1
|
Gazzo DV, Zartman JJ. Calcium Imaging in Drosophila. Methods Mol Biol 2025; 2861:257-271. [PMID: 39395111 DOI: 10.1007/978-1-0716-4164-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.
Collapse
Affiliation(s)
- David V Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Zimmerman SG, Berg CA. CO2 exposure drives a rapid pH response in live adult Drosophila. PLoS One 2024; 19:e0302240. [PMID: 38625910 PMCID: PMC11020609 DOI: 10.1371/journal.pone.0302240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
CO2 anesthesia is the most common method for immobilizing Drosophila for research purposes. But CO2 exposure has consequences-it can impact fertility, behavior, morphogenesis, and cytoskeletal dynamics. In this respect, Drosophila is an outstanding model for studying the impact of CO2 exposure on tissues. In this study we explored the response of intracellular pH (pHi) to a one-minute CO2 pulse using a genetically encoded, ubiquitously expressed pH sensor, tpHusion, to monitor pHi within a live, intact, whole fly. We compared wild-type flies to flies lacking Imaginal disc growth factors (Idgfs), which are chitinase-like proteins that facilitate developmental processes and the innate immune response. Morphogenetic and cytoskeletal defects in Idgf-null flies are enhanced after CO2 exposure. We found that pHi drops sharply within seconds of the beginning of a CO2 pulse and recovers over several minutes. The initial profile was nearly identical in control and Idgf-null flies but diverged as the pHi returned to normal. This study demonstrates the feasibility of monitoring pH in live adult Drosophila. Studies exploring pH homeostasis are important for understanding human pathologies associated with pH dysregulation.
Collapse
Affiliation(s)
- Sandra G. Zimmerman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Celeste A. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Manicka S, Pai VP, Levin M. Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain. iScience 2023; 26:108398. [PMID: 38034358 PMCID: PMC10687303 DOI: 10.1016/j.isci.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Spatiotemporal patterns of cellular resting potential regulate several aspects of development. One key aspect of the bioelectric code is that transcriptional and morphogenetic states are determined not by local, single-cell, voltage levels but by specific distributions of voltage across cell sheets. We constructed and analyzed a minimal dynamical model of collective gene expression in cells based on inputs of multicellular voltage patterns. Causal integration analysis revealed a higher-order mechanism by which information about the voltage pattern was spatiotemporally integrated into gene activity, as well as a division of labor among and between the bioelectric and genetic components. We tested and confirmed predictions of this model in a system in which bioelectric control of morphogenesis regulates gene expression and organogenesis: the embryonic brain of the frog Xenopus laevis. This study demonstrates that machine learning and computational integration approaches can advance our understanding of the information-processing underlying morphogenetic decision-making, with a potential for other applications in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Zhang Y, Lai J, Wang X, Li M, Zhang Y, Ji C, Chen Q, Lu S. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Arch Anim Breed 2023; 66:357-368. [PMID: 38111388 PMCID: PMC10726026 DOI: 10.5194/aab-66-357-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
The litter trait is one of the most important economic traits, and increasing litter size is of great economic value in the pig industry. However, the molecular mechanisms underlying pig litter traits remain elusive. To identify molecular markers and candidate genes for pig litter traits, a genome-wide association study (GWAS) and selection signature analysis were conducted in a Yorkshire pig population. A total of 518 producing sows were genotyped with Illumina Porcine SNP 50 BeadChip, and 1969 farrowing records for the total number born (TNB), the number born alive (NBA), piglets born dead (PBD), and litter weight born alive (LWB) were collected. Then, a GWAS was performed for the four litter traits using a repeatability model. Based on the estimated breeding values (EBVs) of TNB, 15 high- and 15 low-prolificacy individuals were selected from the 518 sows to implement selection signature analysis. Subsequently, the selection signatures affecting the litter traits of sows were detected by using two methods including the fixation index (FST) and θ π . Combining the results of the GWAS and selection signature analysis, 20 promising candidate genes (NKAIN2, IGF1R, KISS1R, TYRO3, SPINT1, ADGRF5, APC2, PTBP1, CLCN3, CBR4, HPF1, FAM174A, SCP2, CLIC1, ZFYVE9, SPATA33, KIF5C, EPC2, GABRA2, and GABRA4) were identified. These findings provide novel insights into the genetic basis of pig litter traits and will be helpful for improving the reproductive performances of sows in pig breeding.
