1
|
Zain Ul Arifeen M, Ahmad S, Wu X, Hou S, Liu C. Amino acids could sustain fungal life in the energy-limited anaerobic sediments below the seafloor. Appl Environ Microbiol 2024; 90:e0127924. [PMID: 39302086 PMCID: PMC11497798 DOI: 10.1128/aem.01279-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024] Open
Abstract
Deep-sea sediments harbor abundant microbial communities extending vertically up to ~2.5 km below the seafloor. Despite their prevalence, the reasons for their large community sizes and low energy fluxes remain unclear. Particularly, the reliance of fungi, the predominant eukaryotic group, on amino acids in these energy-limited, anaerobic conditions is poorly understood. We investigated the role of amino acids in the growth and development of the fungus Schizophyllum commune 20R-7-F01, isolated from anaerobic sub-seafloor sediments. The fungus efficiently used all amino acids as carbon sources, and some as nitrogen sources, with specific amino acids influencing sexual reproduction and fruit-body formation. Notably, amino acids with hydrocarbon chains or methyl groups appeared crucial for fruit-body production. The upregulation of genes, metabolites, and pathways related to amino acid metabolism in the fungus under anaerobic conditions underscores the significance of amino acids as energy and nutrient sources in such environments. Amino acids not only served as carbon/nitrogen sources but also contributed to fungal fruit-body formation under low oxygen conditions, vital for long-term fungal survival in the energy-limited deep biosphere. This study sheds light on the crucial role of amino acids in fungal growth and reproduction in energy-limited anaerobic conditions. IMPORTANCE In the depths beneath the ocean floor, where darkness, anaerobic conditions, and energy scarcity prevail, life persists against all odds. This study illuminates the pivotal role of amino acids, the fundamental building blocks of life, as a vital energy for deep subseafloor fungi. Our research uncovers how these fungi not only rely on amino acids for survival but also utilize them to reproduce, forming fruit bodies in environments deprived of oxygen and energy. This revelation not only elucidates the mechanisms enabling fungal survival in extreme conditions but also hints at the essentiality of amino acids as nutrients for other deep-sea microbes. By unraveling these mysteries of the hidden biosphere, our study opens new frontiers in understanding the resilience and adaptation of life in the most inhospitable environments on our planet.
Collapse
Affiliation(s)
- Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shoaib Ahmad
- Department of Botany, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Xinwei Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Nazir MF, Chen B, Umer MJ, Sarfraz Z, Peng Z, He S, Iqbal MS, Wang J, Li H, Pan Z, Hu D, Song M, Du X. Transcriptomic analysis reveals the beneficial effects of salt priming on enhancing defense responses in upland cotton under successive salt stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14074. [PMID: 38148226 DOI: 10.1111/ppl.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Priming-mediated stress tolerance in plants stimulates defense mechanisms and enables plants to cope with future stresses. Seed priming has been proven effective for tolerance against abiotic stresses; however, underlying genetic mechanisms are still unknown. We aimed to assess upland cotton genotypes and their transcriptional behaviors under salt priming and successive induced salt stress. We pre-selected 16 genotypes based on previous studies and performed morpho-physiological characterization, from which we selected three genotypes, representing different tolerance levels, for transcriptomic analysis. We subjected these genotypes to four different treatments: salt priming (P0), salt priming with salinity dose at 3-true-leaf stage (PD), salinity dose at 3-true-leaf stage without salt priming (0D), and control (CK). Although the three genotypes displayed distinct expression patterns, we identified common differentially expressed genes (DEGs) under PD enriched in pathways related to transferase activity, terpene synthase activity, lipid biosynthesis, and regulation of acquired resistance, indicating the beneficial role of salt priming in enhancing salt stress resistance. Moreover, the number of unique DEGs associated with G. hirsutum purpurascens was significantly higher compared to other genotypes. Coexpression network analysis identified 16 hub genes involved in cell wall biogenesis, glucan metabolic processes, and ribosomal RNA binding. Functional characterization of XTH6 (XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE) using virus-induced gene silencing revealed that suppressing its expression improves plant growth under salt stress. Overall, findings provide insights into the regulation of candidate genes in response to salt stress and the beneficial effects of salt priming on enhancing defense responses in upland cotton.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Zareen Sarfraz
