1
|
Zhou YM, Duan L, Luo L, Guan JQ, Yang ZK, Qu JJ, Zou X. The composition and function of bacterial communities in Bombyx mori (Lepidoptera: Bombycidae) changed dramatically with infected fungi: A new potential to culture Cordyceps cicadae. INSECT MOLECULAR BIOLOGY 2024; 33:613-625. [PMID: 38709468 DOI: 10.1111/imb.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.
Collapse
Affiliation(s)
- Ye-Ming Zhou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jing-Qiang Guan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zheng-Kai Yang
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jiao-Jiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Matsukawa K, Kato Y, Yoshida A, Onishi H, Nakano S, Itoh M, Takano-Shimizu-Kouno T. Sharp decline in male fertility in F2 hybrids of the female-heterogametic silk moth Bombyx. Genetics 2024; 228:iyae149. [PMID: 39374851 PMCID: PMC11538408 DOI: 10.1093/genetics/iyae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Sexual selection drives rapid evolution of morphological, physiological, and behavioral traits, especially in males, and it may also drive the rapid evolution of hybrid male sterility. Indeed, the faster male theory of speciation was once viewed as a major cause of Haldane's rule in male-heterogametic XY taxa, but is increasingly being replaced by the genetic conflict hypothesis partly because it cannot explain the faster evolution of hybrid female sterility in female-heterogametic ZW taxa. The theory nonetheless predicts that there should be more genes for hybrid male sterility than for hybrid female sterility even in such taxa, but this remains untested. Thus, finding evidence for the faster male theory of reproductive isolation beyond the F1 generation in ZW systems still represents a challenge to studying the impact of sexual selection. In this study, we examined F2 hybrids between the domesticated silkworm Bombyx mori and the wild silk moth Bombyx mandarina, which have ZW sex determination. We found that although only females showed reduced fertility in the F1 generation, the F2 hybrid males had a significant reduction in fertility compared with the parental and F1 males. Importantly, 27% of the F2 males and 15% of the F2 females were completely sterile, suggesting the presence of recessive incompatibilities causing male sterility in female-heterogametic taxa.
Collapse
Affiliation(s)
- Kana Matsukawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasuko Kato
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Aya Yoshida
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hisaka Onishi
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sachiko Nakano
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masanobu Itoh
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu-Kouno
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| |
Collapse
|
3
|
Sun X, Song G, Hu Z, Zhang W, Luo N, Gao H. An electrochemical immunosensor based on hybrid self-assembled monolayers for rapid detection of Bombyx mori nucleopolyhedrovirus. J Invertebr Pathol 2024; 204:108080. [PMID: 38432354 DOI: 10.1016/j.jip.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is highly contagious and poses a serious threat to sericulture production. Because there are currently no effective treatments for BmNPV, a rapid and simple detection method is urgently needed. This paper describes an electrochemical immunosensor for the detection of BmNPV. The immunosensor was fabricated by covalently immobilizing anti-BmNPV, a biorecognition element, onto the surface of the working gold electrode via 11-mercaptoundecanoic acid (MUA)/β-mercaptoethanol (ME) hybrid self-assembled monolayers. Electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) were used to characterize the electrochemical performance and morphology of the immunosensor, respectively. Under optimum conditions, the developed immunosensor exhibited a linear response to BmNPV polyhedrin in the range of 1 × 102-1 × 108 fg/mL, with a low detection limit of 14.54 fg/mL. The immunosensor also exhibited remarkable repeatability, reproducibility, specificity, accuracy, and regeneration. Normal silkworm blood was mixed with BmNPV polyhedrin and analyzed quantitatively using this sensor, and the recovery was 92.31 %-100.61 %. Additionally, the sensor was used to analyze silkworm blood samples at different time points after BmNPV infection, and an obvious antigen signal was detected at 12 h post infection. Although this result agreed with that provided by the conventional polymerase chain reaction (PCR) method, the electroanalysis method established in this study was simpler, shorter in detection period, and lower in material cost. Furthermore, this innovative electrochemical immunosensor, developed for the ultra-sensitive and rapid detection of BmNPV, can be used for the early detection of virus-infected silkworms.
