1
|
Chang HY, Hsu HC, Fang YH, Liu PY, Liu YW. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway. Biomed Pharmacother 2024; 176:116759. [PMID: 38788603 DOI: 10.1016/j.biopha.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors, such as empagliflozin, are pivotal therapies for heart failure. However, the effect of empagliflozin on doxorubicin-related cardiac dysfunction remains unclear. METHODS Human induced pluripotent stem cell- and embryonic stem cell-derived cardiomyocytes were used to investigate the direct effect of empagliflozin on human cardiomyocytes. Then, the c-Jun amino-terminal kinases (JNK) inhibitor SP600125 was administered to the doxorubicin cardiotoxicity model in vitro and in vivo to investigate the role of JNK in empagliflozin. RESULTS In human stem cell-derived cardiomyocytes, pretreatment with empagliflozin attenuated doxorubicin-induced cleavage of caspase 3 and other apoptosis markers. Empagliflozin significantly attenuated doxorubicin-induced phosphorylation of JNK and p38. Inhibiting the phosphorylation of JNK (SP600125) or STAT3 attenuated doxorubicin-induced apoptosis, but inhibiting the phosphorylation of p38 did not. SP600125 inhibits the phosphorylation of STAT3 (S727), and a STAT3 (Y705) inhibitor also inhibits the phosphorylation of JNK. Empagliflozin and SP600125 attenuated doxorubicin-induced increases in reactive oxygen species (ROS) and decreases in oxidized nicotinamide adenine dinucleotide (NAD+). In animal studies, empagliflozin and SP600125 attenuated doxorubicin-induced cardiac dysfunction and fibrosis. CONCLUSIONS Empagliflozin attenuated doxorubicin-induced apoptosis by inhibiting the phosphorylation of JNK and its downstream signaling pathways, including ROS and NAD+.
Collapse
Affiliation(s)
- Hsien-Yuan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Chun Hsu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsien Fang
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yen-Wen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
5
|
Xu W, Mo Y, He Y, Fan Y, He G, Fu W, Chen S, Liu J, Liu W, Peng L, Xiao Y. A New Method for Chromosomes Preparation by ATP-Competitive Inhibitor SP600125 via Enhancement of Endomitosis in Fish. Front Bioeng Biotechnol 2021; 8:606496. [PMID: 33520960 PMCID: PMC7838586 DOI: 10.3389/fbioe.2020.606496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that 1,9-Pyrazoloanthrone, known as SP600125, can induce cell polyploidization. However, what is the phase of cell cycle arrest caused by SP600125 and the underlying regulation is still an interesting issue to be further addressed. Research in this article shows that SP600125 can block cell cycle progression at the prometaphase of mitosis and cause endomitosis. It is suggested that enhancement of the p53 signaling pathway and weakening of the spindle assembly checkpoint are associated with the SP600125-induced cell cycle arrest. Using preliminary SP600125 treatment, the samples of the cultured fish cells and the fish tissues display a great number of chromosome splitting phases. Summarily, SP600125 can provide a new protocol of chromosomes preparation for karyotype analysis owing to its interference with prometaphase of mitosis.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Histology and Embryology, School of Basic Medical Science, Xiangnan University, Chenzhou, China
| | - Yu He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guomin He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Chu AJ, Zhao EJ, Chiao M, Lim CJ. Co-culture of induced pluripotent stem cells with cardiomyocytes is sufficient to promote their differentiation into cardiomyocytes. PLoS One 2020; 15:e0230966. [PMID: 32243463 PMCID: PMC7122760 DOI: 10.1371/journal.pone.0230966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Various types of stem cells and non-stem cells have been shown to differentiate or transdifferentiate into cardiomyocytes by way of co-culture with appropriate inducer cells. However, there is a limited demonstration of a co-culture induction system utilizing stem cell-derived cardiomyocytes as a stimulatory source for cardiac reprogramming (of stem cells or otherwise). In this study, we utilized an inductive co-culture method to show that previously differentiated induced pluripotent stem (iPS) cell-derived cardiomyocytes (iCMs), when co-cultivated with iPS cells, constituted a sufficient stimulatory system to induce cardiac differentiation. To enable tracking of both cell populations, we utilized GFP-labeled iPS cells and non-labeled iCMs pre-differentiated using inhibitors of GSK and Wnt signaling. Successful differentiation was assessed by the exhibition of spontaneous self-contractions, structural organization of α-actinin labeled sarcomeres, and expression of cardiac specific markers cTnT and α-actinin. We found that iCM-iPS cell-cell contact was essential for inductive differentiation, and this required overlaying already adherent iPS cells with iCMs. Importantly, this process was achieved without the exogenous addition of pathway inhibitors and morphogens, suggesting that 'older' iCMs serve as an adequate stimulatory source capable of recapitulating the necessary culture environment for cardiac differentiation.
