1
|
Liu X, Zhang QG. More extinction driven by the Red Queen in smaller habitats. Ecology 2025; 106:e70018. [PMID: 39925187 DOI: 10.1002/ecy.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Populations in antagonistic coevolutionary interactions may "run or die," and their fates are determined by their evolutionary potential. The asymmetry of evolutionary speed between coevolving partners, for example, resulting from genetic constraints, can be mitigated in larger populations. We therefore hypothesize more frequent extinction driven by antagonistic coevolution with declining habitat size. In bacterium-virus systems, viruses (the consumers) typically suffer an evolutionary disadvantage due to constraints of genetic variation; and this pattern may apply to host-parasite interactions in general. Here, in our experiment with the bacterium Pseudomonas fluorescens SBW25 and its lytic phage virus SBW25Φ2, the likelihood of viral extinction was greater in smaller habitats. Among viral populations that did persist, those from small habitats showed lower infectivity and their coevolving bacterial populations had greater densities. Therefore, the impact of habitat size reduction on biodiversity could be exacerbated by coevolutionary processes. Our results also lead to a number of suggestions for biocontrol practices, particularly for evolutionary training of phages.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Karmakar S, Mukherjee P, Mishra V, Gupta RK, Kumar R, Srivastava P, Sharma RS. Microhabitat influences on phage-bacteria dynamics in an abandoned mine for ecorestoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122659. [PMID: 39340888 DOI: 10.1016/j.jenvman.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Understanding the complex interactions between bacteriophages (phages) and bacteria within varied environmental niches is critical yet underexplored for improving microbe-assisted ecological restoration. This study investigates the influence of microhabitat heterogeneity within an abandoned mine on phage-bacteria interaction patterns, focusing on Pseudomonas-enriched bacterial communities. By isolating viral communities and purifying bacteria from soils of three distinct microhabitats, we assessed the regulatory role of environmental factors on these interactions, crucial for bacterial success in environmental applications. We characterized microhabitat variability by analyzing soil particle size fractions, minerals composition, and elemental content using X-ray diffraction and energy-dispersive X-ray analyses. 16S rRNA sequencing and cross-infection assays revealed that although bacterial communities across different microhabitats are taxonomically similar, their interaction patterns with phages are distinct. Phage communities showed nonselective infectivity across soil types, while bacterial communities exhibited selective adaptation, facilitating colonization across diverse microhabitats. Minerals such as mica, kaolinite, and hematite were found to increase phage infectivity, whereas mixed-layer clay correlated with early lysis. Additionally, higher levels of iron (Fe) and potassium (K) were linked to bacterial resistance strategies. Our findings highlight the importance of understanding asymmetric adaptive strategies between bacteria and phages, driven by microhabitat heterogeneity, for enhancing microbial-mediated nature-based restoration of degraded ecosystems.
Collapse
Affiliation(s)
- Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Department of Environmental Studies, Ram Lal Anand College, University of Delhi, 110021, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Department of Environmental Science, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Centre for Inter-Disciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi, India; DDA Biodiversity Parks Programme, CEMDE, University of Delhi, Delhi, 110007, India.
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, 110021, India
| | - Rohit Kumar
- Department of Geology, University of Delhi, Delhi, 110007, India
| | | | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Gallinson DG, Kozakiewicz CP, Rautsaw RM, Beer MA, Ruiz-Aravena M, Comte S, Hamilton DG, Kerlin DH, McCallum HI, Hamede R, Jones ME, Storfer A, McMinds R, Margres MJ. Intergenomic signatures of coevolution between Tasmanian devils and an infectious cancer. Proc Natl Acad Sci U S A 2024; 121:e2307780121. [PMID: 38466855 PMCID: PMC10962979 DOI: 10.1073/pnas.2307780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Coevolution is common and frequently governs host-pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil-DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host-pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.
