1
|
Sun B, Luo D, Huang N, Guo L, Tang X, Li Z, Xie Z, Liu F, Zhang X, Wu Y. Environmental DNA exploring the distribution of Indo-Pacific humpback dolphins and fish diversity from the Pearl River Estuary, China. MARINE POLLUTION BULLETIN 2025; 216:118026. [PMID: 40273752 DOI: 10.1016/j.marpolbul.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Understanding the spatial distribution patterns of endangered species is crucial for their protection. However, gathering such information for cetaceans remains challenging due to their underwater life and elusive nature. Here, by conuding a three-year field ecological survey, we first employed environmental DNA (eDNA) technology to elucidate the distribution and its influencing factors of the Indo-Pacific humpback dolphins from their largest habitat, the Pearl River Estuary (PRE), China. The self-designed SCDloop primers exhibited high specificity for the dolphins and demonstrated elevated eDNA concentrations in proximity to areas with significant human activity in the PRE. Fish species detected in the PRE included most prey items consumed by the dolphins. A significant positive correlation between the occurrence of humpback dolphins and fish diversity was found, indicating the crucial role of fishery resources in the dolphins' habitat selection. Our findings support the use of eDNA technology as a supplementary tool for monitoring marine cetaceans.
Collapse
Affiliation(s)
- Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Nuoyan Huang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Lang Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xikai Tang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhicheng Li
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
2
|
Bhendarkar M, Rodriguez-Ezpeleta N. Exploring uncharted territory: new frontiers in environmental DNA for tropical fisheries management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:617. [PMID: 38874640 DOI: 10.1007/s10661-024-12788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tropical ecosystems host a significant share of global fish diversity contributing substantially to the global fisheries sector. Yet their sustainable management is challenging due to their complexity, diverse life history traits of tropical fishes, and varied fishing techniques involved. Traditional monitoring techniques are often costly, labour-intensive, and/or difficult to apply in inaccessible sites. These limitations call for the adoption of innovative, sensitive, and cost-effective monitoring solutions, especially in a scenario of climate change. Environmental DNA (eDNA) emerges as a potential game changer for biodiversity monitoring and conservation, especially in aquatic ecosystems. However, its utility in tropical settings remains underexplored, primarily due to a series of challenges, including the need for a comprehensive barcode reference library, an understanding of eDNA behaviour in tropical aquatic environments, standardized procedures, and supportive biomonitoring policies. Despite these challenges, the potential of eDNA for sensitive species detection across varied habitats is evident, and its global use is accelerating in biodiversity conservation efforts. This review takes an in-depth look at the current state and prospects of eDNA-based monitoring in tropical fisheries management research. Additionally, a SWOT analysis is used to underscore the opportunities and threats, with the aim of bridging the knowledge gaps and guiding the more extensive and effective use of eDNA-based monitoring in tropical fisheries management. Although the discussion applies worldwide, some specific experiences and insights from Indian tropical fisheries are shared to illustrate the practical application and challenges of employing eDNA in a tropical context.
Collapse
Affiliation(s)
- Mukesh Bhendarkar
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain.
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Maharashtra, India.
| | - Naiara Rodriguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain
| |
Collapse
|
3
|
Rund H, Wanzenböck J, Dobrovolny S, Kurmayer R. Relating target fish DNA concentration to community composition analysis in freshwater fish via metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172281. [PMID: 38588740 DOI: 10.1016/j.scitotenv.2024.172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Metabarcoding has been widely accepted as a useful tool for biodiversity assessment based on eDNA. The method allows for the detection of entire groups of organisms in a single sample, making it particularly applicable in aquatic habitats. The high sensitivity of the molecular approaches is especially beneficial in detecting elusive and rare fish species, improving biodiversity assessments. Numerous biotic and abiotic factors that affect the persistence and availability of fish DNA in surface waters and therefore affecting species detectability, have been identified. However, little is known about the relationship between the total fish DNA concentration and the detectability of differential abundant species. In this study three controlled mock-community DNA samples (56 individual samples) were analyzed by (i) metabarcoding (MiSeq) of 12S rDNA (175 bp) and by (ii) total freshwater fish DNA quantification (via qPCR of 12S rDNA). We show that the fish DNA quantity affects the relative abundance of species-specific sequences and the detectability of rare species. In particular we found that samples with a concentration between 1000 pg/μL down to 10 pg/μL of total fish DNA revealed a stable relative frequency of DNA sequences obtained for a specific fish species, as well as a low variability between replicates. Additionally, we observed that even in complex mock-community DNA samples, a total fish DNA concentration of 23 pg/μL was sufficient to reliably detect all species in every replicate, including three rare species with proportions of ≤0.5 %. We also found that the DNA barcode similarity between species can affect detectability, if evenness is low. Our data suggest that the total DNA concentration of fish is an important factor to consider when analyzing and interpreting relative sequence abundance data. Therefore, the workflow proposed here will contribute to an ecologically and economically efficient application of metabarcoding in fish biodiversity assessment.
