1
|
Paul MW, Aaron J, Wait E, Van Genderen R, Tyagi A, Kabbech H, Smal I, Chew TL, Kanaar R, Wyman C. Distinct mobility patterns of BRCA2 molecules at DNA damage sites. Nucleic Acids Res 2024; 52:8332-8343. [PMID: 38953170 PMCID: PMC11317164 DOI: 10.1093/nar/gkae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BRCA2 is an essential tumor suppressor protein involved in promoting faithful repair of DNA lesions. The activity of BRCA2 needs to be tuned precisely to be active when and where it is needed. Here, we quantified the spatio-temporal dynamics of BRCA2 in living cells using aberration-corrected multifocal microscopy (acMFM). Using multicolor imaging to identify DNA damage sites, we were able to quantify its dynamic motion patterns in the nucleus and at DNA damage sites. While a large fraction of BRCA2 molecules localized near DNA damage sites appear immobile, an additional fraction of molecules exhibits subdiffusive motion, providing a potential mechanism to retain an increased number of molecules at DNA lesions. Super-resolution microscopy revealed inhomogeneous localization of BRCA2 relative to other DNA repair factors at sites of DNA damage. This suggests the presence of multiple nanoscale compartments in the chromatin surrounding the DNA lesion, which could play an important role in the contribution of BRCA2 to the regulation of the repair process.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
- Elephas Biosciences, Madison WI, USA
| | - Romano M Van Genderen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arti Tyagi
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft, University of Technology, Delft, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Theme Biomedical Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Yavuz S, Kabbech H, van Staalduinen J, Linder S, van Cappellen W, Nigg A, Abraham T, Slotman J, Quevedo M, Poot R, Zwart W, van Royen M, Grosveld F, Smal I, Houtsmuller A. Compartmentalization of androgen receptors at endogenous genes in living cells. Nucleic Acids Res 2023; 51:10992-11009. [PMID: 37791849 PMCID: PMC10639085 DOI: 10.1093/nar/gkad803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simon Linder
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marti Quevedo
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Koornneef L, Paul MW, Houtsmuller AB, Baarends WM, Slotman JA. Three-color dSTORM Imaging and Analysis of Recombination Foci in Mouse Spread Meiotic Nuclei. Bio Protoc 2023; 13:e4780. [PMID: 37497444 PMCID: PMC10367009 DOI: 10.21769/bioprotoc.4780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
During the first meiotic prophase in mouse, repair of SPO11-induced DNA double-strand breaks (DSBs), facilitating homologous chromosome synapsis, is essential to successfully complete the first meiotic cell division. Recombinases RAD51 and DMC1 play an important role in homology search, but their mechanistic contribution to this process is not fully understood. Super-resolution, single-molecule imaging of RAD51 and DMC1 provides detailed information on recombinase accumulation on DSBs during meiotic prophase. Here, we present a detailed protocol of recombination foci analysis of three-color direct stochastic optical reconstruction microscopy (dSTORM) imaging of SYCP3, RAD51, and DMC1, fluorescently labeled by antibody staining in mouse spermatocytes. This protocol consists of sample preparation, data acquisition, pre-processing, and data analysis. The sample preparation procedure includes an updated version of the nuclear spreading of mouse testicular cells, followed by immunocytochemistry and the preparation steps for dSTORM imaging. Data acquisition consists of three-color dSTORM imaging, which is extensively described. The pre-processing that converts fluorescent signals to localization data also includes channel alignment and image reconstruction, after which regions of interest (ROIs) are identified based on RAD51 and/or DMC1 localization patterns. The data analysis steps then require processing of the fluorescent signal localization within these ROIs into discrete nanofoci, which can be further analyzed. This multistep approach enables the systematic investigation of spatial distributions of proteins associated with individual DSB sites and can be easily adapted for analyses of other foci-forming proteins. All computational scripts and software are freely accessible, making them available to a broad audience. Key features Preparation of spread nuclei, resulting in a flattened preparation with easy antibody-accessible chromatin-associated proteins on dSTORM-compatible coverslips. dSTORM analysis of immunofluorescent repair foci in meiotic prophase nuclei. Detailed descriptions of data acquisition, (pre-)processing, and nanofoci feature analysis applicable to all proteins that assemble in immunodetection as discrete foci. Graphical overview.
