1
|
O'Reilly P, Loiselle G, Darragh R, Slipski C, Bay DC. Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:39. [PMID: 40360746 PMCID: PMC12075810 DOI: 10.1038/s44259-025-00108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Decreased bacterial susceptibility to biocides raises concerns due to their influences on antibiotic resistance. The lack of standardized breakpoints, established methods, and consistent terminology complicates this research. This review summarizes techniques for studying biocide resistance mechanisms, susceptibility testing, and in-vitro adaptation methods, highlighting their benefits and limitations. Here, the challenges in studying biocide susceptibility and the need for standardized approaches in biocide research are emphasized for commonly studied biocide classes.
Collapse
Affiliation(s)
- Peter O'Reilly
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Genevieve Loiselle
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Darragh
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Block AM, Wiegert PC, Namugenyi SB, Tischler AD. Transposon sequencing reveals metabolic pathways essential for Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011663. [PMID: 38498580 PMCID: PMC10977890 DOI: 10.1371/journal.ppat.1011663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/28/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
New drugs are needed to shorten and simplify treatment of tuberculosis caused by Mycobacterium tuberculosis. Metabolic pathways that M. tuberculosis requires for growth or survival during infection represent potential targets for anti-tubercular drug development. Genes and metabolic pathways essential for M. tuberculosis growth in standard laboratory culture conditions have been defined by genome-wide genetic screens. However, whether M. tuberculosis requires these essential genes during infection has not been comprehensively explored because mutant strains cannot be generated using standard methods. Here we show that M. tuberculosis requires the phenylalanine (Phe) and de novo purine and thiamine biosynthetic pathways for mammalian infection. We used a defined collection of M. tuberculosis transposon (Tn) mutants in essential genes, which we generated using a custom nutrient-rich medium, and transposon sequencing (Tn-seq) to identify multiple central metabolic pathways required for fitness in a mouse infection model. We confirmed by individual retesting and complementation that mutations in pheA (Phe biosynthesis) or purF (purine and thiamine biosynthesis) cause death of M. tuberculosis in the absence of nutrient supplementation in vitro and strong attenuation in infected mice. Our findings show that Tn-seq with defined Tn mutant pools can be used to identify M. tuberculosis genes required during mouse lung infection. Our results also demonstrate that M. tuberculosis requires Phe and purine/thiamine biosynthesis for survival in the host, implicating these metabolic pathways as prime targets for the development of new antibiotics to combat tuberculosis.
Collapse
Affiliation(s)
- Alisha M. Block
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Parker C. Wiegert
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Sarah B. Namugenyi
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Anna D. Tischler
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| |
Collapse
|
6
|
Nazli A, Qiu J, Tang Z, He Y. Recent Advances and Techniques for Identifying Novel Antibacterial Targets. Curr Med Chem 2024; 31:464-501. [PMID: 36734893 DOI: 10.2174/0929867330666230123143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND With the emergence of drug-resistant bacteria, the development of new antibiotics is urgently required. Target-based drug discovery is the most frequently employed approach for the drug development process. However, traditional drug target identification techniques are costly and time-consuming. As research continues, innovative approaches for antibacterial target identification have been developed which enabled us to discover drug targets more easily and quickly. METHODS In this review, methods for finding drug targets from omics databases have been discussed in detail including principles, procedures, advantages, and potential limitations. The role of phage-driven and bacterial cytological profiling approaches is also discussed. Moreover, current article demonstrates the advancements being made in the establishment of computational tools, machine learning algorithms, and databases for antibacterial target identification. RESULTS Bacterial drug targets successfully identified by employing these aforementioned techniques are described as well. CONCLUSION The goal of this review is to attract the interest of synthetic chemists, biologists, and computational researchers to discuss and improve these methods for easier and quicker development of new drugs.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
7
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
8
|
Aromolaran OT, Isewon I, Adedeji E, Oswald M, Adebiyi E, Koenig R, Oyelade J. Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster. PLoS One 2023; 18:e0288023. [PMID: 37556452 PMCID: PMC10411809 DOI: 10.1371/journal.pone.0288023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/18/2023] [Indexed: 08/11/2023] Open
Abstract