Collapse
Affiliation(s)
- Xiaomei Sun
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Guizhen Song
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Zengjuan Hu
- Qingdao Agricultural Technology Extension Center, Qingdao 266100, China
| | - Wenjing Zhang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ning Luo
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Huiju Gao
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Hu M, You Y, Li Y, Ma S, Li J, Miao M, Quan Y, Yu W. Deacetylation of ACO2 Is Essential for Inhibiting Bombyx mori Nucleopolyhedrovirus Propagation. Viruses 2023; 15:2084. [PMID: 37896861 PMCID: PMC10612070 DOI: 10.3390/v15102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a specific pathogen of Bombyx mori that can significantly impede agricultural development. Accumulating evidence indicates that the viral proliferation in the host requires an ample supply of energy. However, the correlative reports of baculovirus are deficient, especially on the acetylation modification of tricarboxylic acid cycle (TCA cycle) metabolic enzymes. Our recent quantitative analysis of protein acetylome revealed that mitochondrial aconitase (ACO2) could be modified by (de)acetylation at lysine 56 (K56) during the BmNPV infection; however, the underlying mechanism is yet unknown. In order to understand this regulatory mechanism, the modification site K56 was mutated to arginine (Lys56Arg; K56R) to mimic deacetylated lysine. The results showed that mimic deacetylated mitochondrial ACO2 restricted enzymatic activity. Although the ATP production was enhanced after viral infection, K56 deacetylation of ACO2 suppressed BmN cellular ATP levels and mitochondrial membrane potential by affecting citrate synthase and isocitrate dehydrogenase activities compared with wild-type ACO2. Furthermore, the deacetylation of exogenous ACO2 lowered BmNPV replication and generation of progeny viruses. In summary, our study on ACO2 revealed the potential mechanism underlying WT ACO2 promotes the proliferation of BmNPV and K56 deacetylation of ACO2 eliminates this promotional effect, which might provide novel insights for developing antiviral strategies.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yi You
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yao Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Shiyi Ma
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Jiaqi Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
5
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
6
|
Bombyx mori from a food safety perspective: A systematic review. Food Res Int 2022; 160:111679. [DOI: 10.1016/j.foodres.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
|
7
|
Tassoni L, Cappellozza S, Dalle Zotte A, Belluco S, Antonelli P, Marzoli F, Saviane A. Nutritional Composition of Bombyx mori Pupae: A Systematic Review. INSECTS 2022; 13:insects13070644. [PMID: 35886820 PMCID: PMC9325104 DOI: 10.3390/insects13070644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The mulberry silkworm (Bombyx mori) is a domesticated insect traditionally reared to produce silk. Its pupae are historically eaten in Asian countries and are obtained as waste products from the silk reeling industry. Pupae are a promising novel food in Western countries as well as a source of proteins, lipids, and minerals. Several varied results are reported in the literature regarding the nutrient composition of silkworm pupa, and several factors must be considered when comparing the research. Some of the variables that could affect the pupal nutritional content include rearing techniques, diets, silkworm strains, killing, and drying techniques. This literature systematic review identifies the most important research areas and aids authorities and producers in the evaluation and development of silkworm pupae for novel uses. Abstract As insects have started to enter the eating habits of Western countries, an increasing amount of literature regarding the mulberry silkworm (Bombyx mori) prospective application as food has been published. Despite this growing interest, there is currently no systematic review of silkworm nutritional composition available. In this paper, we performed a systematic review of the recent available literature on the nutrient composition of mulberry silkworm pupae. After screening the titles and abstracts of 14,008 studies retrieved from three scientific databases, data about nutrients was extracted from 29 selected papers, together with their related variables. This systematic review provides an overview of the variety of data reported in the literature and highlights that many elements contribute to hindering a sound comparison of the different nutritional values reported for silkworm pupae. The observed variability of the composition data reported could be due to differences in diet, strains, pretreatments, and origin of the silkworm analyzed. However, all these variables were not always available and should be reported in future studies to simplify the data comparison.
