1
|
Khalil HB. Genome-Wide Characterization and Expression Profiling of Phytosulfokine Receptor Genes ( PSKRs) in Triticum aestivum with Docking Simulations of Their Interactions with Phytosulfokine (PSK): A Bioinformatics Study. Genes (Basel) 2024; 15:1306. [PMID: 39457430 PMCID: PMC11507999 DOI: 10.3390/genes15101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The phytosulfokine receptor (PSKR) gene family plays a crucial role in regulating plant growth, development, and stress response. Here, the PSKR gene family was characterized in Triticum aestivum L. The study aimed to bridge knowledge gaps and clarify the functional roles of TaPSKRs to create a solid foundation for examining the structure, functions, and regulatory aspects. Methods: The investigation involved genome-wide identification of PSKRs through collection and chromosomal assignment, followed by phylogenetic analysis and gene expression profiling. Additionally, interactions with their interactors were stimulated and analyzed to elucidate their function. Results: The wide-genome inspection of all TaPSKRs led to 25 genes with various homeologs, resulting in 57 TaPSKR members distributed among the A, B, and D subgenomes. Investigating the expression of 61 TaPSKR cDNAs in RNA-seq datasets generated from different growth stages at 14, 21, and 60 days old and diverse tissues such as leaves, shoots, and roots provided further insight into their functional purposes. The expression profile of the TaPSKRs resulted in three key clusters. Gene cluster 1 (GC 1) is partially associated with root growth, suggesting that specific TaPSKRs control root development. The GC 2 cluster targeted genes that show high levels of expression in all tested leaf growth stages and the early developmental stage of the shoots and roots. Furthermore, the GC 3 cluster was composed of genes that are constantly expressed, highlighting their crucial role in regulating various processes during the entire life cycle of wheat. Molecular docking simulations showed that phytosulfokine type α (PSK-α) interacted with all TaPSKRs and had a strong binding affinity with certain TaPSKR proteins, encompassing TaPSKR1A, TaPSKR3B, and TaPSKR13A, that support their involvement in PSK signaling pathways. The crucial arbitration of the affinity may depend on interactions between wheat PSK-α and PSKRs, especially in the LRR domain region. Conclusions: These discoveries deepened our knowledge of the role of the TaPSKR gene family in wheat growth and development, opening up possibilities for further studies to enhance wheat durability and yield via focused innovation approaches.
Collapse
Affiliation(s)
- Hala Badr Khalil
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
2
|
Evtushenko EV, Gatzkaya SS, Stepochkin PI, Vershinin AV. The Parental Centromere Sizes Remain Unaltered in Allopolyploid Wheat-Rye Hybrids. Cytogenet Genome Res 2024; 164:170-180. [PMID: 39353403 DOI: 10.1159/000541705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION In chromatin nucleosomes, the presence - instead of canonical histone H3 - of its variant, CENH3 (in plants), is considered the most reliable marker of the location of centromeres. In this study, we investigated the effects of distant hybridization and maternal cytoplasm on centromere size in allopolyploid hybrids between wheat and rye as compared to their parental forms. METHODS Centromere sizes were measured using 2D images of CENH3 fluorescent signals on interphase nuclei obtained from parental forms and a triticale hybrid (genomic formula AABBBRR), in which the maternal form is wheat and secalotriticum hybrids (genomic formula RRAABBB) in which the maternal form is rye. For measurements, we selected the largest spherical nuclei with large nucleoli in the late G2 phase, in which most of the loading of CENH3 into centromeric chromatin takes place. RESULTS When processing the results of the measurement of centromere sizes in the hybrids, the obtained values were compared with those expected for the case of no change in centromere sizes in any of the parental sets of chromosomes. We found no significant differences between expected and measured values. CONCLUSION We believe that, in the case of allopolyploid hybrids between wheat and rye, centromeres of chromosomes from the parental species retain the sizes formed during evolution. This conservatism may be promoted by the high similarity in the structure of the CENH3 molecules between these species.
Collapse
Affiliation(s)
- Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Sima S Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Petr I Stepochkin
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
3
|
Boehm J, Cai X. Enrichment and Diversification of the Wheat Genome via Alien Introgression. PLANTS (BASEL, SWITZERLAND) 2024; 13:339. [PMID: 38337872 PMCID: PMC10857235 DOI: 10.3390/plants13030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.