Collapse
Affiliation(s)
- Yu Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinhua Lai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanlin Zhang
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Chunlv Ji
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
5
|
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers (Basel) 2021; 13:cancers13215300. [PMID: 34771463 PMCID: PMC8582473 DOI: 10.3390/cancers13215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.
Collapse
|
6
|
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021; 184:1971-1989. [PMID: 33826908 DOI: 10.1016/j.cell.2021.02.034] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
How are individual cell behaviors coordinated toward invariant large-scale anatomical outcomes in development and regeneration despite unpredictable perturbations? Endogenous distributions of membrane potentials, produced by ion channels and gap junctions, are present across all tissues. These bioelectrical networks process morphogenetic information that controls gene expression, enabling cell collectives to make decisions about large-scale growth and form. Recent progress in the analysis and computational modeling of developmental bioelectric circuits and channelopathies reveals how cellular collectives cooperate toward organ-level structural order. These advances suggest a roadmap for exploiting bioelectric signaling for interventions addressing developmental disorders, regenerative medicine, cancer reprogramming, and synthetic bioengineering.
Collapse
|
7
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
8
|
Cervera J, Ramirez P, Levin M, Mafe S. Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations. Phys Rev E 2020; 102:052412. [PMID: 33327213 DOI: 10.1103/physreve.102.052412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Bioelectrical patterns are established by spatiotemporal correlations of cell membrane potentials at the multicellular level, being crucial to development, regeneration, and tumorigenesis. We have conducted multicellular simulations on bioelectrical community effects and intercellular coupling in multicellular aggregates. The simulations aim at establishing under which conditions a local heterogeneity consisting of a small patch of cells can be stabilized against a large aggregate of surrounding identical cells which are in a different bioelectrical state. In this way, instructive bioelectrical information can be persistently encoded in spatiotemporal patterns of separated domains with different cell polarization states. The multicellular community effects obtained are regulated both at the single-cell and intercellular levels, and emerge from a delicate balance between the degrees of intercellular coupling in: (i) the small patch, (ii) the surrounding bulk, and (iii) the interface that separates these two regions. The model is experimentally motivated and consists of two generic voltage-gated ion channels that attempt to establish the depolarized and polarized cell states together with coupling conductances whose individual and intercellular different states permit a dynamic multicellular connectivity. The simulations suggest that community effects may allow the reprogramming of single-cell bioelectrical states, in agreement with recent experimental data. A better understanding of the resulting electrical regionalization can assist the electroceutical correction of abnormally depolarized regions initiated in the bulk of normal tissues as well as suggest new biophysical mechanisms for the establishment of target patterns in multicellular engineering.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Patricio Ramirez
- Departamento Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, USA
| | - Salvador Mafe
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
9
|
Schotthöfer SK, Bohrmann J. Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange. BMC DEVELOPMENTAL BIOLOGY 2020; 20:15. [PMID: 32635900 PMCID: PMC7341674 DOI: 10.1186/s12861-020-00220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 01/16/2023]
Abstract
Background Changes in transcellular bioelectrical patterns are known to play important roles during developmental and regenerative processes. The Drosophila follicular epithelium has proven to be an appropriate model system for studying the mechanisms by which bioelectrical signals emerge and act. Fluorescent indicator dyes in combination with various inhibitors of ion-transport mechanisms have been used to investigate the generation of membrane potentials (Vmem) and intracellular pH (pHi). Both parameters as well as their anteroposterior and dorsoventral gradients were affected by the inhibitors which, in addition, led to alterations of microfilament and microtubule patterns equivalent to those observed during follicle-cell differentiation. Results We expressed two genetically-encoded fluorescent sensors for Vmem and pHi, ArcLight and pHluorin-Moesin, in the follicular epithelium of Drosophila. By means of the respective inhibitors, we obtained comparable effects on Vmem and/or pHi as previously described for Vmem- and pHi-sensitive fluorescent dyes. In a RNAi-knockdown screen, five genes of ion-transport mechanisms and gap-junction subunits were identified exerting influence on ovary development and/or oogenesis. Loss of ovaries or small ovaries were the results of soma knockdowns of the innexins inx1 and inx3, and of the DEG/ENaC family member ripped pocket (rpk). Germline knockdown of rpk also resulted in smaller ovaries. Soma knockdown of the V-ATPase-subunit vha55 caused size-reduced ovaries with degenerating follicles from stage 10A onward. In addition, soma knockdown of the open rectifier K+channel 1 (ork1) resulted in a characteristic round-egg phenotype with altered microfilament and microtubule organisation in the follicular epithelium. Conclusions The genetic tool box of Drosophila provides means for a refined and extended analysis of bioelectrical phenomena. Tissue-specifically expressed Vmem- and pHi-sensors exhibit some practical advantages compared to fluorescent indicator dyes. Their use confirms that the ion-transport mechanisms targeted by inhibitors play important roles in the generation of bioelectrical signals. Moreover, modulation of bioelectrical signals via RNAi-knockdown of genes coding for ion-transport mechanisms and gap-junction subunits exerts influence on crucial processes during ovary development and results in cytoskeletal changes and altered follicle shape. Thus, further evidence amounts for bioelectrical regulation of developmental processes via the control of both signalling pathways and cytoskeletal organisation.