Collapse
Affiliation(s)
- Luca Tassoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università 16, 35020 Padova, Italy;
- Correspondence:
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università 16, 35020 Padova, Italy;
| | - Simone Belluco
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Pietro Antonelli
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Filippo Marzoli
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
| |
Collapse
|
8
|
Acetylation of fructose-bisphosphate aldolase-mediated glycolysis is essential for Bombyx mori nucleopolyhedrovirus infection. Microb Pathog 2022; 170:105695. [DOI: 10.1016/j.micpath.2022.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
|
9
|
Mei X, Gao M, Huang T, Shen D, Xia D, Qiu Z, Zhao Q. Comparative analysis of testis transcriptome between a genetic male sterile line (GMS) and its wild-type 898WB in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100961. [PMID: 35074722 DOI: 10.1016/j.cbd.2022.100961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The silkworm, Bombyx mori, is an important model organism of lepidopteran insects, and its testis is a main male reproductive organ and spermatogenesis place. Studying the testis helps to understand the mechanisms of genetic sterility of lepidopteran insects and to achieve sterile insect technique (SIT) for pest control. Herein, we performed a comparative transcriptome analysis of testes between three biological replicates of the GMS mutant and wild strain 898WB, respectively. In total, 1872 up-regulated genes and 1823 down-regulated genes were identified in the testis of the GMS mutant. Several genes contribute significantly to spermatogenesis and testis development, such as "serine/threonine protein kinase", "organic cation transporter protein", "tyrosine protein kinase", "lncRNAs" and "immune-associated genes". The KEGG pathway analysis shows that the DEGs were annotated to 123 pathways, and 10 pathways were significantly enriched, such as "metabolic pathway", "biosynthesis of amino acids", and "phagosome-lysosome pathway", which are associated with testis development and spermatogenesis. The results of the qPCR expression were consistent with the RNA-seq data, which shows that the RNA-seq results were accurate. The DEGs of the testes between GMS mutant and 898WB were screened by RNA-Seq technology, which provides a reliable reference to understand the molecule mechanism of male sterility of the GMS mutant.
Collapse
Affiliation(s)
- Xinglin Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Tianchen Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhiyong Qiu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
10
|
Kim MJ, Park JS, Kim H, Kim SR, Kim SW, Kim KY, Kwak W, Kim I. Phylogeographic Relationships among Bombyx mandarina (Lepidoptera: Bombycidae) Populations and Their Relationships to B. mori Inferred from Mitochondrial Genomes. BIOLOGY 2022; 11:68. [PMID: 35053066 PMCID: PMC8773246 DOI: 10.3390/biology11010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
We report 37 mitochondrial genome (mitogenome) sequences of Bombyx mori strains (Lepidoptera: Bombycidae) and four of B. mandarina individuals, each preserved and collected, respectively, in South Korea. These mitogenome sequences combined with 45 public data showed a substantial genetic reduction in B. mori strains compared to the presumed ancestor B. mandarina, with the highest diversity detected in the Chinese origin B. mori. Chinese B. mandarina were divided into northern and southern groups, concordant to the Qinling-Huaihe line, and the northern group was placed as an immediate progenitor of monophyletic B. mori strains in phylogenetic analyses, as has previously been detected. However, one individual that was in close proximity to the south Qinling-Huaihe line was exceptional, belonging to the northern group. The enigmatic South Korean population of B. mandarina, which has often been regarded as a closer genetic group to Japan, was most similar to the northern Chinese group, evidencing substantial gene flow between the two regions. Although a substantial genetic divergence is present between B. mandarina in southern China and Japan, a highly supported sister relationship between the two regional populations may suggest the potential origin of Japanese B. mandarina from southern China instead of the Korean peninsula.
Collapse
Affiliation(s)
- Min-Jee Kim
- Experiment and Analysis Division, Honam Regional Office, Animal and Plant Quarantine Agency, Gunsan 54096, Korea;
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-S.P.); (H.K.)
| | - Jeong-Sun Park
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-S.P.); (H.K.)
| | - Hyeongmin Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-S.P.); (H.K.)
