1
|
Judy CD, Graves GR, McCormack JE, Stryjewski KF, Brumfield RT. Speciation with gene flow in an island endemic hummingbird. PNAS NEXUS 2025; 4:pgaf095. [PMID: 40235924 PMCID: PMC11997969 DOI: 10.1093/pnasnexus/pgaf095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/20/2025] [Indexed: 04/17/2025]
Abstract
We examined speciation in streamertail hummingbirds (Trochilus polytmus and Trochilus scitulus), Jamaican endemic taxa that challenge the rule that bird speciation cannot progress in situ on small islands. Our analysis shows that divergent selection acting on male bill color, a sexual ornament that is red in polytmus and black in scitulus, acts as a key reproductive barrier. We conducted a population-level analysis of genomic and phenotypic patterns to determine the traits that contribute the most to speciation despite ongoing gene flow across a narrow hybrid zone. We characterized genomic patterns using 6,451 single-nucleotide polymorphisms and a segment of the mitochondrial control region. Our analyses revealed high diversity within species, and low divergence between them, consistent with a recent speciation event or extensive gene flow following secondary contact. We observed narrow clines in two phenotypic traits and several SNP loci. The cline width for male bill color is only 2.3 km, marking it as one of the narrowest phenotypic clines documented in an avian hybrid zone. The coincidence of estimated cline centers with the Rio Grande Valley suggests that this landscape feature may contribute to hybrid zone stability. However, given that streamertails are highly mobile, it is unlikely that such a narrow river acts as a physical barrier to dispersal. The limited genomic divergence across scanned regions of the genome offers little support for postmating reproductive barriers. Instead, our findings point to strong premating selection acting on bill color as the primary driver of streamertail speciation.
Collapse
Affiliation(s)
- Caroline Duffie Judy
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013, USA
| | - Gary R Graves
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013, USA
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - John E McCormack
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
- Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd, Los Angeles, CA, 90041, USA
| | - Katherine Faust Stryjewski
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Blain SA, Justen HC, Langdon QK, Delmore KE. Repeatable Selection on Large Ancestry Blocks in an Avian Hybrid Zone. Mol Biol Evol 2025; 42:msaf044. [PMID: 39992157 PMCID: PMC11886783 DOI: 10.1093/molbev/msaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/29/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Hybrid zones create natural tests of genetic incompatibilities by combining loci from 2 species in the same genetic background in the wild, making them useful for identifying loci involved in both intrinsic and ecological (extrinsic) isolation. Two Swainson's thrush subspecies form a hybrid zone in western North America. These coastal and inland subspecies exhibit dramatic differences in migration routes; their hybrids exhibit poor migratory survival, suggesting that ecological incompatibilities maintain this zone. We used a panel of ancestry informative markers to identify repeated patterns of selection and introgression across 4 hybrid populations that span the entire length of the Swainson's thrush hybrid zone. Two repeatable patterns consistent with selection against incompatibilities-steep genomic clines and few transitions between ancestry states-were found in large genetic blocks on chromosomes 1 and 5. The block on chromosome 1 showed evidence for inland subspecies introgression while the block on chromosome 5 exhibited coastal subspecies introgression. Some regions previously associated with migratory phenotypes, including migratory orientation, or exhibiting misexpression between the subspecies exhibited signatures of selection in the hybrid zone. Both selection and introgression across the genome were shaped by genomic structural features and evolutionary history, with stronger selection and reduced introgression in regions of low recombination, high subspecies differentiation, positive selection within the subspecies, and on macrochromosomes. Cumulatively, these results suggest that linkage among loci interacts with divergent selection and past divergent evolution between species to strengthen barriers to gene flow within hybrid zones.
Collapse
Affiliation(s)
- Stephanie A Blain
- Biology Department, Texas A&M University, College Station, TX, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Hannah C Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | - Quinn K Langdon
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Cui J, Chen Y, Hines HM, Ma L, Yang W, Wang C, Liu S, Li H, Cai W, Da W, Williams P, Tian L. Does coevolution in refugia drive mimicry in bumble bees? Insights from a South Asian mimicry group. SCIENCE ADVANCES 2024; 10:eadl2286. [PMID: 38865449 PMCID: PMC11168453 DOI: 10.1126/sciadv.adl2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Müllerian mimicry was proposed to be an example of a coevolved mutualism promoted by population isolation in glacial refugia. This, however, has not been well supported in butterfly models. Here, we use genomic data to test this theory while examining the population genetics behind mimetic diversification in a pair of co-mimetic bumble bees, Bombus breviceps Smith and Bombus trifasciatus Smith. In both lineages, populations were structured by geography but not as much by color pattern, suggesting sharing of color alleles across regions of restricted gene flow and formation of mimicry complexes in the absence of genetic differentiation. Demographic analyses showed mismatches between historical effective population size changes and glacial cycles, and niche modeling revealed only mild habitat retraction during glaciation. Moreover, mimetic subpopulations of the same color form in the two lineages only in some cases exhibit similar population history and genetic divergence. Therefore, the current study supports a more complex history in this comimicry than a simple refugium-coevolution model.