Collapse
Affiliation(s)
- Jeffrey Boehm
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
4
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
5
|
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants. ANNALS OF BOTANY 2023; 131:387-409. [PMID: 36656070 PMCID: PMC10072107 DOI: 10.1093/aob/mcad001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Elizabeth Blée
- Former Head of Phyto-oxylipins laboratory, Institute of Plant Molecular Biology, University of Strasbourg, France
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Treforest, UK
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
6
|
Li G, Li J, Zhang Y, Ma Q, Yang E, Zhang P, Dundas I, Yang Z. Molecular and cytogenetic dissection of stripe rust resistance gene Yr83 from rye 6R and generation of resistant germplasm in wheat breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:1035784. [PMID: 36299784 PMCID: PMC9589168 DOI: 10.3389/fpls.2022.1035784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rye 6R-derived stripe rust resistance gene Yr83 in wheat background was physically mapped to fraction length (FL) 0.87-1.00 on the long arm by non-denaturing-fluorescence in situ hybridization (ND-FISH), Oligo-FISH painting and 6R-specific PCR markers.Stripe rust resistance gene Yr83 derived from chromosome 6R of rye (Secale cereale) "Merced" has displayed high resistance to both Australian and Chinese wheat stripe rust isolates. With the aim to physically map Yr83 to a more precise region, new wheat- 6R deletion and translocation lines were produced from derived progenies of the 6R(6D) substitution line. The non-denaturing fluorescence in situ hybridization (ND-FISH) patterns of 6R were established to precisely characterize the variations of 6R in different wheat backgrounds. Comparative ND-FISH analysis localized the breakpoints of 6RL chromosomes relative to Oligo-pSc200 and Oligo-pSc119.2 rich sites in deletion lines. Molecular marker and resistance analyses confirmed that Yr83 is physically located at the fraction length (FL) 0.87-1.00 of 6RL and covers the corresponding region of 806-881 Mb in the reference genome of Lo7. Oligo-FISH painting demonstrated that the region carrying Yr83 is syntenic to the distal end of long arm of homoeologous group 7 of the Triticeae genome. The developed wheat-6R lines carrying the Yr83 gene will be useful for breeding for rust resistance.
Collapse
Affiliation(s)
- Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianbo Li
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Yao Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Ma
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Yongchuan, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Peng Zhang
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Ian Dundas
- School of Agriculture, Food and Wine, The University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Cao D, Wang D, Li S, Li Y, Hao M, Liu B. Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1705-1715. [PMID: 35244733 DOI: 10.1007/s00122-022-04064-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The genetic diversity and loci underlying agronomic traits were analyzed by the reads coverage and genome-wide association study based genotyping-by-sequencing in a diverse population consisting of 199 accessions. Triticale (× Triticosecale Wittmack) is an economically important grain forage and energy crop planted worldwide for its high biomass. Little is known about the genetic diversity and loci underlying agronomic traits in triticale. We performed genotyping-by-sequencing of 199 cultivars and mapped reads to the A, B, D, and R genomes for karyotype analysis. These cultivars could mostly be grouped into five types. Some chromosome abnormalities occurred with high frequency, such as 2D (2R) substitution, deletion of the long arm of chromosome 2D or the short arm of 5R, and translocation of the long arms of 7D/7A, the short arms of 6D/6A, or the long arms of 1D/1A. We chose only widely planted hexaploid triticale cultivars (153) for genome-wide association study. These cultivars could be divided into nine distinct groups, and the linkage disequilibrium decay was 25.4 kb in this population. We identified 253 significant marker-trait associations (MTAs) on 20 chromosomes, except 7R. Twenty-one reliable MTAs were identified repeatedly over two environments. We predicted 16 putative candidate genes involved in plant growth and development using the genome sequences of wheat and rye. These results provide a basis for understanding the genetic mechanisms of agronomic traits and will benefit the breeding of improved hexaploid triticale.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dongxia Wang
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, 810016, People's Republic of China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
9
|
Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep 2020; 10:20669. [PMID: 33244037 PMCID: PMC7691987 DOI: 10.1038/s41598-020-77686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Triticale is tolerant of many environmental stresses, especially highly resistant to salt stress. However, the molecular regulatory mechanism of triticale seedlings under salt stress conditions is still unclear so far. In this study, a salt-responsive transcriptome analysis was conducted to identify candidate genes or transcription factors related to salt tolerance in triticale. The root of salt-tolerant triticale cultivars TW004 with salt-treated and non-salt stress at different time points were sampled and subjected to de novo transcriptome sequencing. Total 877,858 uniquely assembled transcripts were identified and most contigs were annotated in public databases including nr, GO, KEGG, eggNOG, Swiss-Prot and Pfam. 59,280, 49,345, and 85,922 differentially expressed uniquely assembled transcripts between salt treated and control triticale root samples at three different time points (C12_vs_T12, C24_vs_T24, and C48_vs_T48) were identified, respectively. Expression profile and functional enrichment analysis of DEGs found that some DEGs were significantly enriched in metabolic pathways related to salt tolerance, such as reduction–oxidation pathways, starch and sucrose metabolism. In addition, several transcription factor families that may be associated with salt tolerance were also identified, including AP2/ERF, NAC, bHLH, WRKY and MYB. Furthermore, 14 DEGs were selected to validate the transcriptome profiles via quantitative RT-PCR. In conclusion, these results provide a foundation for further researches on the regulatory mechanism of triticale seedlings adaptation to salt stress in the future.
Collapse
|
10
|
Zaidi MA, O'Leary SJB, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T, Sheedy C, Laroche A, Gleddie S, Robert LS. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. PLANT CELL REPORTS 2020; 39:1185-1197. [PMID: 32638075 DOI: 10.1007/s00299-020-02556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Stephen J B O'Leary
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, of Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christine Gagnon
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shaobo Wu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610052, Sichuan, China
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frances Tran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Dhuha Hassan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Tara Vucurevich
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Steve Gleddie
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
11
|
Evtushenko EV, Lipikhina YA, Stepochkin PI, Vershinin AV. Cytogenetic and molecular characteristics of rye genome in octoploid triticale (× Triticosecale Wittmack). COMPARATIVE CYTOGENETICS 2019; 13:423-434. [PMID: 31879548 PMCID: PMC6928076 DOI: 10.3897/compcytogen.v13i4.39576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Alloploidization resulting from remote (interspecific or intergeneric) hybridization is one of the main factors in plant evolution, leading to the formation of new species. Triticale (× Triticosecale Wittmack, 1889) is the first artificial species created by crossing wheat (Triticum spp.) and rye (Secale cereale Linnaeus, 1753) and has a great potential as a grain and forage crop. Remote hybridization is a stress factor that causes a rapid reorganization of the parental genomes in hybrid progeny ("genomic shock") and is accompanied by abnormalities in the chromosome set of hybrids. The formation of the hybrid genome and its subsequent stabilization are directly related to the normalization of meiosis and the correct chromosome segregation. The aim of this work was to cytogenetically characterize triticale (× Triticosecale rimpaui Wittmack, 1899, AABBDDRR) obtained by crossing Triticum aestivum Linnaeus, 1753. Triple Dirk D × Secale cereale L. Korotkostebel'naya 69 in F3-F6 generations of hybrids, and to trace the process of genetic stabilization of hybrid genomes. Also, a comparative analysis of the nucleotide sequences of the centromeric histone CENH3 genes was performed in wheat-rye allopolyploids of various ploidy as well as their parental forms. In the hybrid genomes of octoploid triticale an increased expression of the rye CENH3 variants was detected. The octoploid triticale plants contain complete chromosome sets of the parental subgenomes maintaining the chromosome balance and meiotic stability. For three generations the percentage of aneuploids in the progeny of such plants has been gradually decreasing, and they maintain a complete set of the paternal rye chromosomes. However, the emergence of hexaploid and new aneuploid plants in F5 and F6 generations indicates that stabilization of the hybrid genome is not complete yet. This conclusion was confirmed by the analysis of morphological features in hybrid plants: the progeny of one plant having the whole chromosome sets of parental subgenomes showed significant morphological variations in awn length and spike density. Thus, we expect that the results of our karyotyping of octoploid triticales obtained by crossing hexaploid wheat to diploid rye supplemented by comparative analysis of CENH3 sequences will be applicable to targeted breeding of stable octo- and hexaploid hybrids.