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju Gun 55365, Korea; (S.-R.K.); (S.-W.K.); (K.-Y.K.)
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju Gun 55365, Korea; (S.-R.K.); (S.-W.K.); (K.-Y.K.)
| | - Kee-Young Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju Gun 55365, Korea; (S.-R.K.); (S.-W.K.); (K.-Y.K.)
| | | | - Iksoo Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-S.P.); (H.K.)
| |
Collapse
|
11
|
Dai Z, Ren J, Tong X, Hu H, Lu K, Dai F, Han MJ. The Landscapes of Full-Length Transcripts and Splice Isoforms as Well as Transposons Exonization in the Lepidopteran Model System, Bombyx mori. Front Genet 2021; 12:704162. [PMID: 34594358 PMCID: PMC8476886 DOI: 10.3389/fgene.2021.704162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an important model system for the order Lepidoptera. Currently, based on third-generation sequencing, the chromosome-level genome of Bombyx mori has been released. However, its transcripts were mainly assembled by using short reads of second-generation sequencing and expressed sequence tags which cannot explain the transcript profile accurately. Here, we used PacBio Iso-Seq technology to investigate the transcripts from 45 developmental stages of Bombyx mori. We obtained 25,970 non-redundant high-quality consensus isoforms capturing ∼60% of previous reported RNAs, 15,431 (∼47%) novel transcripts, and identified 7,253 long non-coding RNA (lncRNA) with a large proportion of novel lncRNA (∼56%). In addition, we found that transposable elements (TEs) exonization account for 11,671 (∼45%) transcripts including 5,980 protein-coding transcripts (∼32%) and 5,691 lncRNAs (∼79%). Overall, our results expand the silkworm transcripts and have general implications to understand the interaction between TEs and their host genes. These transcripts resource will promote functional studies of genes and lncRNAs as well as TEs in the silkworm.
Collapse
Affiliation(s)
- Zongrui Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China.,WESTA College, Southwest University, Chongqing, China
| | - Jianyu Ren
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kunpeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| |
Collapse
|
12
|
The beta-1, 4-N-acetylglucosaminidase 1 gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori. PLoS Genet 2020; 16:e1008907. [PMID: 32667927 PMCID: PMC7363074 DOI: 10.1371/journal.pgen.1008907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Holometabolous insects have distinct larval, pupal, and adult stages. The pupal stage is typically immobile and can be subject to predation, but cocoon offers pupal protection for many insect species. The cocoon provides a space in which the pupa to adult metamorphosis occurs. It also protects the pupa from weather, predators and parasitoids. Silk protein is a precursor of the silk used in cocoon construction. We used the silkworm as a model species to identify genes affecting silk protein synthesis and cocoon construction. We used quantitative genetic analysis to demonstrate that β-1,4-N-acetylglucosaminidase 1 (BmGlcNase1) is associated with synthesis of sericin, the main composite of cocoon. BmGlcNase1 has an expression pattern coupled with silk gland development and cocoon shell weight (CSW) variation, and CSW is an index of the ability to synthesize silk protein. Up-regulated expression of BmGlcNase1 increased sericin content by 13.9% and 22.5% while down-regulation reduced sericin content by 41.2% and 27.3% in the cocoons of females and males, respectively. Genomic sequencing revealed that sequence variation upstream of the BmGlcNase1 transcriptional start site (TSS) is associated with the expression of BmGlcNase1 and CSW. Selective pressure analysis showed that GlcNase1 was differentially selected in insects with and without cocoons (ω1 = 0.044 vs. ω2 = 0.154). This indicates that this gene has a conserved function in the cocooning process of insects. BmGlcNase1 appears to be involved in sericin synthesis and silkworm cocooning. The cocoon provides a protected space for the metamorphosis of many insect species. Silk protein is a precursor of the fiber used for cocoon construction. Deciphering the genetic basis underlying silk protein synthesis will improve our understanding of cocoon construction and the adaptations of species that construct cocoons. We used the silkworm (Bombyx mori) as a model to identify genes affecting silk protein synthesis and cocoon construction. Quantitative genetic analysis was used to show that β-1,4-N-acetylglucosaminidase 1 (BmGlcNase1), a gene selected during silkworm domestication and breeding, is associated with sericin synthesis. Transgenic-based functional validation confirmed that BmGlcNase1 positively regulates sericin content in the silkworm cocoon. The selective pressure of GlcNase1 in the evolution of insects with cocoons is higher than those without cocoons. This indicates that it has a conserved function in the cocooning process. These results reveal aspects of the genetic basis of silk protein synthesis and the cocoon construction of insects.