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Muhammad Shahid Iqbal
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Meizhen Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
3
|
Xue X, Xie M, Zhu L, Wang D, Xu Z, Liang L, Zhang J, Xu L, Zhou P, Ran J, Yu G, Lai Y, Sun B, Tang Y, Li H. 5-ALA Improves the Low Temperature Tolerance of Common Bean Seedlings through a Combination of Hormone Transduction Pathways and Chlorophyll Metabolism. Int J Mol Sci 2023; 24:13189. [PMID: 37685996 PMCID: PMC10487637 DOI: 10.3390/ijms241713189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature stress is a key factor limiting the yield and quality of the common bean. 5-aminolevulinic acid (5-ALA), an antioxidant in plants, has been shown to modulate plant cold stress responses. However, the molecular mechanisms of 5-ALA-induced physiological and chemical changes in common bean seedlings under cold stress remains unknown. This study explored the physiological and transcriptome changes of common bean seedlings in response to cold stress after 5-ALA pretreatment. Physiological results showed that exogenous 5-ALA promotes the growth of common bean plants under cold stress, increases the activity of antioxidant enzymes (superoxide dismutase: 23.8%; peroxidase: 10.71%; catalase: 9.09%) and proline content (24.24%), decreases the relative conductivity (23.83%), malondialdehyde (33.65%), and active oxygen content, and alleviates the damage caused by cold to common bean seedlings. Transcriptome analysis revealed that 214 differentially expressed genes (DEGs) participate in response to cold stress. The DEGs are mainly concentrated in indole alkaloid biosynthesis, carotenoid biosynthesis, porphyrin, and chlorophyll metabolism. It is evident that exogenous 5-ALA alters the expression of genes associated with porphyrin and chlorophyll metabolism, as well as the plant hormone signal transduction pathway, which helps to maintain the energy supply and metabolic homeostasis under low-temperature stress. The results reveal the effect that applying exogenous 5-ALA has on the cold tolerance of the common bean and the molecular mechanism of its response to cold tolerance, which provides a theoretical basis for exploring and improving plant tolerance to low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (M.X.); (L.Z.); (D.W.); (Z.X.); (L.L.); (J.Z.); (L.X.); (P.Z.); (J.R.); (G.Y.); (Y.L.); (B.S.); (Y.T.)
| |
Collapse
|
4
|
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton ( Gossypium purpurascens). Int J Mol Sci 2023; 24:12853. [PMID: 37629034 PMCID: PMC10454576 DOI: 10.3390/ijms241612853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xuran Jiang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xiaoyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
5
|
Shao A, Xu X, Amombo E, Wang W, Fan S, Yin Y, Li X, Wang G, Wang H, Fu J. CdWRKY2 transcription factor modulates salt oversensitivity in bermudagrass [ Cynodon dactylon (L.) Pers.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1164534. [PMID: 37528987 PMCID: PMC10388543 DOI: 10.3389/fpls.2023.1164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Common bermudagrass [Cynodon dactylon (L.) Pers.] has higher utilization potential on saline soil due to its high yield potential and excellent stress tolerance. However, key functional genes have not been well studied partly due to its hard transformation. Here, bermudagrass "Wrangler" successfully overexpressing CdWRKY2 exhibited significantly enhanced salt and ABA sensitivity with severe inhibition of shoot and root growth compared to the transgenic negative line. The reduced auxin accumulation and higher ABA sensitivity of the lateral roots (LR) under salt stress were observed in CdWRKY2 overexpression Arabidopsis lines. IAA application could rescue or partially rescue the salt hypersensitivity of root growth inhibition in CdWRKY2-overexpressing Arabidopsis and bermudagrass, respectively. Subsequent experiments in Arabidopsis indicated that CdWRKY2 could directly bind to the promoter region of AtWRKY46 and downregulated its expression to further upregulate the expression of ABA and auxin pathway-related genes. Moreover, CdWRKY2 overexpression in mapk3 background Arabidopsis could partly rescue the salt-inhibited LR growth caused by CdWRKY2 overexpression. These results indicated that CdWRKY2 could negatively regulate LR growth under salt stress via the regulation of ABA signaling and auxin homeostasis, which partly rely on AtMAPK3 function. CdWRKY2 and its homologue genes could also be useful targets for genetic engineering of salinity-tolerance plants.
Collapse
|
6
|
Shaheen N, Khan UM, Farooq A, Zafar UB, Khan SH, Ahmad S, Azhar MT, Atif RM, Rana IA, Seo H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC PLANT BIOLOGY 2023; 23:250. [PMID: 37173631 PMCID: PMC10176799 DOI: 10.1186/s12870-023-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ummul Buneen Zafar
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Precision Agriculture and Analytics Lab, National Center in Big Data and Cloud Computing (NCBC), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan.