Collapse
Affiliation(s)
- Dylan G. Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- College of Public Health, University of South Florida, Tampa, FL33620
| | - Christopher P. Kozakiewicz
- School of Biological Sciences, Washington State University, Pullman, WA99163
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI49060
| | - Rhett M. Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Marc A. Beer
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY14853
| | - Sebastien Comte
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- New South Wales Department of Primary Industries, Vertebrate Pest Research Unit, Orange, NSW2800, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
| | - Douglas H. Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD4111, Australia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD4111, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- CANECEV Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier34394, France
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Ryan McMinds
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- College of Public Health, University of South Florida, Tampa, FL33620
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| |
Collapse
|
4
|
O'Keeffe FE, Pendleton RC, Holland CV, Luijckx P. Increased virulence due to multiple infection in Daphnia leads to limited growth in 1 of 2 co-infecting microsporidian parasites. Parasitology 2024; 151:58-67. [PMID: 37981808 PMCID: PMC10941049 DOI: 10.1017/s0031182023001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Recent outbreaks of various infectious diseases have highlighted the ever-present need to understand the drivers of the outbreak and spread of disease. Although much of the research investigating diseases focuses on single infections, natural systems are dominated by multiple infections. These infections may occur simultaneously, but are often acquired sequentially, which may alter the outcome of infection. Using waterfleas (Daphnia magna) as a model organism, we examined the outcome of sequential and simultaneous multiple infections with 2 microsporidian parasites (Ordospora colligata and Hamiltosporidium tvaerminnensis) in a fully factorial design with 9 treatments and 30 replicates. We found no differences between simultaneous and sequential infections. However, H. tvaerminnensis fitness was impeded by multiple infection due to increased host mortality, which gave H. tvaerminnensis less time to grow. Host fecundity was also reduced across all treatments, but animals infected with O. colligata at a younger age produced the fewest offspring. As H. tvaerminnensis is both horizontally and vertically transmitted, this reduction in offspring may have further reduced H. tvaerminnensis fitness in co-infected treatments. Our findings suggest that in natural populations where both species co-occur, H. tvaerminnensis may evolve to higher levels of virulence following frequent co-infection by O. colligata.
Collapse
Affiliation(s)
- Floriane E. O'Keeffe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C. Pendleton
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|
6
|
Tate AT, Schulz NK. The within-host ecology of insects and their parasites: integrating experiments and mathematical models. CURRENT OPINION IN INSECT SCIENCE 2022; 49:37-41. [PMID: 34793990 DOI: 10.1016/j.cois.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The within-host ecology of hosts and their microbes involves complex feedbacks between the host immune system, energetic resources, and microbial growth and virulence, which in turn affect the probability of transmission to new hosts. This complexity can be challenging to address with experiments alone, and mathematical models have traditionally played an essential role in disentangling these processes, making new predictions, and bridging gaps across biological scales. Insect hosts serve as uniquely powerful systems for the integration of experiments and theory in disease biology. In this review, we highlight recent studies in fruit flies, moths, beetles and other invertebrates that have inspired important mathematical models, and present open questions arising from recent modeling efforts that are ripe for testing in insects.
Collapse
Affiliation(s)
- Ann T Tate
- Department of Biological Sciences, Vanderbilt University, 465 21(st) Ave S., Nashville, TN, USA.
| | - Nora Ke Schulz
- Department of Biological Sciences, Vanderbilt University, 465 21(st) Ave S., Nashville, TN, USA
| |
Collapse
|
7
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
8
|
Kleindorfer S, Custance G, Peters KJ, Sulloway FJ. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin's finch song. Proc Biol Sci 2019; 286:20190461. [PMID: 31185871 DOI: 10.1098/rspb.2019.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia.,2 Konrad Lorenz Research Station and Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | - Georgina Custance
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Katharina J Peters
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Frank J Sulloway
- 3 Department of Psychology, University of California , 2121 Berkeley Way, Room 3302, 4125 Tolman Hall, Berkeley, CA 94720 , USA
| |
Collapse
|
9
|
Wang D, Li H, Ma X, Tang Y, Tang H, Hu X, Liu Z. Small RNA AvrA Regulates IscR to Increase the Stress Tolerances in SmpB Deficiency of Aeromonas veronii. Front Cell Infect Microbiol 2019; 9:142. [PMID: 31192158 PMCID: PMC6517841 DOI: 10.3389/fcimb.2019.00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
