1
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
2
|
Zhao SJ, Liu H, Chen J, Qian DF, Kong FQ, Jie J, Yin GY, Li QQ, Fan J. Macrophage GIT1 Contributes to Bone Regeneration by Regulating Inflammatory Responses in an ERK/NRF2-Dependent Way. J Bone Miner Res 2020; 35:2015-2031. [PMID: 32460388 PMCID: PMC7689802 DOI: 10.1002/jbmr.4099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Despite the best treatment, approximately 10% of fractures still face undesirable repair. Recently, many studies have focused on the importance of macrophages in bone repair; however, the cellular mechanisms by which they work are not yet fully understood. In this study, we explored the functions of macrophage G-protein-coupled receptor interacting protein 1 (GIT1) in healing a tibial monocortical defect model. Using GIT1flox/flox Lyz2-Cre (GIT1 CKO) mice, we observed that a GIT1 deficiency in the macrophages led to an exacerbation of interleukin 1β (IL1β) production, more M1-like macrophage infiltration, and impaired intramembranous ossification in vivo. The results of in vitro assays further indicated that the macrophage GIT1 plays a critical role in several cellular processes in response to lipopolysaccharide (LPS), such as anti-oxidation, IL1β production alleviation, and glycolysis control. Although GIT1 has been recognized as a scaffold protein, our data clarified that GIT1-mediated extracellular-signal-regulated kinase (ERK) phosphorylation could activate nuclear factor (erythroid-derived 2)-like 2 (NRF2) in macrophages after LPS treatment. Moreover, we demonstrated that macrophage GIT1-activated ERK/NRF2 negatively regulates the 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), facilitating the decrease of glycolysis. Our findings uncovered a previously unrecognized role of GIT1 in regulating ERK/NRF2 in macrophages to control the inflammatory response, suggesting that macrophage GIT1 could be a potential target to improve bone regeneration. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..
Collapse
Affiliation(s)
- Shu-Jie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ding-Fei Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan-Qi Kong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Jie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Orthopedics, Pukou Branch of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Qing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Yuan J, Zhou J, Wang H, Sun H. SKmDB: an integrated database of next generation sequencing information in skeletal muscle. Bioinformatics 2019; 35:847-855. [PMID: 30165538 DOI: 10.1093/bioinformatics/bty705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 08/23/2018] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Skeletal muscles have indispensable functions and also possess prominent regenerative ability. The rapid emergence of Next Generation Sequencing (NGS) data in recent years offers us an unprecedented perspective to understand gene regulatory networks governing skeletal muscle development and regeneration. However, the data from public NGS database are often in raw data format or processed with different procedures, causing obstacles to make full use of them. RESULTS We provide SKmDB, an integrated database of NGS information in skeletal muscle. SKmDB not only includes all NGS datasets available in the human and mouse skeletal muscle tissues and cells, but also provide preliminary data analyses including gene/isoform expression levels, gene co-expression subnetworks, as well as assembly of putative lincRNAs, typical and super enhancers and transcription factor hotspots. Users can efficiently search, browse and visualize the information with the well-designed user interface and server side. SKmDB thus will offer wet lab biologists useful information to study gene regulatory mechanisms in the field of skeletal muscle development and regeneration. AVAILABILITY AND IMPLEMENTATION Freely available on the web at http://sunlab.cpy.cuhk.edu.hk/SKmDB. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jie Yuan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiajian Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
Hariprakash JM, Ferrari F. Computational Biology Solutions to Identify Enhancers-target Gene Pairs. Comput Struct Biotechnol J 2019; 17:821-831. [PMID: 31316726 PMCID: PMC6611831 DOI: 10.1016/j.csbj.2019.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Enhancers are non-coding regulatory elements that are distant from their target gene. Their characterization still remains elusive especially due to challenges in achieving a comprehensive pairing of enhancers and target genes. A number of computational biology solutions have been proposed to address this problem leveraging the increasing availability of functional genomics data and the improved mechanistic understanding of enhancer action. In this review we focus on computational methods for genome-wide definition of enhancer-target gene pairs. We outline the different classes of methods, as well as their main advantages and limitations. The types of information integrated by each method, along with details on their applicability are presented and discussed. We especially highlight the technical challenges that are still unresolved and hamper the effective achievement of a satisfactory and comprehensive solution. We expect this field will keep evolving in the coming years due to the ever-growing availability of data and increasing insights into enhancers crucial role in regulating genome functionality.
