1
|
Chen M, Zhu B, Xie W, Liu Y, Zhang H, Weng Q. Characterization and phylogenetic analysis of vomeronasal receptors in the female muskrat (Ondatra zibethicus). Gene 2025; 933:148998. [PMID: 39395729 DOI: 10.1016/j.gene.2024.148998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Vomeronasal receptors (VRs) play a crucial role in recognizing pheromones, which are essential for social chemical communication. The male muskrat (Ondatra zibethicus) secretes musk, which contains pheromones as a reproductive signal, and the female can recognize it through the VNO to mediate social communication behavior. This study aimed to identify the genomic information of VRs (OzVRs) in the female muskrat and elucidate their physicochemical properties and evolutionary relationship. Six predominantly expressed OzVR genes were identified using the RACE technique, and a comprehensive analysis was conducted on their gene structure, subcellular distribution, functional predictions, and mRNA levels, revealed that all OzVRs were transmembrane proteins. Phylogenetic analysis clustered OzVR genes into two clades (V1Rs: OzV1R21, OzV1R81, OzV1R105; V2Rs: OzV2R33, OzV2R44, OzV2R60). Physiochemically, OzV1Rs were basic proteins, while OzV2Rs exhibited weakly acidic character. Among them, OzV1R81 and OzV2R44 were identified as hydrophobicitystable proteins, with the remainder categorized as hydrophobicity-unstable proteins. Promoters analysis revealed the involvement of transcription factors and complexes, including Ahr::Arnt, Runx1, Arnt, and TFAP2A, in regulating the expression of the OzVR genes. Conserved domain and motif analyses demonstrated a high conservation of the VRs superfamily in rodents, with many conserved domains linked to pheromone binding. Functional predictions confirmed that OzVRs were associated with pheromones detection. Finally, the expression patterns of OzVR genes in different tissues and seasons indicated that OzVRs have the highest level of expression in the vomeronasal organ, and OzV1Rs notably higher in the breeding season than that in the non-breeding season, however the expression levels of OzV2Rs were higher in the non-breeding season. This study provided insights into the phylogenetic relationships, gene structure, physicochemical properties, promoter binding sites, functions and gene expression patterns of OzVRs, offering a theoretical reference for further examination of VR gene functions and a foundation for understanding chemical signaling mechanisms in the muskrat.
Collapse
Affiliation(s)
- Meiqi Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Bowen Zhu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Rocha A, Nguyen QAT, Haga-Yamanaka S. Type 2 vomeronasal receptor-A4 subfamily: Potential predator sensors in mice. Genesis 2024; 62:e23597. [PMID: 38590121 PMCID: PMC11018355 DOI: 10.1002/dvg.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.
Collapse
Affiliation(s)
- Andrea Rocha
- Neuroscience Graduate Program, University of California, Riverside
| | | | - Sachiko Haga-Yamanaka
- Neuroscience Graduate Program, University of California, Riverside
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside
| |
Collapse
|
3
|
Perioral secretions enable complex social signaling in African mole-rats (genus Fukomys). Sci Rep 2022; 12:22366. [PMID: 36572727 PMCID: PMC9792591 DOI: 10.1038/s41598-022-26351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Subterranean common mole-rats of the genus Fukomys (family Bathyergidae) live in large, cooperatively-breeding families. Odor cues have been hypothesized to play an important role in mediating social behaviors in the underground ecotope, but only little is known about the role of olfactory signaling in burrowing mammals. Here we characterize the so far neglected perioral glands of Fukomys and other African mole-rats as an important source of olfactory social information. Histology demonstrates these structures to be derived sebaceous glands that are developed regardless of sex and reproductive status. However, gland activity is higher in Fukomys males, leading to sexually dimorphic patterns of stain and clotting of the facial pelage. Behavioral assays revealed that conspecifics prefer male but not female perioral swabs over scent samples from the back fur and that male sebum causes similar attraction as anogenital scent, a known source of social information in Fukomys. Finally, we assessed volatile compounds in the perioral sebum of the giant mole-rat (Fukomys mechowii) via GCxGC-MS-based metabolomic profiling. Volatiles display pronounced sex-specific signatures but also allow to differentiate between intrasexual reproductive status groups. These different lines of evidence suggest that mole-rat perioral glands provide complex odor signals which play a crucial role in social communication.
Collapse
|
4
|
Dymskaya MM, Volodin IA, Smorkatcheva AV, Vasilieva NA, Volodina EV. Audible, but not ultrasonic, calls reflect surface-dwelling or subterranean specialization in pup and adult Brandt’s and mandarin voles. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. eLife 2022; 11:78295. [PMID: 35674717 PMCID: PMC9177142 DOI: 10.7554/elife.78295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
On the social scale, the blind mole rat (BMR; Spalax ehrenbergi) is an extreme. It is exceedingly solitary, territorial, and aggressive. BMRs reside underground, in self-excavated tunnels that they rarely leave. They possess specialized sensory systems for social communication and navigation, which allow them to cope with the harsh environmental conditions underground. This review aims to present the blind mole rat as an ideal, novel neuroethological model for studying aggressive and solitary behaviors. We discuss the BMR's unique behavioral phenotype, particularly in the context of 'anti-social' behaviors, and review the available literature regarding its specialized sensory adaptations to the social and physical habitat. To date, the neurobiology of the blind mole rat remains mostly unknown and holds a promising avenue for scientific discovery. Unraveling the neural basis of the BMR's behavior, in comparison to that of social rodents, can shed important light on the underlying mechanisms of psychiatric disorders in humans, in which similar behaviors are displayed.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Grace Smarsh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Jiao H, Wang Q, Wang BJ, Li K, Lövy M, Nevo E, Li Q, Su W, Jiang P, Zhao H. Local Adaptation of Bitter Taste and Ecological Speciation in a Wild Mammal. Mol Biol Evol 2021; 38:4562-4572. [PMID: 34240186 PMCID: PMC8476172 DOI: 10.1093/molbev/msab205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal-the blind mole rat Spalax galili-that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.