The superbacteria Aeromonas veronii displays not only a strong pathogenicity but also the resistance to nine kinds of antibiotics, resulting in the economic losses and health hazards. Small Protein B (SmpB) plays an important role in protein quality control, virulence, and stress reactions. Transcriptomic data revealed that expressions of the type IV pilus assembly and type VI secretion system (T6SS) proteins were downregulated in SmpB deficiency, indicating that the virulence of A. veronii might be attenuated. Although SmpB deletion decreased colonization in the mouse spleen and liver, LD50 of the smpB mutant was not altered as expected, compared with the wild type. Further, the transcriptomic and quantitative RT-PCR analyses showed that the combination of the downregulated AvrA and the upregulated iron-sulfur protein activator IscR, mediated the oxidative tolerance in smpB deletion. Next a reporter plasmid was constructed in which the promoter of iscR was applied to control the expression of the enhanced green fluorescent protein (eGFP) gene. When the reporter plasmid was co-expressed with the AvrA expression into E. coli, the relative fluorescence intensity was decreased significantly, suggesting that AvrA bound to iscR mRNA by base pairing, which in turn relieved the inhibition of iscR and intensified the downstream iron-sulfur proteins. Collectively, the smpB mutant exhibited an attenuated virulence in mice and enhanced tolerances to oxidative stress. This study demonstrates the complexity of gene regulation networks mediated by sRNA in systems biology, and also reflects the strong adaptability of superbacteria A. veronii in the process of evolution.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hongqian Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xinwen Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
10
|
Yu X, Hoyle RL, Guo F, Ratliff CM, Cantu V, Crow J, Xiang L, Heatley JJ, Zhu G. A Vavraia-like microsporidium as the cause of deadly infection in threatened and endangered Eurycea salamanders in the United States. Parasit Vectors 2019; 12:108. [PMID: 30871588 PMCID: PMC6419446 DOI: 10.1186/s13071-019-3369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Eurycea sosorum (Barton Springs salamander) and Eurycea nana (San Macros salamander) are listed as endangered and threatened species, respectively, by the U.S. Fish and Wildlife Service (USFWS) with habitats restricted to small regions near Austin, Texas, USA. The conservation efforts with the Eurycea salamanders at the captive breeding program in San Marcos Aquatic Resources Center (SMARC), a USFWS facility, have seen an unexpected and increased mortality rate over the past few years. The clinical signs of sick or dead salamanders included erythema, tail loss, asymmetric gills or brachial loss, rhabdomyolysis, kyphosis, and behavior changes, suggesting that an infectious disease might be the culprit. This study aimed to identify the cause of the infection, determine the taxonomic position of the pathogen, and investigate the potential reservoirs of the pathogen in the environment. Results Histopathological examination indicated microsporidian infection (microsporidiosis) in the sick and dead Eurycea salamanders that was later confirmed by PCR detection. We also determined the near full-length small subunit ribosomal RNA (SSU rRNA) gene from the microsporidian pathogen, which allowed us to determine its phylogenetic position, and to design primers for specific and sensitive detection of the pathogen. Phylogenetic analysis indicated that this pathogen was closely related to the insect parasites Vavraia spp. and the human opportunistic pathogen, Trachipleistophora hominis. This Vavraia-like microsporidium was present in dead salamanders at SMARC archived between 2011 and 2015 (positive rates ranging between 52.0–88.9% by PCR detection), as well as in some aquatic invertebrates at the facility (e.g. snails and small crustaceans). Conclusions A Vavraia-like microsporidian was at least one of the major pathogens, if not solely, responsible for the sickness and mortality in the SMARC salamanders, and the pathogen had been present in the center for years. Environmental invertebrates likely served as a source and reservoir of the microsporidian pathogen. These observations provide new knowledge and a foundation for future conservation efforts for Eurycea salamanders including molecular surveys, monitoring of the pathogen, and discovery of effective treatments. Electronic supplementary material The online version of this article (10.1186/s13071-019-3369-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Yu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rachel L Hoyle
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Cameron M Ratliff
- Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Valentin Cantu
- United States Fish and Wildlife Service, San Marcos Aquatic Resources Center, San Marcos, Texas, USA
| | - Justin Crow
- United States Fish and Wildlife Service, San Marcos Aquatic Resources Center, San Marcos, Texas, USA
| | - Lixin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - J Jill Heatley
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA. .,Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA.