Collapse
Affiliation(s)
- Susanne Katharina Schotthöfer
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany
| | - Johannes Bohrmann
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|
10
|
Shi Z, Lim C, Tran V, Cui K, Zhao K, Chen X. Single-cyst transcriptome analysis of Drosophila male germline stem cell lineage. Development 2020; 147:dev.184259. [PMID: 32122991 DOI: 10.1242/dev.184259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/23/2020] [Indexed: 12/31/2022]
Abstract
The Drosophila male germline stem cell (GSC) lineage provides a great model to understand stem cell maintenance, proliferation, differentiation and dedifferentiation. Here, we use the Drosophila GSC lineage to systematically analyze the transcriptome of discrete but continuously differentiating germline cysts. We first isolated single cysts at each recognizable stage from wild-type testes, which were subsequently applied for RNA-seq analyses. Our data delineate a high-resolution transcriptome atlas in the entire male GSC lineage: the most dramatic switch occurs from early to late spermatocyte, followed by the change from the mitotic spermatogonia to early meiotic spermatocyte. By contrast, the transit-amplifying spermatogonia cysts display similar transcriptomes, suggesting common molecular features among these stages, which may underlie their similar behavior during both differentiation and dedifferentiation processes. Finally, distinct differentiating germ cell cyst samples do not exhibit obvious dosage compensation of X-chromosomal genes, even considering the paucity of X-chromosomal gene expression during meiosis, which is different from somatic cells. Together, our single cyst-resolution, genome-wide transcriptional profile analyses provide an unprecedented resource to understand many questions in both germ cell biology and stem cell biology fields.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Cindy Lim
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kairong Cui
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Cervera J, Meseguer S, Levin M, Mafe S. Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions. Bioelectrochemistry 2020; 132:107410. [DOI: 10.1016/j.bioelechem.2019.107410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/09/2023]
|
12
|
Schotthöfer SK, Bohrmann J. Bioelectrical and cytoskeletal patterns correlate with altered axial polarity in the follicular epithelium of the Drosophila mutant gurken. BMC DEVELOPMENTAL BIOLOGY 2020; 20:5. [PMID: 32169045 PMCID: PMC7071586 DOI: 10.1186/s12861-020-00210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Background Bioelectrical signals are known to be involved in the generation of cell and tissue polarity as well as in cytoskeletal dynamics. The epithelium of Drosophila ovarian follicles is a suitable model system for studying connections between electrochemical gradients, patterns of cytoskeletal elements and axial polarity. By interactions between soma and germline cells, the transforming growth factor-α homolog Gurken (Grk) establishes both the anteroposterior and the dorsoventral axis during oogenesis. Results In the follicular epithelium of the wild-type (wt) and the polarity mutant grk, we analysed stage-specific gradients of membrane potentials (Vmem) and intracellular pH (pHi) using the potentiometric dye DiBAC4(3) and the fluorescent pH-indicator 5-CFDA,AM, respectively. In addition, we compared the cytoskeletal organisation in the follicular epithelium of wt and grk using fluorescent phalloidin and an antibody against acetylated α-tubulin. Corresponding to impaired polarity in grk, the slope of the anteroposterior Vmem-gradient in stage S9 is significantly reduced compared to wt. Even more striking differences in Vmem- and pHi-patterns become obvious during stage S10B, when the respective dorsoventral gradients are established in wt but not in grk. Concurrent with bioelectrical differences, wt and grk exhibit differences concerning cytoskeletal patterns in the follicular epithelium. During all vitellogenic stages, basal microfilaments in grk are characterised by transversal alignment, while wt-typical condensations in centripetal follicle cells (S9) and in dorsal centripetal follicle cells (S10B) are absent. Moreover, in grk, longitudinal alignment of microtubules occurs throughout vitellogenesis in all follicle cells, whereas in wt, microtubules in mainbody and posterior follicle cells exhibit a more cell-autonomous organisation. Therefore, in contrast to wt, the follicular epithelium in grk is characterised by missing or shallower electrochemical gradients and by more coordinated transcellular cytoskeletal patterns. Conclusions Our results show that bioelectrical polarity and cytoskeletal polarity are closely linked to axial polarity in both wt and grk. When primary polarity signals are altered, both bioelectrical and cytoskeletal patterns in the follicular epithelium change. We propose that not only cell-specific levels of Vmem and pHi, or the polarities of transcellular electrochemical gradients, but also the slopes of these gradients are crucial for cytoskeletal modifications and, thus, for proper development of epithelial polarity.