Collapse
Affiliation(s)
- Hengwu Jiao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing-Jun Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kexin Li
- Institute of Evolution, University of Haifa, Haifa, Israel
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Qiyang Li
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenchuan Su
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University—Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
7
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
8
|
Thomas AL, Evans LM, Nelsen MD, Chesler EJ, Powers MS, Booher WC, Lowry CA, DeFries JC, Ehringer MA. Whole-Genome Sequencing of Inbred Mouse Strains Selected for High and Low Open-Field Activity. Behav Genet 2020; 51:68-81. [PMID: 32939625 DOI: 10.1007/s10519-020-10014-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/21/2020] [Indexed: 02/09/2023]
Abstract
We conducted whole-genome sequencing of four inbred mouse strains initially selected for high (H1, H2) or low (L1, L2) open-field activity (OFA), and then examined strain distribution patterns for all DNA variants that differed between their BALB/cJ and C57BL/6J parental strains. Next, we assessed genome-wide sharing (3,678,826 variants) both between and within the High and Low Activity strains. Results suggested that about 10% of these DNA variants may be associated with OFA, and clearly demonstrated its polygenic nature. Finally, we conducted bioinformatic analyses of functional genomics data from mouse, rat, and human to refine previously identified quantitative trait loci (QTL) for anxiety-related measures. This combination of sequence analysis and genomic-data integration facilitated refinement of previously intractable QTL findings, and identified possible genes for functional follow-up studies.
Collapse
Affiliation(s)
- Aimee L Thomas
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Luke M Evans
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Michaela D Nelsen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Matthew S Powers
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Winona C Booher
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John C DeFries
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA. .,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA. .,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA.
| |
Collapse
|
9
|
Miller CH, Campbell P, Sheehan MJ. Distinct evolutionary trajectories of V1R clades across mouse species. BMC Evol Biol 2020; 20:99. [PMID: 32770934 PMCID: PMC7414754 DOI: 10.1186/s12862-020-01662-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many animals rely heavily on olfaction to navigate their environment. Among rodents, olfaction is crucial for a wide range of social behaviors. The vomeronasal olfactory system in particular plays an important role in mediating social communication, including the detection of pheromones and recognition signals. In this study we examine patterns of vomeronasal type-1 receptor (V1R) evolution in the house mouse and related species within the genus Mus. We report the extent of gene repertoire turnover and conservation among species and clades, as well as the prevalence of positive selection on gene sequences across the V1R tree. By exploring the evolution of these receptors, we provide insight into the functional roles of receptor subtypes as well as the dynamics of gene family evolution. RESULTS We generated transcriptomes from the vomeronasal organs of 5 Mus species, and produced high quality V1R repertoires for each species. We find that V1R clades in the house mouse and relatives exhibit distinct evolutionary trajectories. We identify putative species-specific gene expansions, including a large clade D expansion in the house mouse. While gene gains are abundant, we detect very few gene losses. We describe a novel V1R clade and highlight candidate receptors for future study. We find evidence for distinct evolutionary processes across different clades, from largescale turnover to highly conserved repertoires. Patterns of positive selection are similarly variable, as some clades exhibit abundant positive selection while others display high gene sequence conservation. Based on clade-level evolutionary patterns, we identify receptor families that are strong candidates for detecting social signals and predator cues. Our results reveal clades with receptors detecting female reproductive status are among the most conserved across species, suggesting an important role in V1R chemosensation. CONCLUSION Analysis of clade-level evolution is critical for understanding species' chemosensory adaptations. This study provides clear evidence that V1R clades are characterized by distinct evolutionary trajectories. As receptor evolution is shaped by ligand identity, these results provide a framework for examining the functional roles of receptors.
Collapse
Affiliation(s)
| | - Polly Campbell
- Evolution, Ecology and Organismal Biology, University of California-Riverside, Riverside, USA
| | | |
Collapse
|
10
|
The Role of Olfactory Genes in the Expression of Rodent Paternal Care Behavior. Genes (Basel) 2020; 11:genes11030292. [PMID: 32164379 PMCID: PMC7140856 DOI: 10.3390/genes11030292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Olfaction is the dominant sensory modality in rodents, and is crucial for regulating social behaviors, including parental care. Paternal care is rare in rodents, but can have significant consequences for offspring fitness, suggesting a need to understand the factors that regulate its expression. Pup-related odor cues are critical for the onset and maintenance of paternal care. Here, I consider the role of olfaction in the expression of paternal care in rodents. The medial preoptic area shares neural projections with the olfactory and accessory olfactory bulbs, which are responsible for the interpretation of olfactory cues detected by the main olfactory and vomeronasal systems. The olfactory, trace amine, membrane-spanning 4-pass A, vomeronasal 1, vomeronasal 2 and formyl peptide receptors are all involved in olfactory detection. I highlight the roles that 10 olfactory genes play in the expression of direct paternal care behaviors, acknowledging that this list is not exhaustive. Many of these genes modulate parental aggression towards intruders, and facilitate the recognition and discrimination of pups in general. Much of our understanding comes from studies on non-naturally paternal laboratory rodents. Future studies should explore what role these genes play in the regulation and expression of paternal care in naturally biparental species.
Collapse
|