Collapse
|
13
|
Zhu Z, Guan Z, Liu G, Wang Y, Zhang Z. SGID: a comprehensive and interactive database of the silkworm. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5677404. [PMID: 31836898 PMCID: PMC6911161 DOI: 10.1093/database/baz134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/12/2022]
Abstract
Although the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database (SGID). It aims to bring together all silkworm-related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome-scale visualization of population genetics test results based on high-depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID will be extremely useful to silkworm research in the future.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Zhufen Guan
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Yawang Wang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China.,Khoury College of Computer Sciences, Northeastern University, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Ze Zhang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| |
Collapse
|
14
|
Rajan R, Chunduri AR, Lima A, Mamillapalli A. 16S rRNA sequence data of Bombyx mori gut bacteriome after spermidine supplementation. BMC Res Notes 2020; 13:94. [PMID: 32093782 PMCID: PMC7038597 DOI: 10.1186/s13104-020-04958-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The silkworm Bombyx mori (B. mori) is an important domesticated lepidopteran model for basic and applied research. They produce silk fibres that have great economic value. The gut microbiome plays an important role in the growth of organisms. Spermidine (Spd) is shown to be important for the growth of all living cells. The effect of spermidine feeding on the gut microbiome of 5th instar B. mori larvae was checked. The B. mori gut samples from control and spermidine fed larvae were subjected to next-generation sequencing analysis to unravel changes in the bacterial community upon spermidine supplementation. DATA DESCRIPTION The changes in gut bacteriota after spermidine feeding is not studied before. B. mori larvae were divided into two groups of 50 worms each and were fed with normal mulberry leaves and mulberry leaves fortified with 50 µM spermidine. The gut tissues were isolated aseptically and total genomic DNA was extracted, 16S rRNA region amplified and sequenced using Illumina platform. The spermidine fed gut samples were shown to have abundance and diversity of the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria.
Collapse
Affiliation(s)
- Resma Rajan
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530 045, India
| | - Alekhya Rani Chunduri
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530 045, India
| | - Anugata Lima
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530 045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530 045, India.
| |
Collapse
|
15
|
Li F, Li M, Mao T, Wang H, Chen J, Lu Z, Qu J, Fang Y, Gu Z, Li B. Effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110011. [PMID: 31796255 DOI: 10.1016/j.ecoenv.2019.110011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate pesticides are widely applied worldwide for agricultural purposes, and their exposures often result in adverse effects on Bombyx mori. The insect gut is a complicated ecosystem inhabited by a large number of microbes that play important roles in insect physiology and behavior. Recent studies have reported that alteration of their microbiota due to stressful conditions or environmental changes has been linked to a compromised health status and a susceptibility to diseases. In the present study, we aimed to assess the effects of phoxim exposure on intestinal microbes in silkworms. The results showed that phoxim exposure increased the bacterial community evenness and altered the structure of gut microbiota in silkworm larvae. The abundances of several genera, such as Methylobacterium and Aurantimonadaceae, in phoxim-treated larval guts were significantly reduced compared with the H2O-treated group, whereas the abundances of non-dominant bacteria, such as Staphylococcus, were significantly increased. Moreover, phoxim inhibited the expressions of antimicrobial peptides (AMPs) at the mRNA level and enhanced the pathogenesis of Enterobacter cloacae (E. cloacae) against silkworm larvae, suggesting that the immune system was inhibited after phoxim exposure. Therefore, the gut microbial community shifts were apparent after phoxim exposure. The compositional and structural changes of intestinal microbes caused by phoxim exposure might affect the normal function of the intestinal tract of silkworm. These results highlighted the importance of the gut bacterial community when investigating the mechanisms of midgut injury after pesticide exposure in Bombyx mori.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhiya Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
16
|