Computational prediction of absolute essential genes using machine learning has gained wide attention in recent years. However, essential genes are mostly conditional and not absolute. Experimental techniques provide a reliable approach of identifying conditionally essential genes; however, experimental methods are laborious, time and resource consuming, hence computational techniques have been used to complement the experimental methods. Computational techniques such as supervised machine learning, or flux balance analysis are grossly limited due to the unavailability of required data for training the model or simulating the conditions for gene essentiality. This study developed a heuristic-enabled active machine learning method based on a light gradient boosting model to predict essential immune response and embryonic developmental genes in Drosophila melanogaster. We proposed a new sampling selection technique and introduced a heuristic function which replaces the human component in traditional active learning models. The heuristic function dynamically selects the unlabelled samples to improve the performance of the classifier in the next iteration. Testing the proposed model with four benchmark datasets, the proposed model showed superior performance when compared to traditional active learning models (random sampling and uncertainty sampling). Applying the model to identify conditionally essential genes, four novel essential immune response genes and a list of 48 novel genes that are essential in embryonic developmental condition were identified. We performed functional enrichment analysis of the predicted genes to elucidate their biological processes and the result evidence our predictions. Immune response and embryonic development related processes were significantly enriched in the essential immune response and embryonic developmental genes, respectively. Finally, we propose the predicted essential genes for future experimental studies and use of the developed tool accessible at http://heal.covenantuniversity.edu.ng for conditional essentiality predictions.
Collapse
Affiliation(s)
- Olufemi Tony Aromolaran
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Itunu Isewon
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Eunice Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum, Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum, Jena, Germany
| | - Ezekiel Adebiyi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum, Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum, Jena, Germany
| | - Jelili Oyelade
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
9
|
Holmes CL, Wilcox AE, Forsyth V, Smith SN, Moricz BS, Unverdorben LV, Mason S, Wu W, Zhao L, Mobley HLT, Bachman MA. Klebsiella pneumoniae causes bacteremia using factors that mediate tissue-specific fitness and resistance to oxidative stress. PLoS Pathog 2023; 19:e1011233. [PMID: 37463183 PMCID: PMC10381055 DOI: 10.1371/journal.ppat.1011233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Gram-negative bacteremia is a major cause of global morbidity involving three phases of pathogenesis: initial site infection, dissemination, and survival in the blood and filtering organs. Klebsiella pneumoniae is a leading cause of bacteremia and pneumonia is often the initial infection. In the lung, K. pneumoniae relies on many factors like capsular polysaccharide and branched chain amino acid biosynthesis for virulence and fitness. However, mechanisms directly enabling bloodstream fitness are unclear. Here, we performed transposon insertion sequencing (TnSeq) in a tail-vein injection model of bacteremia and identified 58 K. pneumoniae bloodstream fitness genes. These factors are diverse and represent a variety of cellular processes. In vivo validation revealed tissue-specific mechanisms by which distinct factors support bacteremia. ArnD, involved in Lipid A modification, was required across blood filtering organs and supported resistance to soluble splenic factors. The purine biosynthesis enzyme PurD supported liver fitness in vivo and was required for replication in serum. PdxA, a member of the endogenous vitamin B6 biosynthesis pathway, optimized replication in serum and lung fitness. The stringent response regulator SspA was required for splenic fitness yet was dispensable in the liver. In a bacteremic pneumonia model that incorporates initial site infection and dissemination, splenic fitness defects were enhanced. ArnD, PurD, DsbA, SspA, and PdxA increased fitness across bacteremia phases and each demonstrated unique fitness dynamics within compartments in this model. SspA and PdxA enhanced K. pnuemoniae resistance to oxidative stress. SspA, but not PdxA, specifically resists oxidative stress produced by NADPH oxidase Nox2 in the lung, spleen, and liver, as it was a fitness factor in wild-type but not Nox2-deficient (Cybb-/-) mice. These results identify site-specific fitness factors that act during the progression of Gram-negative bacteremia. Defining K. pneumoniae fitness strategies across bacteremia phases could illuminate therapeutic targets that prevent infection and sepsis.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Valerie Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sara N Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lavinia V Unverdorben
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Weisheng Wu
- Bioinformatics Core Facility, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lili Zhao
- Research Institute, Beaumont Hospital, Royal Oak, Michigan, United States of America
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023; 8:e0069922. [PMID: 36598240 PMCID: PMC9948706 DOI: 10.1128/msystems.00699-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.