Collapse
Affiliation(s)
- Jixiang Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuxin Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Heather M. Hines
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ling Ma
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanhu Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chao Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, China
- Medog Biodiversity Observation and Research Station of Xizang Autonomous Region, Tibet, China
| | - Paul Williams
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Li Tian
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Musher LJ, Del-Rio G, Marcondes RS, Brumfield RT, Bravo GA, Thom G. Geogenomic Predictors of Genetree Heterogeneity Explain Phylogeographic and Introgression History: A Case Study in an Amazonian Bird (Thamnophilus aethiops). Syst Biol 2024; 73:36-52. [PMID: 37804132 DOI: 10.1093/sysbio/syad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained a convolutional neural network to classify our data into alternative diversification models and estimate demographic parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; speciation; species tree.].
Collapse
Affiliation(s)
- Lukas J Musher
- Department of Ornithology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Glaucia Del-Rio
- Cornell Laboratory of Ornithology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Rafael S Marcondes
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Robb T Brumfield
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá 111311, Colombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory Thom
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Carvalho-Madrigal S, Sanín MJ. The role of introgressive hybridization in shaping the geographically isolated gene pools of wax palm populations (genus Ceroxylon). Mol Phylogenet Evol 2024; 193:108013. [PMID: 38195012 DOI: 10.1016/j.ympev.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.
Collapse
Affiliation(s)
| | - María José Sanín
- School of Mathematical and Natural Sciences, Arizona State University, West Valley Campus, Glendale, United States.
| |
Collapse
|
7
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
8
|
Myers BM, Burns KJ, Clark CJ, Brelsford A. Sampling affects population genetic inference: A case study of the Allen's (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). J Hered 2023; 114:625-636. [PMID: 37455658 DOI: 10.1093/jhered/esad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen's hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen's × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen's, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen's hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen's hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.
Collapse
Affiliation(s)
- Brian M Myers
- Department of Biological Sciences, San Diego State University, San Diego, CA, United States
| | - Kevin J Burns
- Department of Biological Sciences, San Diego State University, San Diego, CA, United States
| | - Christopher J Clark
- Department of Evolution, Ecology, and Organismal Biology, Speith Hall, University of California, Riverside, CA, United States
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, Speith Hall, University of California, Riverside, CA, United States
| |
Collapse
|
9
|
Mérot C, Stenløkk KSR, Venney C, Laporte M, Moser M, Normandeau E, Árnyasi M, Kent M, Rougeux C, Flynn JM, Lien S, Bernatchez L. Genome assembly, structural variants, and genetic differentiation between lake whitefish young species pairs (Coregonus sp.) with long and short reads. Mol Ecol 2023; 32:1458-1477. [PMID: 35416336 DOI: 10.1111/mec.16468] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
Nascent pairs of ecologically differentiated species offer an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) such as insertions, deletions and other rearrangements, allowing further insights into the genetic architecture of speciation and how different types of variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the lake whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both C. clupeaformis sp. Normal and C. clupeaformis sp. Dwarf, annotated the transposable elements and analysed the genomes in the light of related coregonid species. Next, we used a combination of long- and short-read sequencing to characterize SVs and genotype them at the population scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species correspond to insertions or deletions of transposable elements (TEs), suggesting that TE accumulation may represent a key component of genetic divergence between the Dwarf and Normal species. Together, our results suggest that SVs may play an important role in speciation and that, by combining second- and third-generation sequencing, we now have the ability to integrate SVs into speciation genomics.