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
11
|
Lopez-Ezquerra A, Mitschke A, Bornberg-Bauer E, Joop G. Tribolium castaneum gene expression changes after Paranosema whitei infection. J Invertebr Pathol 2018; 153:92-98. [DOI: 10.1016/j.jip.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
|
12
|
Le Clec'h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc Biol Sci 2018; 284:rspb.2017.1076. [PMID: 28724736 DOI: 10.1098/rspb.2017.1076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Vertical transmission mode is predicted to decrease the virulence of symbionts. However, Wolbachia, a widespread vertically transmitted endosymbiont, exhibits both negative and beneficial effects on arthropod fitness. This 'Jekyll and Hyde' behaviour, as well as its ability to live transiently outside host cells and to establish new infections via horizontal transmission, may reflect the capacity of Wolbachia to exhibit various phenotypes depending on the prevailing environmental constraints. To study the ability of Wolbachia to readily cope with new constraints, we forced this endosymbiont to spread only via horizontal transmission. To achieve this, we performed serial horizontal transfers of haemolymph from Wolbachia-infected to naive individuals of the isopod Armadillidium vulgare. Across passages, we observed phenotypic changes in the symbiotic relationship: (i) The Wolbachia titre increased in both haemolymph and nerve cord but remained stable in ovaries; (ii) Wolbachia infection was benign at the beginning of the experiment, but highly virulent, killing most hosts after only a few passages. Such a phenotypic shift after recurrent horizontal passages demonstrates that Wolbachia can rapidly change its virulence when facing new environmental constraints. We thoroughly discuss the potential mechanism(s) underlying this phenotypic change, which are likely to be crucial for the ongoing radiation of Wolbachia in arthropods.
Collapse
Affiliation(s)
- Winka Le Clec'h
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, 78245 San Antonio, TX, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Jessica Dittmer
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Maryline Raimond
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Mathieu Sicard
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France .,Institut des Sciences de l'Evolution de Montpellier (UMR CNRS-IRD-UM 5554), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
13
|
Rafaluk-Mohr C, Wagner S, Joop G. Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J Invertebr Pathol 2017; 152:1-7. [PMID: 29273219 DOI: 10.1016/j.jip.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Immunity is a key trait in host defence against parasites and is thus likely to be under selection during host-parasite coevolution. Broadly, the immune system consists of several lines of defence including physiological innate immunity, physical barriers such as the cuticle, avoidance behaviours and in some cases antimicrobial secretions. The defence conferring the highest fitness benefit may be situation specific and depend on the taxon and infection route of the parasite. We carried out a host-parasite coevolution experiment between the red flour beetle T. castaneum, which possesses a comprehensive immune system including the ability to secrete antimicrobial compounds into its environment, and the generalist entomopathogenic fungus Beauveria bassiana. We measured levels of external immunity (benzoquinone secretion) and an internal immune trait, phenoloxidase (PO) activity throughout and in F2 to beetles at the end of the experiment. Survival (a proxy for resistance) of F2 coevolved and control beetles exposed to the fungus was also measured. No change in external immunity or survival was observed as a consequence of host-parasite coevolution, however, PO responses in evolved beetles showed increased flexibility dependent on the route of infection of the parasite. This more flexible PO response appeared to result in beetle populations being better able to cope with the parasite, buffering their fitness during the course of the coevolution experiment. This represents a subtle but significant adaptation to the presence of a parasite over evolutionary time.
Collapse
Affiliation(s)
- Charlotte Rafaluk-Mohr
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 25392 Giessen, Germany.
| | - Sophia Wagner
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Gerrit Joop
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 25392 Giessen, Germany.
| |
Collapse
|
14
|
Abstract
Abdominal angiostrongyliasis (AA) is caused by Angiostrongylus costaricensis, which inhabits mesenteric arteries. There is no drug treatment for AA, and since intestinal infarction due to thrombi is one of the main complications of the disease, the use of anticoagulants may be a treatment option. Thus, we aimed to assess the effect of high doses of enoxaparin on the prevention of ischaemic intestinal lesions and on the survival of mice infected with A. costaricensis. Twenty-four mice were infected with L3 of A. costaricensis and divided equally into two groups: Group 1, control treated with placebo, and Group 2, treated daily with enoxaparin (2.5 mg/kg) for 50 days. All mice were subjected to necropsy and histological analysis. The results from gross and microscopic assessments showed no variation in the prevalence of lesions between the groups. An analysis was also performed among survivors and non-survivors, showing that animals that died often presented lesions, such as granulation tissue in the serosa, and intestinal infarction and adhesion. The mortality rate did not vary between the enoxaparin-treated and control groups. Thus, we showed that high doses of enoxaparin have no protective effect against AA, as the survival rates and lesions of mice did not vary between the treated and control groups. Considering that the use of prophylactic doses was also shown to be ineffective in a previous study, we do not recommend the use of enoxaparin for AA treatment.