Collapse
|
11
|
Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, Mobley HLT, Bachman MA. The ADP-Heptose Biosynthesis Enzyme GmhB is a Conserved Gram-Negative Bacteremia Fitness Factor. Infect Immun 2022; 90:e0022422. [PMID: 35762751 PMCID: PMC9302095 DOI: 10.1128/iai.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.
Collapse
Affiliation(s)
- Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Geoffrey B. Severin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia V. Unverdorben
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
japonica
and O. sativa subsp.
indica
, as Revealed by Transposon Mutagenesis Sequencing. Appl Environ Microbiol 2022; 88:e0064222. [DOI: 10.1128/aem.00642-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Burkholderiaceae
are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of
Paraburkholderia
have repeatedly been described to stimulate plant growth.
Collapse
|
13
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
14
|
Abstract
TnSeq, or sequencing of transposon insertion libraries, has proven to be a valuable method for probing the functions of genes in a wide range of bacteria. TnSeq has found many applications for studying genes involved in core functions (such as cell division or metabolism), stress response, virulence, etc., as well as to identify potential drug targets. Two of the most commonly used transposons in practice are Himar1, which inserts randomly at TA dinucleotides, and Tn5, which can insert more broadly throughout the genome. These insertions cause putative gene function disruption, and clones with insertions in genes that cannot tolerate disruption (in a given condition) are eliminated from the population. Deep sequencing can be used to efficiently profile the surviving members, with insertions in genes that can be inferred to be non-essential. Data from TnSeq experiments (i.e. transposon insertion counts at specific genomic locations) is inherently noisy, making rigorous statistical analysis (e.g. quantifying significance) challenging. In this chapter, we describe Transit, a Python-based software package for analyzing TnSeq data that combines a variety of data processing tools, quality assessment methods, and analytical algorithms for identifying essential (or conditionally essential) genes.
Collapse
Affiliation(s)
- Thomas R Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Zangari T, Zafar MA, Lees JA, Abruzzo AR, Bee GCW, Weiser JN. Pneumococcal capsule blocks protection by immunization with conserved surface proteins. NPJ Vaccines 2021; 6:155. [PMID: 34930916 PMCID: PMC8688510 DOI: 10.1038/s41541-021-00413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Vaccines targeting Streptococcus pneumoniae (Spn) are limited by dependence on capsular polysaccharide and its serotype diversity. More broadly-based approaches using common protein antigens have not resulted in a licensed vaccine. Herein, we used an unbiased, genome-wide approach to find novel vaccine antigens to disrupt carriage modeled in mice. A Tn-Seq screen identified 198 genes required for colonization of which 16 are known to express conserved, immunogenic surface proteins. After testing defined mutants for impaired colonization of infant and adult mice, 5 validated candidates (StkP, PenA/Pbp2a, PgdA, HtrA, and LytD/Pce/CbpE) were used as immunogens. Despite induction of antibody recognizing the Spn cell surface, there was no protection against Spn colonization. There was, however, protection against an unencapsulated Spn mutant. This result correlated with increased antibody binding to the bacterial surface in the absence of capsule. Our findings demonstrate how the pneumococcal capsule interferes with mucosal protection by antibody to common protein targets.