Collapse
Affiliation(s)
- Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Kristina S R Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clare Venney
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Martin Laporte
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Ministère des Forêts, de la Faune et des Parcs (MFFP) du Québec, Québec, Québec, Canada
| | - Michel Moser
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
10
|
Myers BM, Rankin DT, Burns KJ, Brelsford A, Clark CJ. k-mer analysis shows hybrid hummingbirds perform variable, transgressive courtship sequences. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Tigano A, Khan R, Omer AD, Weisz D, Dudchenko O, Multani AS, Pathak S, Behringer RR, Aiden EL, Fisher H, MacManes MD. Chromosome size affects sequence divergence between species through the interplay of recombination and selection. Evolution 2022; 76:782-798. [PMID: 35271737 PMCID: PMC9314927 DOI: 10.1111/evo.14467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/12/2021] [Indexed: 01/21/2023]
Abstract
The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.
Collapse
Affiliation(s)
- Anna Tigano
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNH03824USA,Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNH03824USA,Current address: Department of BiologyUniversity of British Columbia – Okanagan CampusKelownaBCV1 V 1V7Canada
| | - Ruqayya Khan
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Arina D. Omer
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - David Weisz
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Olga Dudchenko
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA,Department of Computer ScienceDepartment of Computational and Applied MathematicsRice UniversityHoustonTX77030USA
| | - Asha S. Multani
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Sen Pathak
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Richard R. Behringer
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Erez L. Aiden
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA,Department of Computer ScienceDepartment of Computational and Applied MathematicsRice UniversityHoustonTX77030USA,Center for Theoretical and Biological PhysicsRice UniversityHoustonTX77030USA,Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China,School of Agriculture and EnvironmentUniversity of Western AustraliaPerthWA6009Australia
| | - Heidi Fisher
- Department of BiologyUniversity of MarylandCollege ParkMD20742USA
| | - Matthew D. MacManes
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNH03824USA,Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNH03824USA
| |
Collapse
|
12
|
Reeve J, Li Q, Lindtke D, Yeaman S. Comparing genome scans among species of the stickleback order reveals three different patterns of genetic diversity. Ecol Evol 2022; 12:e8502. [PMID: 35127027 PMCID: PMC8796908 DOI: 10.1002/ece3.8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Comparing genome scans among species is a powerful approach for investigating the patterns left by evolutionary processes. In particular, this offers a way to detect candidate genes that drive convergent evolution. We compared genome scan results to investigate if patterns of genetic diversity and divergence are shared among divergent species within the stickleback order (Gasterosteiformes): the threespine stickleback (Gasterosteus aculeatus), ninespine stickleback (Pungitius pungitus), and tubesnout (Aulorhynchus flavidus). Populations were sampled from the southern and northern edges of each species' range, to identify patterns associated with latitudinal changes in genetic diversity. Weak correlations in genetic diversity (F ST and expected heterozygosity) and three different patterns in the genomic landscape were found among these species. Additionally, no candidate genes for convergent evolution were detected. This is a counterexample to the growing number of studies that have shown overlapping genetic patterns, demonstrating that genome scan comparisons can be noisy due to the effects of several interacting evolutionary forces.
Collapse
Affiliation(s)
- James Reeve
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Tjärnö Marina LaboratoriumGöteborgs UniversitetStrömstadSweden
| | - Qiushi Li
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Dorothea Lindtke
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Samuel Yeaman
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
13
|
Lagunas-Robles G, Purcell J, Brelsford A. Linked supergenes underlie split sex ratio and social organization in an ant. Proc Natl Acad Sci U S A 2021; 118:e2101427118. [PMID: 34772805 PMCID: PMC8609651 DOI: 10.1073/pnas.2101427118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sexually reproducing organisms usually invest equally in male and female offspring. Deviations from this pattern have led researchers to new discoveries in the study of parent-offspring conflict, genomic conflict, and cooperative breeding. Some social insect species exhibit the unusual population-level pattern of split sex ratio, wherein some colonies specialize in the production of future queens and others specialize in the production of males. Theoretical work predicted that worker control of sex ratio and variation in relatedness asymmetry among colonies would cause each colony to specialize in the production of one sex. While some empirical tests supported theoretical predictions, others deviated from them, leaving many questions about how split sex ratio emerges. One factor yet to be investigated is whether colony sex ratio may be influenced by the genotypes of queens or workers. Here, we sequence the genomes of 138 Formica glacialis workers from 34 male-producing and 34 gyne-producing colonies to determine whether split sex ratio is under genetic control. We identify a supergene spanning 5.5 Mbp that is closely associated with sex allocation in this system. Strikingly, this supergene is adjacent to another supergene spanning 5 Mbp that is associated with variation in colony queen number. We identify a similar pattern in a second related species, Formica podzolica. The discovery that split sex ratio is determined, at least in part, by a supergene in two species opens future research on the evolutionary drivers of split sex ratio.
