Given the inconsistency of results obtained in clinical trials targeting lung cancer chemoprevention in various subgroups of patients that differ in the underlying health condition, race, and gender, we believe that individualized approaches will have more promise than generalized treatments.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
29
|
Shao C, Zuo Q, Lin J, Yu RJ, Fu Y, Xiao M, Sun LL, Lin L. Effect of Chinese Herbal Medicine on the Survival of Colorectal Cancer Patients With Liver-Limited Metastases: A Retrospective Cohort Study, 2008 to 2017. Integr Cancer Ther 2020; 18:1534735419883687. [PMID: 31658839 PMCID: PMC6820185 DOI: 10.1177/1534735419883687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Colorectal cancer (CRC) remains one of the leading contributors to cancer-related mortality and morbidity worldwide. Traditional Chinese medicines have been widely employed to treat various types of cancer in China. This investigation aims to determine the association between Chinese herbal medicine (CHM) therapy and survival outcomes in CRC patients with liver-limited metastases. Methods: A retrospective cohort study was performed among patients with colorectal liver metastases at the First Affiliated Hospital of Guangzhou University of Chinese Medicine in Guangzhou, China. Data from a series of consecutive patients were collected via an electronic medical record system or telephone follow-up. We defined high exposure as a period of CHM therapy lasting more than 6 months. The primary outcome was overall survival. Results: The study included the data of 191 patients from January 2008 to December 2017; 126 patients (65.97%) met the inclusion criteria of high exposure to CHM. Multivariate analyses revealed that high exposure to CHM was associated with better overall survival (hazard ratio = 0.444, 95% confidence interval = [0.213, 0.926], P = .030). The association was further confirmed by a subgroup exploratory analysis. Conclusion: Long-term CHM therapy is correlated with improved survival outcomes in CRC patients with liver-limited metastases.
Collapse
Affiliation(s)
- Cui Shao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Zuo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jietao Lin
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Rong Jian Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Yuanfeng Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Shenzhen Chinese Medicine Hospital, Shenzhen, China
| | - Ling Ling Sun
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Lizhu Lin
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
30
|
Zhang XG, Ma GY, Kou F, Liu WJ, Sun QY, Guo GJ, Ma XD, Guo SJ, Jian-Ning Z. Reynoutria Japonica from Traditional Chinese Medicine: A Source of Competitive Adenosine Deaminase Inhibitors for Anticancer. Comb Chem High Throughput Screen 2020; 22:113-122. [PMID: 30987561 DOI: 10.2174/1386207322666190415100618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adenosine deaminase (ADA) is an important enzyme in purine metabolism and is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Traditional Chinese Herbal Medicine (TCHM) is widely used alone or in combination with chemotherapy to treat cancer, due to its ability to deliver a broad variety of bioactive secondary metabolites as promising sources of novel organic natural agents. OBJECTIVE In the present study, 29 varieties of medicinal plants were screened for the presence of ADA inhibitors. RESULTS Extracts from Reynoutria japonica, Glycyrrhiza uralensis, Lithospermum erythrorhizon, Magnolia officinalis, Gardenia jasminoides, Stephania tetrandra, Commiphora myrrha, Raphanus sativus and Corydalis yanhusuo demonstrated strong ADA inhibition with rates greater than 50%. However, Reynoutria japonica possessed the highest ADA inhibitory activity at 95.26% and so was used in our study for isolating the ADA inhibitor to be further studied. Eight compounds were obtained and their structures were identified. The compound H1 had strong ADA inhibitory activity and was deduced to be emodin by 1H and 13C-NMR spectroscopic analysis with an IC50 of 0.629 mM. The molecular docking data showed that emodin could bind tightly to the active site of ADA. Our results demonstrated that emodin displayed a new biological activity which is ADA inhibitory activity with high cytotoxic activity against K562 leukemia cells. The bioactivity of cordycepin was significantly increased when used in combination with emodin. CONCLUSION Emodin may represent a good candidate anti-cancer therapy and adenosine protective agent.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Yan Ma
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fei Kou
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen-Jie Liu
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qiao-Yun Sun
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guang-Jun Guo
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiao-Di Ma
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Si-Jia Guo
- School of Life Science and Engineering, Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhu Jian-Ning
- Drug Evaluation and Certification Center of Gansu Food and Drug Administration, Lanzhou 730060, China
| |
Collapse
|
31
|
Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111624. [DOI: 10.1016/j.jphotobiol.2019.111624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
|
32
|
Therapeutic Effects of Ten Commonly Used Chinese Herbs and Their Bioactive Compounds on Cancers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6057837. [PMID: 31636686 PMCID: PMC6766161 DOI: 10.1155/2019/6057837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Effective cancer therapy is one of the biggest global challenges. Conventional cancer therapies have been at the forefront of combating cancers, but more evidence showed considerable side effects, limiting their use. There are various new therapies in development, but combined approaches for treating cancer are much expected. Natural herbs had been traditionally in use for cancer therapy in most parts of the world. In this review, we have examined ten commonly used Chinese herbs that have, for centuries, shown effectiveness in treating cancers. They demonstrated the abilities to promote the apoptosis of cancer cells, inhibit their metastasis, activate the patient's anticancer immunity, and synergistically increase the efficacy of conventional chemotherapy and radiation therapy when used in combination. Clinical experiences had proved that these herbs and their bioactive compounds were effective against a plethora of cancers through a variety of mechanisms, effectively improving patients' quality of life without significant side effects. These advantages indicate that there are huge potentials in the development of Chinese herbs into cancer medicine as part of a promising, holistic cancer treatment modality.