Collapse
|
15
|
Rafaluk C, Yang W, Mitschke A, Rosenstiel P, Schulenburg H, Joop G. Highly potent host external immunity acts as a strong selective force enhancing rapid parasite virulence evolution. Environ Microbiol 2017; 19:2090-2100. [PMID: 28345225 DOI: 10.1111/1462-2920.13736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
Virulence is often under selection during host-parasite coevolution. In order to increase fitness, parasites are predicted to circumvent and overcome host immunity. A particular challenge for pathogens are external immune systems, chemical defence systems comprised of potent antimicrobial compounds released by prospective hosts into the environment. We carried out an evolution experiment, allowing for coevolution to occur, with the entomopathogenic fungus, Beauveria bassiana, and the red flour beetle, Tribolium castaneum, which has a well-documented external immune system with strong inhibitory effects against B. bassiana. After just seven transfers of experimental evolution we saw a significant increase in parasite induced host mortality, a proxy for virulence, in all B. bassiana lines. This apparent virulence increase was mainly the result of the B. bassiana lines evolving resistance to the beetles' external immune defences, not due to increased production of toxins or other harmful substances. Transcriptomic analyses of evolved B. bassiana implicated the up-regulation of oxidative stress resistance genes in the observed resistance to external immunity. It was concluded that external immunity acts as a powerful selective force for virulence evolution, with an increase in virulence being achieved apparently entirely by overcoming these defences, most likely due to elevated oxidative stress resistance.
Collapse
Affiliation(s)
- Charlotte Rafaluk
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany.,Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.,Institute for Insect Biotechnology, University of Gießen, Heinrich-Buff-Ring 26-32, Gießen, D-35392, Germany
| | - Wentao Yang
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany
| | - Andreas Mitschke
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany.,Institute for Insect Biotechnology, University of Gießen, Heinrich-Buff-Ring 26-32, Gießen, D-35392, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Schittenhelmstrasse 12, Kiel, 24105, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany
| | - Gerrit Joop
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany.,Institute for Insect Biotechnology, University of Gießen, Heinrich-Buff-Ring 26-32, Gießen, D-35392, Germany
| |
Collapse
|
16
|
Gokhale CS, Traulsen A, Joop G. Social dilemma in the external immune system of the red flour beetle? It is a matter of time. Ecol Evol 2017; 7:6758-6765. [PMID: 28904757 PMCID: PMC5587472 DOI: 10.1002/ece3.3198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Sociobiology has revolutionized our understanding of interactions between organisms. Interactions may present a social dilemma where the interests of individual actors do not align with those of the group as a whole. Viewed through a sociobiological lens, nearly all interactions can be described regarding their costs and benefits, and a number of them then resemble a social dilemma. Numerous experimental systems, from bacteria to mammals, have been proposed as models for studying such dilemmas. Here, we make use of the external immune system of the red flour beetle, Tribolium castaneum, to investigate how the experimental duration can affect whether the external secretion comprises a social dilemma or not. Some beetles (secretors) produce a costly quinone-rich external secretion that inhibits microbial growth in the surrounding environment, providing the secretors with direct personal benefits. However, as the antimicrobial secretion acts in the environment of the beetle, it is potentially also advantageous to other beetles (nonsecretors), who avoid the cost of producing the secretion. We test experimentally if the secretion qualifies as a public good. We find that in the short term, costly quinone secretion can be interpreted as a public good presenting a social dilemma where the presence of secretors increases the fitness of the group. In the long run, the benefit to the group of having more secretors vanishes and becomes detrimental to the group. Therefore, in such seminatural environmental conditions, it turns out that qualifying a trait as social can be a matter of timing.