Collapse
Affiliation(s)
- Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| | - Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| | - Petr I. Stepochkin
- Institute of Cytology and Genetics SB RAS, acad. Lavrentiev ave. 10, Novosibirsk, 630090, RussiaInstitute of Cytology and Genetics SB RASNovosibirskRussia
| | - Alexander V. Vershinin
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| |
Collapse
|
12
|
Braun EM, Tsvetkova N, Rotter B, Siekmann D, Schwefel K, Krezdorn N, Plieske J, Winter P, Melz G, Voylokov AV, Hackauf B. Gene Expression Profiling and Fine Mapping Identifies a Gibberellin 2-Oxidase Gene Co-segregating With the Dominant Dwarfing Gene Ddw1 in Rye ( Secale cereale L.). FRONTIERS IN PLANT SCIENCE 2019; 10:857. [PMID: 31333700 PMCID: PMC6616298 DOI: 10.3389/fpls.2019.00857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 06/03/2023]
Abstract
The gibberellin (GA)-sensitive dwarfing gene Ddw1 provides an opportunity to genetically reduce plant height in rye. Genetic analysis in a population of recombinant inbred lines confirmed a monogenetic dominant inheritance of Ddw1. Significant phenotypic differences in PH between homo- and heterozygotic genotypes indicate an incomplete dominance of Ddw1. De novo transcriptome sequencing of Ddw1 mutant as well as tall genotypes resulted in 113,547 contigs with an average length of 318 bp covering 36.18 Mbp rye DNA. A hierarchical cluster analysis based on individual groups of rye homologs of functionally characterized rice genes controlling morphological or physiological traits including plant height, flowering time, and source activity identified the gene expression profile of stems at the begin of heading to most comprehensively mirror effects of Ddw1. Genome-wide expression profiling identified 186 transcripts differentially expressed between semi-dwarf and tall genotypes in stems. In total, 29 novel markers have been established and mapped to a 27.2 cM segment in the distal part of the long arm of chromosome 5R. Ddw1 could be mapped within a 0.4 cM interval co-segregating with a marker representing the C20-GA2-oxidase gene ScGA2ox12, that is up-regulated in stems of Ddw1 genotypes. The increased expression of ScGA2ox12 observed in semi-dwarf rye as well as structural alterations in transcript sequences associated with the ScGA2ox12 gene implicate, that Ddw1 is a dominant gain-of-function mutant. Integration of the target interval in the wheat reference genome sequence indicated perfect micro-colinearity between the Ddw1 locus and a 831 kb segment on chromosome 5A, which resides inside of a 11.21 Mb interval carrying the GA-sensitive dwarfing gene Rht12 in wheat. The potential of Ddw1 as a breeder's option to improve lodging tolerance in rye is discussed.
Collapse
Affiliation(s)
- Eva-Maria Braun
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | - Natalia Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Dörthe Siekmann
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
- HYBRO Saatzucht GmbH & Co. KG, Schenkenberg, Germany
| | - Konrad Schwefel
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | | | | | | | | | - Anatoly V. Voylokov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Bernd Hackauf
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| |
Collapse
|
13
|
Martín AC, Borrill P, Higgins J, Alabdullah A, Ramírez-González RH, Swarbreck D, Uauy C, Shaw P, Moore G. Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy Level, and the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:1791. [PMID: 30564262 PMCID: PMC6288783 DOI: 10.3389/fpls.2018.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 05/22/2023]
Abstract
Polyploidization is a fundamental process in plant evolution. One of the biggest challenges faced by a new polyploid is meiosis, particularly discriminating between multiple related chromosomes so that only homologous chromosomes synapse and recombine to ensure regular chromosome segregation and balanced gametes. Despite its large genome size, high DNA repetitive content and similarity between homoeologous chromosomes, hexaploid wheat completes meiosis in a shorter period than diploid species with a much smaller genome. Therefore, during wheat meiosis, mechanisms additional to the classical model based on DNA sequence homology, must facilitate more efficient homologous recognition. One such mechanism could involve exploitation of differences in chromosome structure between homologs and homoeologs at the onset of meiosis. In turn, these chromatin changes, can be expected to be linked to transcriptional gene activity. In this study, we present an extensive analysis of a large RNA-seq data derived from six different genotypes: wheat, wheat-rye hybrids and newly synthesized octoploid triticale, both in the presence and absence of the Ph1 locus. Plant material was collected at early prophase, at the transition leptotene-zygotene, when the telomere bouquet is forming and synapsis between homologs is beginning. The six genotypes exhibit different levels of synapsis and chromatin structure at this stage; therefore, recombination and consequently segregation, are also different. Unexpectedly, our study reveals that neither synapsis, whole genome duplication nor the absence of the Ph1 locus are associated with major changes in gene expression levels during early meiotic prophase. Overall wheat transcription at this meiotic stage is therefore highly resilient to such alterations, even in the presence of major chromatin structural changes. Further studies in wheat and other polyploid species will be required to reveal whether these observations are specific to wheat meiosis.