Collapse
Affiliation(s)
- Tonia Zangari
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - M. Ammar Zafar
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.241167.70000 0001 2185 3318Present Address: Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - John A. Lees
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.7445.20000 0001 2113 8111Present Address: Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Annie R. Abruzzo
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Gavyn Chern Wei Bee
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Jeffrey N. Weiser
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| |
Collapse
|
16
|
Liu X, Liu G, Wu Y, Pang X, Wu Y, Qinshu, Niu J, Chen Q, Zhang X. Transposon sequencing: A powerful tool for the functional genomic study of food-borne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
A Genome-Scale Antibiotic Screen in Serratia marcescens Identifies YdgH as a Conserved Modifier of Cephalosporin and Detergent Susceptibility. Antimicrob Agents Chemother 2021; 65:e0078621. [PMID: 34491801 DOI: 10.1128/aac.00786-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia marcescens, a member of the order Enterobacterales, is adept at colonizing health care environments and is an important cause of invasive infections. Antibiotic resistance is a daunting problem in S. marcescens because, in addition to plasmid-mediated mechanisms, most isolates have considerable intrinsic resistance to multiple antibiotic classes. To discover endogenous modifiers of antibiotic susceptibility in S. marcescens, a high-density transposon insertion library was subjected to sub-MICs of two cephalosporins, cefoxitin, and cefepime, as well as the fluoroquinolone ciprofloxacin. Comparisons of transposon insertion abundance before and after antibiotic exposure identified hundreds of potential modifiers of susceptibility to these agents. Using single-gene deletions, we validated several candidate modifiers of cefoxitin susceptibility and chose ydgH, a gene of unknown function, for further characterization. In addition to cefoxitin, deletion of ydgH in S. marcescens resulted in decreased susceptibility to multiple third-generation cephalosporins and, in contrast, to increased susceptibility to both cationic and anionic detergents. YdgH is highly conserved throughout the Enterobacterales, and we observed similar phenotypes in Escherichia coli O157:H7 and Enterobacter cloacae mutants. YdgH is predicted to localize to the periplasm, and we speculate that it may be involved there in cell envelope homeostasis. Collectively, our findings provide insight into chromosomal mediators of antibiotic resistance in S. marcescens and will serve as a resource for further investigations of this important pathogen.
Collapse
|
18
|
Larivière D, Wickham L, Keiler K, Nekrutenko A. Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses. BMC Microbiol 2021; 21:168. [PMID: 34090324 PMCID: PMC8178898 DOI: 10.1186/s12866-021-02184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Significant progress has been made in advancing and standardizing tools for human genomic and biomedical research. Yet, the field of next-generation sequencing (NGS) analysis for microorganisms (including multiple pathogens) remains fragmented, lacks accessible and reusable tools, is hindered by local computational resource limitations, and does not offer widely accepted standards. One such "problem areas" is the analysis of Transposon Insertion Sequencing (TIS) data. TIS allows probing of almost the entire genome of a microorganism by introducing random insertions of transposon-derived constructs. The impact of the insertions on the survival and growth under specific conditions provides precise information about genes affecting specific phenotypic characteristics. A wide array of tools has been developed to analyze TIS data. Among the variety of options available, it is often difficult to identify which one can provide a reliable and reproducible analysis. RESULTS Here we sought to understand the challenges and propose reliable practices for the analysis of TIS experiments. Using data from two recent TIS studies, we have developed a series of workflows that include multiple tools for data de-multiplexing, promoter sequence identification, transposon flank alignment, and read count repartition across the genome. Particular attention was paid to quality control procedures, such as determining the optimal tool parameters for the analysis and removal of contamination. CONCLUSIONS Our work provides an assessment of the currently available tools for TIS data analysis. It offers ready to use workflows that can be invoked by anyone in the world using our public Galaxy platform ( https://usegalaxy.org ). To lower the entry barriers, we have also developed interactive tutorials explaining details of TIS data analysis procedures at https://bit.ly/gxy-tis .
Collapse
Affiliation(s)
- Delphine Larivière
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Galaxy Project
| | - Laura Wickham
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kenneth Keiler
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anton Nekrutenko
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA.
- The Galaxy Project, .
| |
Collapse
|
19
|
Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. J Bacteriol 2021; 203:JB.00432-20. [PMID: 33257523 DOI: 10.1128/jb.00432-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.