Koropoulis A, Alachiotis N, Pavlidis P. Detecting Positive Selection in Populations Using Genetic Data. Methods Mol Biol 2020; 2090:87-123. [PMID: 31975165 DOI: 10.1007/978-1-0716-0199-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-throughput genomic sequencing allows to disentangle the evolutionary forces acting in populations. Among evolutionary forces, positive selection has received a lot of attention because it is related to the adaptation of populations in their environments, both biotic and abiotic. Positive selection, also known as Darwinian selection, occurs when an allele is favored by natural selection. The frequency of the favored allele increases in the population and, due to genetic hitchhiking, neighboring linked variation diminishes, creating so-called selective sweeps. Such a process leaves traces in genomes that can be detected in a future time point. Detecting traces of positive selection in genomes is achieved by searching for signatures introduced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency spectrum, and particular linkage disequilibrium (LD) patterns in the region. A variety of approaches can be used for detecting selective sweeps, ranging from simple implementations that compute summary statistics to more advanced statistical approaches, e.g., Bayesian approaches, maximum-likelihood-based methods, and machine learning methods. In this chapter, we discuss selective sweep detection methodologies on the basis of their capacity to analyze whole genomes or just subgenomic regions, and on the specific polymorphism patterns they exploit as selective sweep signatures. We also summarize the results of comparisons among five open-source software releases (SweeD, SweepFinder, SweepFinder2, OmegaPlus, and RAiSD) regarding sensitivity, specificity, and execution times. Furthermore, we test and discuss machine learning methods and present a thorough performance analysis. In equilibrium neutral models or mild bottlenecks, most methods are able to detect selective sweeps accurately. Methods and tools that rely on linkage disequilibrium (LD) rather than single SNPs exhibit higher true positive rates than the site frequency spectrum (SFS)-based methods under the model of a single sweep or recurrent hitchhiking. However, their false positive rate is elevated when a misspecified demographic model is used to build the distribution of the statistic under the null hypothesis. Both LD and SFS-based approaches suffer from decreased accuracy on localizing the true target of selection in bottleneck scenarios. Furthermore, we present an extensive analysis of the effects of gene flow on selective sweep detection, a problem that has been understudied in selective sweep literature.
Collapse
Affiliation(s)
- Angelos Koropoulis
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
- Computer Science Department, University of Crete, Crete, Heraklion, Greece
| | - Nikolaos Alachiotis
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece.
| |
Collapse
|
17
|
Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense. FORESTS 2019. [DOI: 10.3390/f10070565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liriodendron chinense (Hemsl.), a Tertiary relic tree, is mainly distributed in subtropical China. The causes of the geographical distribution pattern of this species are poorly understood. In this study, we inferred historical dispersal routes and glacial refugia of this species by combining genetic data (chloroplast DNA (cpDNA), nuclear ribosomal DNA (nrDNA), and nuclear DNA (nDNA)) and geospatial data (climate and geology) with the methods of landscape genetics. Additionally, based on sequence variation at multiple loci, we employed GenGIS and Barrier software to analyze L. chinense population genetic structure. Dispersal corridors and historical gene flow between the eastern and western populations were detected, and they were located in mountainous regions. Based on species distribution model (SDMs), the distribution patterns in paleoclimatic periods were consistent with the current pattern, suggesting the presence of multiple refuges in multiple mountainous regions in China. The genetic structure analysis clustered most eastern populations into a clade separated from the western populations. Additionally, a genetic barrier was detected between the eastern and western populations. The dispersal corridors and historical gene flow detected here suggested that the mountains acted as a bridge, facilitating gene flow between the eastern and western populations. Due to Quaternary climatic fluctuations, the habitats and dispersal corridors were frequently inhabited by warm-temperate evergreen forests, which may have fragmented L. chinense habitats and exacerbated the differentiation of eastern and western populations. Ultimately, populations retreated to multiple isolated mountainous refugia, shaping the current geographical distribution pattern. These dispersal corridors and montane refugia suggested that the mountains in subtropical China play a crucial role in the conservation of genetic resources and migration of subspecies or related species in this region.