Collapse
Affiliation(s)
- Hans Rund
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria.
| | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| | - Stefanie Dobrovolny
- Department for Molecular Biology and Microbiology, Institute for Food Safety Vienna, Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Rainer Kurmayer
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| |
Collapse
|
4
|
Li Z, Li F, Qin S, Guo F, Wang S, Zhang Y. Environmental DNA biomonitoring reveals the human impacts on native and non-native fish communities in subtropical river systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119595. [PMID: 37979384 DOI: 10.1016/j.jenvman.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Subtropical rivers are one of the hotspots of global biodiversity, facing increased risks of fish diversity changes and species extinction. However, until now, human impacts on native and non-native fish communities in subtropical rivers still lack sufficient effort. Here, we used the environmental DNA (eDNA) approach to investigate fish communities in the Dongjiang River of southeast China, a typical subtropical river, and explored the effects of regional land use and local water pollution on fish taxonomic and functional diversity. Our data showed that 90 species or genera of native fish and 15 species or genera of non-native fish were detected by the eDNA approach, and there was over 85% overlap between eDNA datasets and historical records. The taxonomic and functional diversity of all, native and non-native fish communities showed consistent spatial patterns, that is, the upstream of the tributary was significantly higher than that of the mainstream and downstream. Land use and water pollution such as COD and TP were the determinants in shaping the spatial structure of fish communities, and water pollution explained 31.56%, 29.88%, and 27.80% of the structural variation in all, native and non-native fish communities, respectively. The Shannon diversity and functional richness of native fish showed a significant downward trend driven by COD (pShannon = 0.0374; pfunctional = 0.0215) and land use (pShannon = 0.0159; pfunctional = 0.0441), but they did not have significant impacts on non-native fish communities. Overall, this study emphasizes the inconsistent response of native and non-native fish communities to human impacts in subtropical rivers, and managers need to develop strategies tailored to specific fish species to effectively protect water security and rivers.
Collapse
Affiliation(s)
- Zhen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Shan Qin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
5
|
Wang X, Feng G, Zhu J, Jiang W. Correlation between the Density of Acipenser sinensis and Its Environmental DNA. BIOLOGY 2023; 13:19. [PMID: 38248450 PMCID: PMC10813529 DOI: 10.3390/biology13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Since the construction of the Gezhouba Dam, Chinese sturgeon (Acipenser sinensis) numbers have gradually declined, rendering this species critically endangered according to the International Union for the Conservation of Nature. Environmental DNA (eDNA) technology plays an important role in monitoring the abundance of aquatic organisms. Species density and biomass have been proven to be estimable by researchers, but the level of accuracy depends on the specific species and ecosystem. In this study, juvenile A. sinensis, an endangered fish, were selected as the research target. Under controlled laboratory conditions in an aquarium, one, two, four, six, and eight juvenile A. sinensis were cultured in five fish tanks, respectively. Water samples were filtered at eight different time points for eDNA content analysis. Additionally, eDNA yield was tested at six different time points after a 0.114 ind./L density of A. sinensis was removed, and the employed degradation model was screened using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The results showed that eDNA content remained stable after 3 days and exhibited a significant positive linear correlation with the density of A. sinensis (R2 = 0.768~0.986). Furthermore, eDNA content was negatively correlated with the 3-day period after the removal of A. sinensis. The power function had the smallest AIC and BIC values, indicating better fitting performance. This study lays a momentous foundation for the application of eDNA for monitoring juvenile A. sinensis in the Yangtze Estuary and reveals the applicability of eDNA as a useful tool for assessing fish density/biomass in natural environments.
Collapse
Affiliation(s)
- Xiaojing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiazhi Zhu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China; (J.Z.); (W.J.)
| | - Wei Jiang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China; (J.Z.); (W.J.)
| |
Collapse
|