Collapse
Affiliation(s)
- Axel J. Chu
- School of Biomedical Engineering, The University of British Columbia, Vancouver, B.C., Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, B.C., Canada
| | - Eric Jiahua Zhao
- School of Biomedical Engineering, The University of British Columbia, Vancouver, B.C., Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, B.C., Canada
| | - Mu Chiao
- School of Biomedical Engineering, The University of British Columbia, Vancouver, B.C., Canada
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, B.C., Canada
- * E-mail: (CJL); (MC)
| | - Chinten James Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, B.C., Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, B.C., Canada
- * E-mail: (CJL); (MC)
| |
Collapse
|
7
|
Leong YY, Ng WH, Umar Fuaad MZ, Ng CT, Ramasamy R, Lim V, Yong YK, Tan JJ. Mesenchymal stem cells facilitate cardiac differentiation in Sox2-expressing cardiac C-kit cells in coculture. J Cell Biochem 2018; 120:9104-9116. [PMID: 30548289 DOI: 10.1002/jcb.28186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023]
Abstract
Stem cell therapy offers hope to reconstitute injured myocardium and salvage heart from failing. A recent approach using combinations of derived Cardiac-derived c-kit expressing cells (CCs) and mesenchymal stem cells (MSCs) in transplantation improved infarcted hearts with a greater functional outcome, but the effects of MSCs on CCs remain to be elucidated. We used a novel two-step protocol to clonogenically amplify colony forming c-kit expressing cells from 4- to 6-week-old C57BL/6N mice. This method yielded highly proliferative and clonogenic CCs with an average population doubling time of 17.2 ± 0.2, of which 80% were at the G1 phase. We identified two distinctly different CC populations based on its Sox2 expression, which was found to inversely related to their nkx2.5 and gata4 expression. To study CCs after MSC coculture, we developed micron-sized particles of iron oxide-based magnetic reisolation method to separate CCs from MSCs for subsequent analysis. Through validation using the sex and species mismatch CC-MSC coculture method, we confirmed that the purity of the reisolated cells was greater than 85%. In coculture experiment, we found that MSCs prominently enhanced Ctni and Mef2c expressions in Sox2 pos CCs after the induction of cardiac differentiation, and the level was higher than that of conditioned medium Sox2 pos CCs. However, these effects were not found in Sox2 neg CCs. Immunofluorescence labeling confirmed the presence of cardiac-like cells within Sox2 pos CCs after differentiation, identified by its cardiac troponin I and α-sarcomeric actinin expressions. In conclusion, this study shows that MSCs enhance CC differentiation toward cardiac myocytes. This enhancement is dependent on CC stemness state, which is determined by Sox2 expression.
Collapse
Affiliation(s)
- Yin Yee Leong
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Wai Hoe Ng
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Mimi Zulaikha Umar Fuaad
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Chin Theng Ng
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Preclinical, Physiology Unit, Faculty of Medicine, AIMST University, Bedong, Kedah, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vuanghao Lim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jun Jie Tan
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
8
|
Bylund JB, Trinh LT, Awgulewitsch CP, Paik DT, Jetter C, Jha R, Zhang J, Nolan K, Xu C, Thompson TB, Kamp TJ, Hatzopoulos AK. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2. Stem Cells Dev 2017; 26:678-693. [PMID: 28125926 DOI: 10.1089/scd.2016.0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.
Collapse
Affiliation(s)
- Jeffery B Bylund
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,2 Department of Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Linh T Trinh
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Cassandra P Awgulewitsch
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - David T Paik
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,3 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Christopher Jetter
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Rajneesh Jha
- 4 Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia
| | - Jianhua Zhang
- 5 Stem Cell and Regenerative Medicine Center, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Kristof Nolan
- 6 Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati , Cincinnati, Ohio
| | - Chunhui Xu
- 4 Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia
| | - Thomas B Thompson
- 6 Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati , Cincinnati, Ohio
| | - Timothy J Kamp
- 5 Stem Cell and Regenerative Medicine Center, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Antonis K Hatzopoulos
- 1 Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,3 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
9
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|