Collapse
Affiliation(s)
| | - Philippa Borrill
- John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | - Peter Shaw
- John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
14
|
Lipikhina YA, Evtushenko EV, Lyusikov OM, Gordei IS, Gordei IA, Vershinin AV. Dynamics of the Centromeric Histone CENH3 Structure in Rye-Wheat Amphidiploids (Secalotriticum). BIOMED RESEARCH INTERNATIONAL 2018; 2018:2097845. [PMID: 30598989 PMCID: PMC6287162 DOI: 10.1155/2018/2097845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022]
Abstract
The centromeres perform integral control of the cell division process and proper distribution of chromosomes into daughter cells. The correct course of this process is often disrupted in case of remote hybridization, which is a stress factor. The combination of parental genomes of different species in a hybrid cell leads to a "genomic shock" followed by loss of genes, changes in gene expression, deletions, inversions, and translocations of chromosome regions. The created rye-wheat allopolyploid hybrids, which were collectively called secalotriticum, represent a new interesting model for studying the effect of remote hybridization on the centromere and its components. The main feature of an active centromere is the presence of a specific histone H3 modification in the centromeric nucleosomes, which is referred to as CENH3 in plants. In this paper the results of cytogenetic analysis of the secalotriticum hybrid karyotypes and the comparison of the CENH3 N-terminal domain structure of parent and hybrid forms are presented. It is shown that the karyotypes of the created secalotriticum forms are stable balanced hexaploids not containing minichromosomes with deleted arms, in full or in part. A high level of homology between rye and wheat enables to express both parental forms of CENH3 gene in the hybrid genomes of secalotriticum cultivars. The CENH3 structure in hybrids in each crossing combination has some specific features. The percentage of polymorphisms at several amino acid positions is much higher in one of the secalotriticum hybrids, STr VD, than in parental forms, whereas the other hybrid, STr VM, inherits a high level of amino acid substitutions at the position 25 from the maternal parent.