Collapse
Affiliation(s)
| | - Francesco Ferrari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| |
Collapse
|
5
|
Devailly G, Joshi A. Insights into mammalian transcription control by systematic analysis of ChIP sequencing data. BMC Bioinformatics 2018; 19:409. [PMID: 30453943 PMCID: PMC6245581 DOI: 10.1186/s12859-018-2377-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Transcription regulation is a major controller of gene expression dynamics during development and disease, where transcription factors (TFs) modulate expression of genes through direct or indirect DNA interaction. ChIP sequencing has become the most widely used technique to get a genome wide view of TF occupancy in a cell type of interest, mainly due to established standard protocols and a rapid decrease in the cost of sequencing. The number of available ChIP sequencing data sets in public domain is therefore ever increasing, including data generated by individual labs together with consortia such as the ENCODE project. Results A total of 1735 ChIP-sequencing datasets in mouse and human cell types and tissues were used to perform bioinformatic analyses to unravel diverse features of transcription control. 1- We used the Heat*seq webtool to investigate global relations across the ChIP-seq samples. 2- We demonstrated that factors have a specific genomic location preferences that are, for most factors, conserved across species. 3- Promoter proximal binding of factors was more conserved across cell types while the distal binding sites are more cell type specific. 4- We identified combinations of factors preferentially acting together in a cellular context. 5- Finally, by integrating the data with disease-associated gene loci from GWAS studies, we highlight the value of this data to associate novel regulators to disease. Conclusion In summary, we demonstrate how ChIP sequencing data integration and analysis is powerful to get new insights into mammalian transcription control and demonstrate the utility of various bioinformatic tools to generate novel testable hypothesis using this public resource.
Collapse
Affiliation(s)
- Guillaume Devailly
- Division of Developmental Biology, the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anagha Joshi
- Division of Developmental Biology, the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
6
|
Yu P, Ji L, Lee KJ, Yu M, He C, Ambati S, McKinney EC, Jackson C, Baile CA, Schmitz RJ, Meagher RB. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS One 2016; 11:e0154949. [PMID: 27171244 PMCID: PMC4865362 DOI: 10.1371/journal.pone.0154949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes.
Collapse
Affiliation(s)
- Ping Yu
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Kevin J. Lee
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- GRU-UGA Medical Partnership, University of Georgia Health Sciences Campus, Prince Avenue, Athens, GA, 30602, United States of America
| | - Miao Yu
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Chuan He
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Elizabeth C. McKinney
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Crystal Jackson
- Abeome Corporation, Athens, GA, 111 Riverbend Road, 30602, United States of America
| | - Clifton A. Baile
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Dr, Athens, GA, 30602, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- * E-mail:
| |
Collapse
|
7
|
Galhardo M, Berninger P, Nguyen TP, Sauter T, Sinkkonen L. Cell type-selective disease-association of genes under high regulatory load. Nucleic Acids Res 2015; 43:8839-55. [PMID: 26338775 PMCID: PMC4605313 DOI: 10.1093/nar/gkv863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/14/2022] Open
Abstract
We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner.
Collapse
Affiliation(s)
- Mafalda Galhardo
- Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Philipp Berninger
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | - Thanh-Phuong Nguyen
- Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
8
|
Fang Z, Hecklau K, Gross F, Bachmann I, Venzke M, Karl M, Schuchhardt J, Radbruch A, Herzel H, Baumgrass R. Transcription factor co-occupied regions in the murine genome constitute T-helper-cell subtype-specific enhancers. Eur J Immunol 2015; 45:3150-7. [DOI: 10.1002/eji.201545713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/15/2015] [Accepted: 08/18/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuo Fang
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
| | - Katharina Hecklau
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
| | - Fridolin Gross
- Institute for Theoretical Biology; Charité and Humboldt University Berlin; Berlin Germany
| | | | - Melanie Venzke
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
| | - Martin Karl
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
| | | | - Andreas Radbruch
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
- Charité; Campus Mitte; Berlin Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology; Charité and Humboldt University Berlin; Berlin Germany
| | - Ria Baumgrass
- German Rheumatism Research Center (DRFZ); A Leibniz Institute; Berlin Germany
| |
Collapse
|