Collapse
Affiliation(s)
- Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Maarten W. Paul
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Willy M. Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Johan A. Slotman
- Erasmus Optical Imaging Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Multi-color dSTORM microscopy in Hormad1-/- spermatocytes reveals alterations in meiotic recombination intermediates and synaptonemal complex structure. PLoS Genet 2022; 18:e1010046. [PMID: 35857787 PMCID: PMC9342782 DOI: 10.1371/journal.pgen.1010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/01/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced. In order to correctly pair homologous chromosomes in the first meiotic prophase, repair of programmed double strand breaks (DSBs) is essential. By unravelling molecular details of the protein assemblies at single DSBs, using super-resolution microscopy, we aim to understand the dynamics of repair intermediates and their functions. We investigated the localization of the two recombinases RAD51 and DMC1 in wild type and HORMAD1-deficient cells. HORMAD1 is involved in multiple aspects of homologous chromosome association: it regulates formation and repair of DSBs, and it stimulates formation of the synaptonemal complex (SC), the macromolecular protein assembly that connects paired chromosomes. RAD51 and DMC1 enable chromosome pairing by promoting the invasions of the intact chromatids by single-stranded DNA ends that result from DSBs. We found that in absence of HORMAD1, RAD51 and DMC1 showed small but significant morphological and positional changes, combined with altered kinetics of specific RAD51/DMC1 configurations. We also determined that there is a generally preferred distance of ~900 nm between meiotic DSBs along the SC. Finally, we observed changes in the structure of the SC in Hormad1-/- spermatocytes. This study contributes to a better understanding of the molecular details of meiotic homologous recombination and the role of HORMAD1 in meiotic prophase.
Collapse
|
5
|
Dhiman S, Andrian T, Gonzalez BS, Tholen MME, Wang Y, Albertazzi L. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem Sci 2022; 13:2152-2166. [PMID: 35310478 PMCID: PMC8864713 DOI: 10.1039/d1sc05506b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio-Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
Collapse
Affiliation(s)
- Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Beatriz Santiago Gonzalez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Applied Physics, Eindhoven University of Technology Postbus 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
6
|
Cainero I, Cerutti E, Faretta M, Dellino GI, Pelicci PG, Diaspro A, Lanzanò L. Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS). SENSORS (BASEL, SWITZERLAND) 2021; 21:2010. [PMID: 33809144 PMCID: PMC8001887 DOI: 10.3390/s21062010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that it does not require pre-segmentation of the sample into single objects. Here we show that the combination of structured illumination microscopy (SIM) with ICCS (SIM-ICCS) is a simple approach to quantify colocalization and measure nanoscale distances from multi-color SIM images. We validate the SIM-ICCS analysis on SIM images of optical nanorulers, DNA-origami-based model samples containing fluorophores of different colors at a distance of 80 nm. The SIM-ICCS analysis is compared with an object-based analysis performed on the same samples. Finally, we show that SIM-ICCS can be used to quantify the nanoscale spatial distribution of functional nuclear sites in fixed cells.
Collapse
Affiliation(s)
- Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16143 Genoa, Italy
| | - Elena Cerutti
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20100 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20100 Milan, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16143 Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Khater IM, Nabi IR, Hamarneh G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. PATTERNS (NEW YORK, N.Y.) 2020; 1:100038. [PMID: 33205106 PMCID: PMC7660399 DOI: 10.1016/j.patter.2020.100038] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule localization microscopy (SMLM) is a relatively new imaging modality, winning the 2014 Nobel Prize in Chemistry, and considered as one of the key super-resolution techniques. SMLM resolution goes beyond the diffraction limit of light microscopy and achieves resolution on the order of 10-20 nm. SMLM thus enables imaging single molecules and study of the low-level molecular interactions at the subcellular level. In contrast to standard microscopy imaging that produces 2D pixel or 3D voxel grid data, SMLM generates big data of 2D or 3D point clouds with millions of localizations and associated uncertainties. This unprecedented breakthrough in imaging helps researchers employ SMLM in many fields within biology and medicine, such as studying cancerous cells and cell-mediated immunity and accelerating drug discovery. However, SMLM data quantification and interpretation methods have yet to keep pace with the rapid advancement of SMLM imaging. Researchers have been actively exploring new computational methods for SMLM data analysis to extract biosignatures of various biological structures and functions. In this survey, we describe the state-of-the-art clustering methods adopted to analyze and quantify SMLM data and examine the capabilities and shortcomings of the surveyed methods. We classify the methods according to (1) the biological application (i.e., the imaged molecules/structures), (2) the data acquisition (such as imaging modality, dimension, resolution, and number of localizations), and (3) the analysis details (2D versus 3D, field of view versus region of interest, use of machine-learning and multi-scale analysis, biosignature extraction, etc.). We observe that the majority of methods that are based on second-order statistics are sensitive to noise and imaging artifacts, have not been applied to 3D data, do not leverage machine-learning formulations, and are not scalable for big-data analysis. Finally, we summarize state-of-the-art methodology, discuss some key open challenges, and identify future opportunities for better modeling and design of an integrated computational pipeline to address the key challenges.