Collapse
Affiliation(s)
- Chaitanya S. Gokhale
- Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Arne Traulsen
- Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Gerrit Joop
- Institut für InsektenbiotechnologieUniversity of GiessenGiessenGermany
- Evolutionary Ecology and GeneticsUniversity of KielKielGermany
| |
Collapse
|
17
|
Kloesener MH, Bose J, Schulte RD. Experimental evolution with a multicellular host causes diversification within and between microbial parasite populations-Differences in emerging phenotypes of two different parasite strains. Evolution 2017; 71:2194-2205. [PMID: 28714591 DOI: 10.1111/evo.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Host-parasite coevolution is predicted to have complex evolutionary consequences, potentially leading to the emergence of genetic and phenotypic diversity for both antagonists. However, little is known about variation in phenotypic responses to coevolution between different parasite strains exposed to the same experimental conditions. We infected Caenorhabditis elegans with one of two strains of Bacillus thuringiensis and either allowed the host and the parasite to experimentally coevolve (coevolution treatment) or allowed only the parasite to adapt to the host (one-sided parasite adaptation). By isolating single parasite clones from evolved populations, we found phenotypic diversification of the ancestral strain into distinct clones, which varied in virulence toward ancestral hosts and competitive ability against other parasite genotypes. Parasite phenotypes differed remarkably not only between the two strains, but also between and within different replicate populations, indicating diversification of the clonal population caused by selection. This study highlights that the evolutionary selection pressure mediated by a multicellular host causes phenotypic diversification, but not necessarily with the same phenotypic outcome for different parasite strains.
Collapse
Affiliation(s)
- Michaela H Kloesener
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| | - Joy Bose
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany.,Evolutionary Biology Laboratory, Evolutionary and Integrative Biology Unit (EIBU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | - Rebecca D Schulte
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| |
Collapse
|
18
|
Ford SA, Kao D, Williams D, King KC. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat Commun 2016; 7:13430. [PMID: 27845328 PMCID: PMC5116080 DOI: 10.1038/ncomms13430] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022] Open
Abstract
Microbes that protect their hosts from pathogens are widespread in nature and are attractive disease control agents. Given that pathogen adaptation to barriers against infection can drive changes in pathogen virulence, 'defensive microbes' may shape disease severity. Here we show that co-evolving a microbe with host-protective properties (Enterococcus faecalis) and a pathogen (Staphylococcus aureus) within Caenorhabditis elegans hosts drives the evolution of reduced pathogen virulence as a by-product of adaptation to the defensive microbe. Using both genomic and phenotypic analyses, we discover that the production of fewer iron-scavenging siderophores by the pathogen reduces the fitness of the defensive microbe and underpins the decline in pathogen virulence. These data show that defensive microbes can shape the evolution of pathogen virulence and that the mechanism of pathogen resistance can determine the direction of virulence evolution.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Damian Kao
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David Williams
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB UK
| | - Kayla C King
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
19
|
Wright RCT, Brockhurst MA, Harrison E. Ecological conditions determine extinction risk in co-evolving bacteria-phage populations. BMC Evol Biol 2016; 16:227. [PMID: 27776482 PMCID: PMC5078955 DOI: 10.1186/s12862-016-0808-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
Background Antagonistic coevolution between bacteria and their viral parasites, phage, drives continual evolution of resistance and infectivity traits through recurrent cycles of adaptation and counter-adaptation. Both partners are vulnerable to extinction through failure of adaptation. Environmental conditions may impose unequal abiotic selection pressures on each partner, destabilising the coevolutionary relationship and increasing the extinction risk of one partner. In this study we explore how the degree of population mixing and resource supply affect coevolution-induced extinction risk by coevolving replicate populations of Pseudomonas fluorescens SBW25 with its associated lytic phage SBW25Ф2 under four treatment regimens incorporating low and high resource availability with mixed or static growth conditions. Results We observed an increased risk of phage extinction under population mixing, and in low resource conditions. High levels of evolved bacterial resistance promoted phage extinction at low resources under both mixed and static conditions, whereas phage populations could survive when phage susceptible bacterial genotypes rose to high frequency. Conclusions These findings demonstrate that phage extinction risk is influenced by multiple abiotic conditions, which together act to destabilise the bacteria-phage coevolutionary relationship. The risk of coevolution-induced extinction is therefore dependent on the ecological context.