Collapse
Affiliation(s)
- Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Oleg M. Lyusikov
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | - Igor S. Gordei
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | - Ivan A. Gordei
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | | |
Collapse
|
15
|
Zhou S, Yan B, Li F, Zhang J, Zhang J, Ma H, Liu W, Lu Y, Yang X, Li X, Liu X, Li L. RNA-Seq Analysis Provides the First Insights into the Phylogenetic Relationship and Interspecific Variation between Agropyron cristatum and Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1644. [PMID: 28983310 PMCID: PMC5613732 DOI: 10.3389/fpls.2017.01644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/07/2017] [Indexed: 05/30/2023]
Abstract
Agropyron cristatum, which is a wild grass of the tribe Triticeae, grows widely in harsh environments and provides many desirable genetic resources for wheat improvement. However, unclear interspecific phylogeny and genome-wide variation has limited the utilization of A. cristatum in the production of superior wheat varieties. In this study, by sequencing the transcriptome of the representative tetraploid A. cristatum Z559 and the common wheat variety Fukuhokomugi (Fukuho), which are often used as parents in a wide cross, their phylogenetic relationship and interspecific variation were dissected. First, 214,854 transcript sequences were assembled, and 3,457 orthologous genes related to traits of interest were identified in A. cristatum. Second, a total of 72 putative orthologous gene clusters were used to construct phylogenetic relationships among A. cristatum, Triticeae and other genomes. A clear division between A. cristatum and the other Triticeae species was revealed. Third, the sequence similarity of most genes related to traits of interest is greater than 95% between A. cristatum and wheat. Therefore, using the 5% mismatch parameter for A. cristatum, we mapped the transcriptome sequencing data to wheat reference sequences to discover the variations between A. cristatum and wheat and 862,340 high-quality variants were identified. Additionally, compared with the wheat A and B genomes, the P and D genomes displayed an obviously larger variant density and a longer evolutionary distance, suggesting that A. cristatum is more distantly related to the wheat D genome. Finally, by using Kompetitive Allele Specific PCR array (KASPar) technology, 37 of 53 (69.8%) SNPs were shown to be genuine in Z559, Fukuho, and additional lines with seven different P chromosomes, and function of the genes in which these SNPs are located were also determined. This study provides not only the first insights into the phylogenetic relationships between the P genome and Triticeae but also genetic resources for gene discovery and specific marker development in A. cristatum, and this information will be vital for future wheat-breeding efforts. The sequence data have been deposited in the Sequence Read Archive (SRA) database at the NCBI under accession number SRP090613.
Collapse
|
16
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Oeser B, Kind S, Schurack S, Schmutzer T, Tudzynski P, Hinsch J. Cross-talk of the biotrophic pathogen Claviceps purpurea and its host Secale cereale. BMC Genomics 2017; 18:273. [PMID: 28372538 PMCID: PMC5379732 DOI: 10.1186/s12864-017-3619-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The economically important Ergot fungus Claviceps purpurea is an interesting biotrophic model system because of its strict organ specificity (grass ovaries) and the lack of any detectable plant defense reactions. Though several virulence factors were identified, the exact infection mechanisms are unknown, e.g. how the fungus masks its attack and if the host detects the infection at all. RESULTS We present a first dual transcriptome analysis using an RNA-Seq approach. We studied both, fungal and plant gene expression in young ovaries infected by the wild-type and two virulence-attenuated mutants. We can show that the plant recognizes the fungus, since defense related genes are upregulated, especially several phytohormone genes. We present a survey of in planta expressed fungal genes, among them several confirmed virulence genes. Interestingly, the set of most highly expressed genes includes a high proportion of genes encoding putative effectors, small secreted proteins which might be involved in masking the fungal attack or interfering with host defense reactions. As known from several other phytopathogens, the C. purpurea genome contains more than 400 of such genes, many of them clustered and probably highly redundant. Since the lack of effective defense reactions in spite of recognition of the fungus could very well be achieved by effectors, we started a functional analysis of some of the most highly expressed candidates. However, the redundancy of the system made the identification of a drastic effect of a single gene most unlikely. We can show that at least one candidate accumulates in the plant apoplast. Deletion of some candidates led to a reduced virulence of C. purpurea on rye, indicating a role of the respective proteins during the infection process. CONCLUSIONS We show for the first time that- despite the absence of effective plant defense reactions- the biotrophic pathogen C. purpurea is detected by its host. This points to a role of effectors in modulation of the effective plant response. Indeed, several putative effector genes are among the highest expressed genes in planta.
Collapse
Affiliation(s)
- Birgitt Oeser
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D-48143 Münster, Germany
| | - Sabine Kind
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D-48143 Münster, Germany
| | - Selma Schurack
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D-48143 Münster, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D-48143 Münster, Germany
| | - Janine Hinsch
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D-48143 Münster, Germany
| |
Collapse
|
18
|
Nibert ML, Pyle JD, Firth AE. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016; 498:201-208. [PMID: 27596539 PMCID: PMC5052127 DOI: 10.1016/j.virol.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. A number of new plant amalgavirus sequences have been found in the TSA database. They provide support for a prevalent +1 frameshifting motif in amalgaviruses. A variant motif is identified in a subset of these viruses from related plants. The ORF1 product of amalgaviruses has propensity to form α-helical coiled coil. The TSA database is a useful source of new viral sequences for comparative analyses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Jesse D Pyle
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|