Collapse
|
20
|
Abramova A, Osińska A, Kunche H, Burman E, Bengtsson-Palme J. CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics 2021; 37:121-122. [PMID: 33393985 PMCID: PMC8034522 DOI: 10.1093/bioinformatics/btaa1086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Summary Sequencing of transposon insertion libraries is used to determine the relative fitness of individual mutants at a large scale. However, there is a lack of tools for specifically analyzing data from such experiments with paired sample designs. Here, we introduce CAFE—Coefficient-based Analysis of Fitness by read Enrichment—a software package that can analyze data from paired transposon mutant sequencing experiments, generate fitness coefficients for each gene and condition and perform appropriate statistical testing on these fitness coefficients. Availability and implementation CAFE is implemented in Perl and R. The source code is freely available for download under the MIT License from https://github.com/bengtssonpalme/cafe and http://microbiology.se/software/cafe/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Infectious Diseases, Institute of Biomedicine The Sahlgrenska Academy University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden.,Gothenburg, Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden
| | - Adriana Osińska
- Department of Infectious Diseases, Institute of Biomedicine The Sahlgrenska Academy University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden.,Gothenburg, Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden.,Department of Water Protection Engineering and Environmental Microbiology Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Haveela Kunche
- Department of Infectious Diseases, Institute of Biomedicine The Sahlgrenska Academy University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden.,Gothenburg, Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden.,Programme in Infection Biology, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Emil Burman
- Department of Infectious Diseases, Institute of Biomedicine The Sahlgrenska Academy University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden.,Gothenburg, Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine The Sahlgrenska Academy University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden.,Gothenburg, Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden
| |
Collapse
|
21
|
Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. mBio 2020; 11:mBio.02962-20. [PMID: 33234689 PMCID: PMC7701990 DOI: 10.1128/mbio.02962-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis. Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.
Collapse
|
22
|
Abstract
The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.
Collapse
Affiliation(s)
- Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
23
|
Escherichia coli CFT073 Fitness Factors during Urinary Tract Infection: Identification Using an Ordered Transposon Library. Appl Environ Microbiol 2020; 86:AEM.00691-20. [PMID: 32358013 DOI: 10.1128/aem.00691-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTI), the second most diagnosed infectious disease worldwide, are caused primarily by uropathogenic Escherichia coli (UPEC), placing a significant financial burden on the health care system. High-throughput transposon mutagenesis combined with genome-targeted sequencing is a powerful technique to interrogate genomes for fitness genes. Genome-wide analysis of E. coli requires random libraries of at least 50,000 mutants to achieve 99.99% saturation; however, the traditional murine model of ascending UTI does not permit testing of large mutant pools due to a bottleneck during infection. To address this, an E. coli CFT073 transposon mutant ordered library of 9,216 mutants was created and insertion sites were identified. A single transposon mutant was selected for each gene to assemble a condensed library consisting of 2,913 unique nonessential mutants. Using a modified UTI model in BALB/c mice, we identified 36 genes important for colonizing the bladder, including purB, yihE, and carB Screening of the condensed library in vitro identified yigP and ubiG to be essential for growth in human urine. Additionally, we developed a novel quantitative PCR (qPCR) technique to identify genes with fitness defects within defined subgroups of related genes (e.g., genes encoding fimbriae, toxins, etc.) following UTI. The number of mutants within these subgroups circumvents bottleneck restriction and facilitates validation of multiple mutants to generate individual competitive indices. Collectively, this study investigates the bottleneck effects during UTI, provides two techniques for evading those effects that can be applied to other disease models, and contributes a genetic tool in prototype strain CFT073 to the field.IMPORTANCE Uropathogenic Escherichia coli strains cause most uncomplicated urinary tract infections (UTI), one of the most common infectious diseases worldwide. Random transposon mutagenesis techniques have been utilized to identify essential bacterial genes during infection; however, this has been met with limitations when applied to the murine UTI model. Conventional high-throughput transposon mutagenesis screens are not feasible because of inoculum size restrictions due to a bottleneck during infection. Our study utilizes a condensed ordered transposon library, limiting the number of mutants while maintaining the largest possible genome coverage. Screening of this library in vivo, and in human urine in vitro, identified numerous candidate fitness factors. Additionally, we have developed a novel technique using qPCR to quantify bacterial outputs following infection with small subgroups of transposon mutants. Molecular approaches developed in this study will serve as useful tools to probe in vivo models that are restricted by anatomical, physiological, or genetic bottleneck limitations.