Collapse
Affiliation(s)
- German Lagunas-Robles
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, CA 92521
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
14
|
Purcell J, Lagunas-Robles G, Rabeling C, Borowiec ML, Brelsford A. The maintenance of polymorphism in an ancient social supergene. Mol Ecol 2021; 30:6246-6258. [PMID: 34570409 DOI: 10.1111/mec.16196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so far appear to be young, being found in one species or a few closely related species. Here, we investigate how a chromosome harbouring an ancient supergene has evolved over about 30 million years (Ma). The Formica supergene underlies variation in colony queen number in at least five species. We expand previous analyses of sequence divergence on this chromosome to encompass about 90 species spanning the Formica phylogeny. Within the nonrecombining region, the gene knockout contains 22 single nucleotide polymorphisms (SNPs) that are consistently differentiated between two alternative supergene haplotypes in divergent European Formica species, and we show that these same SNPs are present in most Formica clades. In these clades, including an early diverging Nearctic Formica clade, individuals with alternative genotypes at knockout also have higher differentiation in other portions of this chromosome. We identify hotspots of SNPs along this chromosome that are present in multiple Formica clades to detect genes that may have contributed to the emergence and maintenance of the genetic polymorphism. Finally, we infer three gene duplications on one haplotype, based on apparent heterozygosity within these genes in the genomes of haploid males. This study strengthens the evidence that this supergene originated early in the evolution of Formica and that just a few loci in this large region of suppressed recombination retain strongly differentiated alleles across contemporary Formica lineages.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Marek L Borowiec
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
15
|
Manthey JD, Klicka J, Spellman GM. The Genomic Signature of Allopatric Speciation in a Songbird Is Shaped by Genome Architecture (Aves: Certhia americana). Genome Biol Evol 2021; 13:evab120. [PMID: 34042960 PMCID: PMC8364988 DOI: 10.1093/gbe/evab120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
The genomic signature of speciation with gene flow is often attributed to the strength of divergent selection and recombination rate in regions harboring targets for selection. In contrast, allopatric speciation provides a different geographic context and evolutionary scenario, whereby introgression is limited by isolation rather than selection against gene flow. Lacking shared divergent selection or selection against hybridization, we would predict the genomic signature of allopatric speciation would largely be shaped by genomic architecture-the nonrandom distribution of functional elements and chromosomal characteristics-through its role in affecting the processes of selection and drift. Here, we built and annotated a chromosome-scale genome assembly for a songbird (Passeriformes: Certhia americana). We show that the genomic signature of allopatric speciation between its two primary lineages is largely shaped by genomic architecture. Regionally, gene density and recombination rate variation explain a large proportion of variance in genomic diversity, differentiation, and divergence. We identified a heterogeneous landscape of selection and neutrality, with a large portion of the genome under the effects of indirect selection. We found higher proportions of small chromosomes under the effects of indirect selection, likely because they have relatively higher gene density. At the chromosome scale, differential genomic architecture of macro- and microchromosomes shapes the genomic signatures of speciation: chromosome size has: 1) a positive relationship with genetic differentiation, genetic divergence, rate of lineage sorting in the contact zone, and proportion neutral evolution and 2) a negative relationship with genetic diversity and recombination rate.
Collapse
Affiliation(s)
- Joseph D Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - John Klicka
- Burke Museum of Natural History, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA
| |
Collapse
|
16
|
Pigmentation Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in Setophaga Warblers. Curr Biol 2021; 31:643-649.e3. [DOI: 10.1016/j.cub.2020.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
|
17
|
Myers BM, Burns KJ, Clark CJ, Brelsford A. The population genetics of nonmigratory Allen's Hummingbird ( Selasphorus sasin sedentarius) following a recent mainland colonization. Ecol Evol 2021; 11:1850-1865. [PMID: 33614008 PMCID: PMC7882939 DOI: 10.1002/ece3.7174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023] Open
Abstract
Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island-mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island-mainland relationships, may lead to inconsistent results.
Collapse
Affiliation(s)
- Brian M. Myers
- Department of BiologySan Diego State UniversitySan DiegoCAUSA
| | - Kevin J. Burns
- Department of BiologySan Diego State UniversitySan DiegoCAUSA
| | - Christopher J. Clark
- Department of Evolution, Ecology, and Organismal BiologySpeith HallUniversity of CaliforniaRiversideCAUSA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal BiologySpeith HallUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|