Collapse
Affiliation(s)
| | | | - Ellie Harrison
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
20
|
The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. ZOOLOGY 2016; 119:273-80. [DOI: 10.1016/j.zool.2016.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/21/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
|
21
|
Immune priming in arthropods: an update focusing on the red flour beetle. ZOOLOGY 2016; 119:254-61. [DOI: 10.1016/j.zool.2016.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
|
22
|
Joop G, Vilcinskas A. Coevolution of parasitic fungi and insect hosts. ZOOLOGY 2016; 119:350-8. [PMID: 27448694 DOI: 10.1016/j.zool.2016.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
Parasitic fungi and their insect hosts provide an intriguing model system for dissecting the complex co-evolutionary processes, which result in Red Queen dynamics. To explore the genetic basis behind host-parasite coevolution we chose two parasitic fungi (Beauveria bassiana and Metarhizium anisopliae, representing the most important entomopathogenic fungi used in the biological control of pest or vector insects) and two established insect model hosts (the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum) for which sequenced genomes or comprehensive transcriptomes are available. Focusing on these model organisms, we review the knowledge about the interactions between fungal molecules operating as virulence factors and insect host-derived defense molecules mediating antifungal immunity. Particularly the study of the intimate interactions between fungal proteinases and corresponding host-derived proteinase inhibitors elucidated novel coevolutionary mechanisms such as functional shifts or diversification of involved effector molecules. Complementarily, we compared the outcome of coevolution experiments using the parasitic fungus B. bassiana and two different insect hosts which were initially either susceptible (Galleria mellonella) or resistant (Tribolium castaneum). Taking a snapshot of host-parasite coevolution, we show that parasitic fungi can overcome host barriers such as external antimicrobial secretions just as hosts can build new barriers, both within a relatively short time of coevolution.
Collapse
Affiliation(s)
- Gerrit Joop
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, D-35394 Giessen, Germany
| |
Collapse
|
23
|
Strauß JF, Crain P, Schulenburg H, Telschow A. Experimental evolution in silico: a custom-designed mathematical model for virulence evolution of Bacillus thuringiensis. ZOOLOGY 2016; 119:359-65. [PMID: 27113405 DOI: 10.1016/j.zool.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/20/2016] [Accepted: 03/17/2016] [Indexed: 01/24/2023]
Abstract
Most mathematical models on the evolution of virulence are based on epidemiological models that assume parasite transmission follows the mass action principle. In experimental evolution, however, mass action is often violated due to controlled infection protocols. This "theory-experiment mismatch" raises the question whether there is a need for new mathematical models to accommodate the particular characteristics of experimental evolution. Here, we explore the experimental evolution model system of Bacillus thuringiensis as a parasite and Caenorhabditis elegans as a host. Recent experimental studies with strict control of parasite transmission revealed that one-sided adaptation of B. thuringiensis with non-evolving hosts selects for intermediate or no virulence, sometimes coupled with parasite extinction. In contrast, host-parasite coevolution selects for high virulence and for hosts with strong resistance against B. thuringiensis. In order to explain the empirical results, we propose a new mathematical model that mimics the basic experimental set-up. The key assumptions are: (i) controlled parasite transmission (no mass action), (ii) discrete host generations, and (iii) context-dependent cost of toxin production. Our model analysis revealed the same basic trends as found in the experiments. Especially, we could show that resistant hosts select for highly virulent bacterial strains. Moreover, we found (i) that the evolved level of virulence is independent of the initial level of virulence, and (ii) that the average amount of bacteria ingested significantly affects the evolution of virulence with fewer bacteria ingested selecting for highly virulent strains. These predictions can be tested in future experiments. This study highlights the usefulness of custom-designed mathematical models in the analysis and interpretation of empirical results from experimental evolution.
Collapse
Affiliation(s)
- Jakob Friedrich Strauß
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany
| | - Philip Crain
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany; DuPont Pioneer, 200 Powder Mill Rd, Wilmington, DE 19803, USA
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Arndt Telschow
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany.
| |
Collapse
|
24
|
Rafaluk C, Jansen G, Schulenburg H, Joop G. When experimental selection for virulence leads to loss of virulence. Trends Parasitol 2015; 31:426-34. [DOI: 10.1016/j.pt.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
|