Collapse
Affiliation(s)
- Ismail M. Khater
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ghassan Hamarneh
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
Slotman JA, Paul MW, Carofiglio F, de Gruiter HM, Vergroesen T, Koornneef L, van Cappellen WA, Houtsmuller AB, Baarends WM. Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase. PLoS Genet 2020; 16:e1008595. [PMID: 32502153 PMCID: PMC7310863 DOI: 10.1371/journal.pgen.1008595] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
The recombinase RAD51, and its meiosis-specific paralog DMC1 localize at DNA double-strand break (DSB) sites in meiotic prophase. While both proteins are required during meiotic prophase, their spatial organization during meiotic DSB repair is not fully understood. Using super-resolution microscopy on mouse spermatocyte nuclei, we aimed to define their relative position at DSB foci, and how these vary in time. We show that a large fraction of meiotic DSB repair foci (38%) consisted of a single RAD51 nanofocus and a single DMC1 nanofocus (D1R1 configuration) that were partially overlapping with each other (average center-center distance around 70 nm). The vast majority of the rest of the foci had a similar large RAD51 and DMC1 nanofocus, but in combination with additional smaller nanofoci (D2R1, D1R2, D2R2, or DxRy configuration) at an average distance of around 250 nm. As prophase progressed, less D1R1 and more D2R1 foci were observed, where the large RAD51 nanofocus in the D2R1 foci elongated and gradually oriented towards the distant small DMC1 nanofocus. D1R2 foci frequency was relatively constant, and the single DMC1 nanofocus did not elongate, but was frequently observed between the two RAD51 nanofoci in early stages. D2R2 foci were rare (<10%) and nearest neighbour analyses also did not reveal cofoci formation between D1R1 foci. However, overall, foci localized nonrandomly along the SC, and the frequency of the distance distributions peaked at 800 nm, indicating interference and/or a preferred distance between two ends of a DSB. DMC1 nanofoci where somewhat further away from the axial or lateral elements of the synaptonemal complex (SC, connecting the chromosomal axes of homologs) compared to RAD51 nanofoci. In the absence of the transverse filament of the SC, early configurations were more prominent, and RAD51 nanofocus elongation occurred only transiently. This in-depth analysis of single cell landscapes of RAD51 and DMC1 accumulation patterns at DSB repair sites at super-resolution revealed the variability of foci composition, and defined functional consensus configurations that change over time.
Collapse
Affiliation(s)
- Johan A. Slotman
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Maarten W. Paul
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Fabrizia Carofiglio
- Department of Developmental Biology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - H. Martijn de Gruiter
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Tessa Vergroesen
- Department of Developmental Biology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Wiggert A. van Cappellen
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Adriaan B. Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus MC—University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, Oole E, van IJcken WFJ, Houtsmuller AB, Papantonis A, Wendt KS. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res 2020; 30:515-527. [PMID: 32253279 PMCID: PMC7197483 DOI: 10.1101/gr.253211.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022]
Abstract
Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.
Collapse
Affiliation(s)
- Valentina Casa
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | | | - Eduardo Gade Gusmao
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anne Zirkel
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Natasa Josipovic
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Edwin Oole
- Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | | | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Kittisopikul M, Virtanen L, Taimen P, Goldman RD. Quantitative Analysis of Nuclear Lamins Imaged by Super-Resolution Light Microscopy. Cells 2019; 8:E361. [PMID: 31003483 PMCID: PMC6524165 DOI: 10.3390/cells8040361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
The nuclear lamina consists of a dense fibrous meshwork of nuclear lamins, Type V intermediate filaments, and is ~14 nm thick according to recent cryo-electron tomography studies. Recent advances in light microscopy have extended the resolution to a scale allowing for the fine structure of the lamina to be imaged in the context of the whole nucleus. We review quantitative approaches to analyze the imaging data of the nuclear lamina as acquired by structured illumination microscopy (SIM) and single molecule localization microscopy (SMLM), as well as the requisite cell preparation techniques. In particular, we discuss the application of steerable filters and graph-based methods to segment the structure of the four mammalian lamin isoforms (A, C, B1, and B2) and extract quantitative information.
Collapse
Affiliation(s)
- Mark Kittisopikul
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Laura Virtanen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20520 Turku, Finland.
| | - Pekka Taimen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20520 Turku, Finland.
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland.
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|