Collapse
|
33
|
Yang W, Kang Y, Zhao Q, Bi L, Jiao L, Gu Y, Lu J, Yao J, Zhou D, Sun J, Zhao X, Xu L. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J Cell Mol Med 2019; 23:6193-6202. [PMID: 31237749 PMCID: PMC6714142 DOI: 10.1111/jcmm.14501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used in clinical practices and proven to be effective against cancer. However, the underlying mechanisms remain to be investigated. In this study, we examined the anticancer activities of Chinese herbal formula Yangyinjiedu (YYJD) and found that YYJD exhibits cytotoxicity against lung cancer cells. Transcriptome analysis indicated that 2178 genes were differentially expressed (P < 0.05) upon YYJD treatment, with 1464 being (67.2%) up‐regulated. Among these, we found that the tumour suppressor early growth response 1 (EGR1) is the most activated. We demonstrated that EGR1 contributes to YYJD‐induced apoptosis in A549. Through dissecting EGR1‐associated transcriptional network, we identified 275 genes as EGR1 direct targets, some targets are involved in apoptosis. Lastly, we observed that YYJD enhances EGR1 expression and induces cell death in tumour xenografts. Collectively, these findings suggest that YYJD exerts its anticancer activities through EGR1 activation, thus providing the evidence for its potential clinical application for lung cancer patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhao Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Zhang Y, Song L, Li J, Zhang Y, Lu X, Zhang B. Inhibitory effects of indirubin-3'-monoxime against human osteosarcoma. IUBMB Life 2019; 71:1465-1474. [PMID: 31050877 DOI: 10.1002/iub.2058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/08/2022]
Abstract
Indirubin is widely used as the active component of "Dangui Luhui Wan" in ancient China. However, its effects against the osteosarcoma (OS), the most common primary malignancy, are still unknown. In our present study, we investigated the effects of the Indirubin-3'-monoxime (I3M), a derivative of indirubin with better water solubility, against the OS cells. We found I3M inhibited OS cell proliferation in a dose-dependent manner. Flow cytometry assays showed that I3M could not only induce OS cell apoptosis in a time- and dose-dependent manner but also regulate the cell cycle distribution. Additionally, we demonstrated that several Bcl-2 family members, cyclin-dependent kinases (CDKs) and cyclins contributed to this process. Furthermore, out data verified that I3M suppressed OS cell migration and invasion by decreasing MMP-2 and MMP-9 levels. Moreover, survivin and focal adhesion kinase (FAK) might play important roles in the anti-OS effects of I3M. The administration of I3M also inhibited the OS cell growth in mice. Taken together, our results indicated the inhibitory effects of I3M against human OS and thus might be an efficient candidate for OS chemotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Song
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiazhen Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinchang Lu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Chemopreventive role of Copaifera reticulata Ducke oleoresin in colon carcinogenesis. Biomed Pharmacother 2019; 111:331-337. [DOI: 10.1016/j.biopha.2018.12.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
|
36
|
Schink A, Neumann J, Leifke AL, Ziegler K, Fröhlich-Nowoisky J, Cremer C, Thines E, Weber B, Pöschl U, Schuppan D, Lucas K. Screening of herbal extracts for TLR2- and TLR4-dependent anti-inflammatory effects. PLoS One 2018; 13:e0203907. [PMID: 30307962 PMCID: PMC6181297 DOI: 10.1371/journal.pone.0203907] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Herbal extracts represent an ample source of natural compounds, with potential to be used in improving human health. There is a growing interest in using natural extracts as possible new treatment strategies for inflammatory diseases. We therefore aimed at identifying herbal extracts that affect inflammatory signaling pathways through toll-like receptors (TLRs), TLR2 and TLR4. Ninety-nine ethanolic extracts were screened in THP-1 monocytes and HeLa-TLR4 transfected reporter cells for their effects on stimulated TLR2 and TLR4 signaling pathways. The 28 identified anti-inflammatory extracts were tested in comparative assays of stimulated HEK-TLR2 and HEK-TLR4 transfected reporter cells to differentiate between direct TLR4 antagonistic effects and interference with downstream signaling cascades. Furthermore, the ten most effective anti-inflammatory extracts were tested on their ability to inhibit nuclear factor-κB (NF-κB) translocation in HeLa-TLR4 transfected reporter cell lines and for their ability to repolarize M1-type macrophages. Ethanolic extracts which showed the highest anti-inflammatory potential, up to a complete inhibition of pro-inflammatory cytokine production were Castanea sativa leaves, Cinchona pubescens bark, Cinnamomum verum bark, Salix alba bark, Rheum palmatum root, Alchemilla vulgaris plant, Humulus lupulus cones, Vaccinium myrtillus berries, Curcuma longa root and Arctostaphylos uva-ursi leaves. Moreover, all tested extracts mitigated not only TLR4, but also TLR2 signaling pathways. Seven of them additionally inhibited translocation of NF-κB into the nucleus. Two of the extracts showed impact on repolarization of pro-inflammatory M1-type to anti-inflammatory M2-type macrophages. Several promising anti-inflammatory herbal extracts were identified in this study, including extracts with previously unknown influence on key TLR signaling pathways and macrophage repolarization, serving as a basis for novel lead compound identification.
Collapse
Affiliation(s)
- Anne Schink
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jan Neumann
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Anna Lena Leifke
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Christoph Cremer
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University of Mainz Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- * E-mail:
| |
Collapse
|