Collapse
Affiliation(s)
- Susanne Katharina Schotthöfer
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany
| | - Johannes Bohrmann
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|
13
|
Weiß I, Bohrmann J. Electrochemical gradients are involved in regulating cytoskeletal patterns during epithelial morphogenesis in the Drosophila ovary. BMC DEVELOPMENTAL BIOLOGY 2019; 19:22. [PMID: 31718540 PMCID: PMC6852995 DOI: 10.1186/s12861-019-0203-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND During Drosophila oogenesis, the follicular epithelium differentiates into several morphologically distinct follicle-cell populations. Characteristic bioelectrical properties make this tissue a suitable model system for studying connections between electrochemical signals and the organisation of the cytoskeleton. Recently, we have described stage-specific transcellular antero-posterior and dorso-ventral gradients of intracellular pH (pHi) and membrane potential (Vmem) depending on the asymmetrical distribution and/or activity of various ion-transport mechanisms. In the present study, we analysed the patterns of basal microfilaments (bMF) and microtubules (MT) in relation to electrochemical signals. RESULTS The bMF- and MT-patterns in developmental stages 8 to 12 were visualised using labelled phalloidin and an antibody against acetylated α-tubulin as well as follicle-cell specific expression of GFP-actin and GFP-α-tubulin. Obviously, stage-specific changes of the pHi- and Vmem-gradients correlate with modifications of the bMF- and MT-organisation. In order to test whether cytoskeletal modifications depend directly on bioelectrical changes, we used inhibitors of ion-transport mechanisms that have previously been shown to modify pHi and Vmem as well as the respective gradients. We inhibited, in stage 10b, Na+/H+-exchangers and Na+-channels with amiloride, V-ATPases with bafilomycin, ATP-sensitive K+-channels with glibenclamide, voltage-dependent L-type Ca2+-channels with verapamil, Cl--channels with 9-anthroic acid and Na+/K+/2Cl--cotransporters with furosemide, respectively. The correlations between pHi, Vmem, bMF and MT observed in different follicle-cell types are in line with the correlations resulting from the inhibition experiments. While relative alkalisation and/or hyperpolarisation stabilised the parallel transversal alignment of bMF, acidification led to increasing disorder and to condensations of bMF. On the other hand, relative acidification as well as hyperpolarisation stabilised the longitudinal orientation of MT, whereas alkalisation led to loss of this arrangement and to partial disintegration of MT. CONCLUSIONS We conclude that the pHi- and Vmem-changes induced by inhibitors of ion-transport mechanisms simulate bioelectrical changes occurring naturally and leading to the cytoskeletal changes observed during differentiation of the follicle-cell epithelium. Therefore, gradual modifications of electrochemical signals can serve as physiological means to regulate cell and tissue architecture by modifying cytoskeletal patterns.
Collapse
Affiliation(s)
- Isabel Weiß
- Institut für Biologie II, Abt. Zoologie und Humanbiologie, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany
| | - Johannes Bohrmann
- Institut für Biologie II, Abt. Zoologie und Humanbiologie, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|