Collapse
|
24
|
Zhao L, Lee S, Li R, Ong E, He Y, Freed G. Improvement in the Analysis of Vaccine Adverse Event Reporting System Database. Stat Biopharm Res 2020; 12:303-310. [PMID: 33880140 PMCID: PMC8054210 DOI: 10.1080/19466315.2020.1764862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
As a national public health surveillance resource, Vaccine Adverse Event Reporting System (VAERS) is a key component in ensuring the safety of vaccines. Numerous methods have been used to conduct safety studies with the VAERS database. These efforts focus on the downstream statistical analysis of the vaccine and adverse event associations. In this paper, we primarily focus on processing the raw data in VAERS before the analysis step, which is also an important part of the signal detection process. Due to the semi-annual update in the Medical Dictionary for Regulatory Activities (MedDRA) coding system, adverse event terms that describe the same symptom might change in VAERS; therefore, we identify these terms and combine them to increase the signal detection power. We also consider the uncertainty of the vaccine and adverse event pairs that arise from reports with multiple vaccines. Finally, we discuss four commonly used statistics in assessing the vaccine and adverse event associations, and propose to use the statistics that are robust to the reporting bias in VAERS and adjust for potential confounders of the vaccine and adverse event association to increase signal detection accuracy.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sunghun Lee
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rongxia Li
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Edison Ong
- Department for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongqun He
- Department of Microbiology and Immunology, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary Freed
- Department of Pediatrics and Department of Health Management and Policy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Transposon Insertion Site Sequencing of Providencia stuartii: Essential Genes, Fitness Factors for Catheter-Associated Urinary Tract Infection, and the Impact of Polymicrobial Infection on Fitness Requirements. mSphere 2020; 5:5/3/e00412-20. [PMID: 32461277 PMCID: PMC7253602 DOI: 10.1128/msphere.00412-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of <0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutants were constructed for experimental validation of the primary screen that corresponded to flagella (fliC mutant), twin arginine translocation (tatC), an ATP-dependent protease (clpP), d-alanine-d-alanine ligase (ddlA), type 3 secretion (yscI and sopB), and type VI secretion (impJ). Infection-specific phenotypes validated 6/7 (86%) mutants during direct cochallenge with wild-type P. stuartii and 3/5 (60%) mutants during coinfection with P. mirabilis, for a combined validation rate of 9/12 (75%). Tn-Seq therefore successfully identified genes that contribute to fitness of P. stuartii within the urinary tract, determined the impact of coinfection on fitness requirements, and added to the identification of a collection of genes that may contribute to fitness of multiple urinary tract pathogens.IMPORTANCE Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infections (CAUTIs), particularly during long-term catheterization. However, little is known regarding the pathogenesis of this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field: (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.
Collapse
|
26
|
Selection or drift: The population biology underlying transposon insertion sequencing experiments. Comput Struct Biotechnol J 2020; 18:791-804. [PMID: 32280434 PMCID: PMC7138912 DOI: 10.1016/j.csbj.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 01/23/2023] Open
Abstract
Transposon insertion sequencing methods such as Tn-seq revolutionized microbiology by allowing the identification of genomic loci that are critical for viability in a specific environment on a genome-wide scale. While powerful, transposon insertion sequencing suffers from limited reproducibility when different analysis methods are compared. From the perspective of population biology, this may be explained by changes in mutant frequency due to chance (drift) rather than differential fitness (selection). Here, we develop a mathematical model of the population biology of transposon insertion sequencing experiments, i.e. the changes in size and composition of the transposon-mutagenized population during the experiment. We use this model to investigate mutagenesis, the growth of the mutant library, and its passage through bottlenecks. Specifically, we study how these processes can lead to extinction of individual mutants depending on their fitness and the distribution of fitness effects (DFE) of the entire mutant population. We find that in typical in vitro experiments few mutants with high fitness go extinct. However, bottlenecks of a size that is common in animal infection models lead to so much random extinction that a large number of viable mutants would be misclassified. While mutants with low fitness are more likely to be lost during the experiment, mutants with intermediate fitness are expected to be much more abundant and can constitute a large proportion of detected hits, i.e. false positives. Thus, incorporating the DFEs of randomly generated mutations in the analysis may improve the reproducibility of transposon insertion experiments, especially when strong bottlenecks are encountered.