Collapse
|
18
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
19
|
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME JOURNAL 2018; 12:2252-2262. [PMID: 29895989 PMCID: PMC6092317 DOI: 10.1038/s41396-018-0174-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Bombyx mori, the domesticated silkworm, is of great importance as a silk producer and as a powerful experimental model for the basic and applied research. Similar to other animals, abundant microorganisms live inside the silkworm gut; however, surprisingly, the microbiota of this model insect has not been well characterized to date. Here, we comprehensively characterized the gut microbiota of the domesticated silkworm and its wild relatives. Comparative analyses with the mulberry-feeding moths Acronicta major and Diaphania pyloalis revealed a highly diverse but distinctive silkworm gut microbiota despite thousands of years of domestication, and stage-specific signatures in both total (DNA-based) and active (RNA-based) bacterial populations, dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Most fungal sequences were assigned to the phyla Ascomycota and Basidiomycota. Environmental factors, including diet and human manipulation (egg production), likely influence the silkworm gut composition. Despite a lack of spatial variation along the gut, microbial community shifts were apparent between early instars and late instars, in concert with host developmental changes. Our results demonstrate that the gut microbiota of silkworms assembles into increasingly identical community throughout development, which differs greatly from those of other mulberry-feeding lepidopterans from the same niche, highlighting host-specific effects on microbial associations and the potential roles these communities play in host biology.
Collapse
Affiliation(s)
- Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqian Du
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Arunprasanna Vimalanathan
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baohong Wang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China.
| |
Collapse
|
20
|
|
21
|
Pavlidis P, Alachiotis N. A survey of methods and tools to detect recent and strong positive selection. ACTA ACUST UNITED AC 2017; 24:7. [PMID: 28405579 PMCID: PMC5385031 DOI: 10.1186/s40709-017-0064-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/29/2017] [Indexed: 01/25/2023]
Abstract
Positive selection occurs when an allele is favored by natural selection. The frequency of the favored allele increases in the population and due to genetic hitchhiking the neighboring linked variation diminishes, creating so-called selective sweeps. Detecting traces of positive selection in genomes is achieved by searching for signatures introduced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency spectrum, and particular LD patterns in the region. A variety of methods and tools can be used for detecting sweeps, ranging from simple implementations that compute summary statistics such as Tajima's D, to more advanced statistical approaches that use combinations of statistics, maximum likelihood, machine learning etc. In this survey, we present and discuss summary statistics and software tools, and classify them based on the selective sweep signature they detect, i.e., SFS-based vs. LD-based, as well as their capacity to analyze whole genomes or just subgenomic regions. Additionally, we summarize the results of comparisons among four open-source software releases (SweeD, SweepFinder, SweepFinder2, and OmegaPlus) regarding sensitivity, specificity, and execution times. In equilibrium neutral models or mild bottlenecks, both SFS- and LD-based methods are able to detect selective sweeps accurately. Methods and tools that rely on LD exhibit higher true positive rates than SFS-based ones under the model of a single sweep or recurrent hitchhiking. However, their false positive rate is elevated when a misspecified demographic model is used to represent the null hypothesis. When the correct (or similar to the correct) demographic model is used instead, the false positive rates are considerably reduced. The accuracy of detecting the true target of selection is decreased in bottleneck scenarios. In terms of execution time, LD-based methods are typically faster than SFS-based methods, due to the nature of required arithmetic.
Collapse
Affiliation(s)
- Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Crete, Greece
| | - Nikolaos Alachiotis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Crete, Greece
| |
Collapse
|
22
|
An Adaptive Transposable Element Insertion in the Regulatory Region of the EO Gene in the Domesticated Silkworm, Bombyx mori. Mol Biol Evol 2014; 31:3302-13. [DOI: 10.1093/molbev/msu261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|