Collapse
|
27
|
Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression. BMC Bioinformatics 2019; 20:603. [PMID: 31752678 PMCID: PMC6873424 DOI: 10.1186/s12859-019-3156-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions. Results In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics. Conclusions Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model.
Collapse
|
28
|
Comprehensive Mutagenesis of Herpes Simplex Virus 1 Genome Identifies UL42 as an Inhibitor of Type I Interferon Induction. J Virol 2019; 93:JVI.01446-19. [PMID: 31511375 DOI: 10.1128/jvi.01446-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
In spite of several decades of research focused on understanding the biology of human herpes simplex virus 1 (HSV-1), no tool has been developed to study its genome in a high-throughput fashion. Here, we describe the creation of a transposon insertion mutant library of the HSV-1 genome. Using this tool, we aimed to identify novel viral regulators of type I interferon (IFN-I). HSV-1 evades the host immune system by encoding viral proteins that inhibit the type I interferon response. Applying differential selective pressure, we identified the three strongest viral IFN-I regulators in HSV-1. We report that the viral polymerase processivity factor UL42 interacts with the host transcription factor IFN regulatory factor 3 (IRF-3), inhibiting its phosphorylation and downstream beta interferon (IFN-β) gene transcription. This study represents a proof of concept for the use of high-throughput screening of the HSV-1 genome in investigating viral biology and offers new targets both for antiviral therapy and for oncolytic vector design.IMPORTANCE This work is the first to report the use of a high-throughput mutagenesis method to study the genome of HSV-1. We report three novel viral proteins potentially involved in regulating the host type I interferon response. We describe a novel mechanism by which the viral protein UL42 is able to suppress the production of beta interferon. The tool we introduce in this study can be used to study the HSV-1 genome in great detail to better understand viral gene functions.
Collapse
|
29
|
Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019; 10:mBio.01032-19. [PMID: 31213554 PMCID: PMC6581856 DOI: 10.1128/mbio.01032-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by the dlt locus, previously shown to add d-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another. Host-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogen Streptococcus pneumoniae generated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was the dlt locus, which adds d-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence of d-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of the dlt locus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a lysM−/− host, there was no longer an effect of the dlt locus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.
Collapse
|
30
|
Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN, Brauer AL, Learman BS, Zhao L, Wu W, Anderson MT, Bachman MA, Mobley HLT. Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLoS Pathog 2019; 15:e1007653. [PMID: 31009518 PMCID: PMC6497324 DOI: 10.1371/journal.ppat.1007653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Ashley N. White
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Lili Zhao
- Department of Biostatistics; University of Michigan School of Public Health; Ann Arbor, MI, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Mark T. Anderson
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Michael A. Bachman
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| |
Collapse
|
31
|
Sanchez MR, Payen C, Cheong F, Hovde BT, Bissonnette S, Arkin AP, Skerker JM, Brem RB, Caudy AA, Dunham MJ. Transposon insertional mutagenesis in Saccharomyces uvarum reveals trans-acting effects influencing species-dependent essential genes. Genome Res 2019; 29:396-406. [PMID: 30635343 PMCID: PMC6396416 DOI: 10.1101/gr.232330.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
To understand how complex genetic networks perform and regulate diverse cellular processes, the function of each individual component must be defined. Comprehensive phenotypic studies of mutant alleles have been successful in model organisms in determining what processes depend on the normal function of a gene. These results are often ported to newly sequenced genomes by using sequence homology. However, sequence similarity does not always mean identical function or phenotype, suggesting that new methods are required to functionally annotate newly sequenced species. We have implemented comparative analysis by high-throughput experimental testing of gene dispensability in Saccharomyces uvarum, a sister species of Saccharomyces cerevisiae. We created haploid and heterozygous diploid Tn7 insertional mutagenesis libraries in S. uvarum to identify species-dependent essential genes, with the goal of detecting genes with divergent functions and/or different genetic interactions. Comprehensive gene dispensability comparisons with S. cerevisiae predicted diverged dispensability at 12% of conserved orthologs, and validation experiments confirmed 22 differentially essential genes. Despite their differences in essentiality, these genes were capable of cross-species complementation, demonstrating that trans-acting factors that are background-dependent contribute to differential gene essentiality. This study shows that direct experimental testing of gene disruption phenotypes across species can inform comparative genomic analyses and improve gene annotations. Our method can be widely applied in microorganisms to further our understanding of genome evolution.
Collapse
Affiliation(s)
- Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Frances Cheong
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Blake T Hovde
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Sarah Bissonnette
- Department of Biological Sciences, California State University, Turlock, California 95382, USA
| | - Adam P Arkin
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Jeffrey M Skerker
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, California 94945, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Amy A Caudy
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
32
|
Abstract
Transposon sequencing (Tn-seq) is a technique that combines quantitative next-generation sequencing and a saturating transposon mutant library for an organism of interest, and ultimately allows for quantitation of the relative abundance of all of the mutants under a given condition, such as during experimental infection. The massively parallel sequencing capabilities of this technique provide a significant advance over more traditional methods of screening transposon mutant pools or individually determining the fitness contribution of genes of interest. Here, we describe a method for generating a genome-saturating transposon mutant library in Proteus mirabilis, determining the appropriate number of mutants for inoculation in an experimental infection model, preparing transposon insertion junctions for Illumina sequencing, and downstream analysis of mapped DNA sequencing reads for estimation of the contribution of each gene in the genome to fitness during infection.
Collapse
Affiliation(s)
- Valerie S Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
33
|
Anderson MT, Mitchell LA, Zhao L, Mobley HLT. Citrobacter freundii fitness during bloodstream infection. Sci Rep 2018; 8:11792. [PMID: 30087402 PMCID: PMC6081441 DOI: 10.1038/s41598-018-30196-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Sepsis resulting from microbial colonization of the bloodstream is a serious health concern associated with high mortality rates. The objective of this study was to define the physiologic requirements of Citrobacter freundii in the bloodstream as a model for bacteremia caused by opportunistic Gram-negative pathogens. A genetic screen in a murine host identified 177 genes that contributed significantly to fitness, the majority of which were broadly classified as having metabolic or cellular maintenance functions. Among the pathways examined, the Tat protein secretion system conferred the single largest fitness contribution during competition infections and a putative Tat-secreted protein, SufI, was also identified as a fitness factor. Additional work was focused on identifying relevant metabolic pathways for bacteria in the bloodstream environment. Mutations that eliminated the use of glucose or mannitol as carbon sources in vitro resulted in loss of fitness in the murine model and similar results were obtained upon disruption of the cysteine biosynthetic pathway. Finally, the conservation of identified fitness factors was compared within a cohort of Citrobacter bloodstream isolates and between Citrobacter and Serratia marcescens, the results of which suggest the presence of conserved strategies for bacterial survival and replication in the bloodstream environment.
Collapse
Affiliation(s)
- Mark T Anderson
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA
| | - Lindsay A Mitchell
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA
| | - Lili Zhao
- University of Michigan School of Public Health, Biostatistics Department, Ann Arbor, MI, USA
| | - Harry L T Mobley
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Peng C, Lin Y, Luo H, Gao F. A Comprehensive Overview of Online Resources to Identify and Predict Bacterial Essential Genes. Front Microbiol 2017; 8:2331. [PMID: 29230204 PMCID: PMC5711816 DOI: 10.3389/fmicb.2017.02331] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Genes critical for the survival or reproduction of an organism in certain circumstances are classified as essential genes. Essential genes play a significant role in deciphering the survival mechanism of life. They may be greatly applied to pharmaceutics and synthetic biology. The continuous progress of experimental method for essential gene identification has accelerated the accumulation of gene essentiality data which facilitates the study of essential genes in silico. In this article, we present some available online resources related to gene essentiality, including bioinformatic software tools for transposon sequencing (Tn-seq) analysis, essential gene databases and online services to predict bacterial essential genes. We review several computational approaches that have been used to predict essential genes, and summarize the features used for gene essentiality prediction. In addition, we evaluate the available online bacterial essential gene prediction servers based on the experimentally validated essential gene sets of 30 bacteria from DEG. This article is intended to be a quick reference guide for the microbiologists interested in the essential genes.
Collapse
Affiliation(s)
- Chong Peng
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|