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju, 52840, Korea.
| |
Collapse
|
7
|
Shen WH, Cong RP, Li XP, Huang QY, Zheng LP, Wang JW. Effects of branched-chain amino acids on Shiraia perylenequinone production in mycelium cultures. Microb Cell Fact 2023; 22:57. [PMID: 36964527 PMCID: PMC10039612 DOI: 10.1186/s12934-023-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Perylenequinones from Shiraia fruiting bodies are excellent photosensitizers and widely used for anti-cancer photodynamic therapy (PDT). The lower yield of Shiraia perylenequinones becomes a significant bottleneck for their medical application. Branched-chain amino acids (BCAAs) not only serve as important precursors for protein synthesis, but also are involved in signaling pathway in cell growth and development. However, there are few reports concerning their regulation of fungal secondary metabolism. In present study, the eliciting effects of BCAAs including L-isoleucine (L-Ile), L-leucine (L-Leu) and L-valine (L-Val) on Shiraia perylenequinone production were investigated. RESULTS Based on the analysis of the transcriptome and amino acid contents of Shiraia in the production medium, we revealed the involvement of BCAAs in perylenequinone biosynthesis. The fungal conidiation was promoted by L-Val treatment at 1.5 g/L, but inhibited by L-Leu. The spore germination was promoted by both. The production of fungal perylenequinones including hypocrellins A (HA), HC and elsinochromes A-C (EA-EC) was stimulated significantly by L-Val at 1.5 g/L, but sharply suppressed by L-Leu. After L-Val treatment (1.5 g/L) in Shiraia mycelium cultures, HA, one of the main bioactive perylenequinones reached highest production 237.92 mg/L, about 2.12-fold than that of the control. Simultaneously, we found that the expression levels of key genes involved in the central carbon metabolism and in the late steps for perylenequinone biosynthesis were up-regulated significantly by L-Val, but most of them were down-regulated by L-Leu. CONCLUSIONS Our transcriptome analysis demonstrated that BCAA metabolism was involved in Shiraia perylenequinone biosynthesis. Exogenous BCAAs exhibit contrasting effects on Shiraia growth and perylenequinones production. L-Val could promote perylenequinone biosynthesis via not only enhancing the central carbon metabolism for more precursors, but also eliciting perylenequinone biosynthetic gene expressions. This is the first report on the regulation of BCAAs on fungal perylenequinone production. These findings provided a basis for understanding physiological roles of BCAAs and a new avenue for increasing perylenequinone production in Shiraia mycelium cultures.
Collapse
Affiliation(s)
- Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Kang BH, Kim WJ, Chowdhury S, Moon CY, Kang S, Kim SH, Jo SH, Jun TH, Kim KD, Ha BK. Transcriptome Analysis of Differentially Expressed Genes Associated with Salt Stress in Cowpea ( Vigna unguiculata L.) during the Early Vegetative Stage. Int J Mol Sci 2023; 24:4762. [PMID: 36902192 PMCID: PMC10002509 DOI: 10.3390/ijms24054762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cowpea (Vigna unguiculata (L.), 2n = 22) is a tropical crop grown in arid and semiarid regions that is tolerant to abiotic stresses such as heat and drought. However, in these regions, salt in the soil is generally not eluted by rainwater, leading to salt stress for a variety of plant species. This study was conducted to identify genes related to salt stress using the comparative transcriptome analysis of cowpea germplasms with contrasting salt tolerance. Using the Illumina Novaseq 6000 platform, 1.1 billion high-quality short reads, with a total length of over 98.6 billion bp, were obtained from four cowpea germplasms. Of the differentially expressed genes identified for each salt tolerance type following RNA sequencing, 27 were shown to exhibit significant expression levels. These candidate genes were subsequently narrowed down using reference-sequencing analysis, and two salt stress-related genes (Vigun_02G076100 and Vigun_08G125100) with single-nucleotide polymorphism (SNP) variation were selected. Of the five SNPs identified in Vigun_02G076100, one that caused significant amino acid variation was identified, while all nucleotide variations in Vigun_08G125100 was classified as missing in the salt-resistant germplasms. The candidate genes and their variation, identified in this study provide, useful information for the development of molecular markers for cowpea breeding programs.
Collapse
Affiliation(s)
- Byeong Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woon Ji Kim
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sreeparna Chowdhury
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chang Yeok Moon
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sehee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | | | - Tae-Hwan Jun
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung Do Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Fan S, Amombo E, Avoga S, Li Y, Yin Y. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1141295. [PMID: 36875615 PMCID: PMC9975589 DOI: 10.3389/fpls.2023.1141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Bermudagrass (Cynodon dactylon L.) is a warm-season grass with high drought and salt tolerance. However, its cultivation as a silage crop is limited by its lower forage value when compared to other C4 crops. Because of its high genetic variability in abiotic stress tolerance, bermudagrass-mediated genetic breeding offers significant promise for introducing alternative fodder crops in saline and drought-affected regions, and improved photosynthetic capacity is one way for increasing forage yield. METHODS Here, we used RNA sequencing to profile miRNAs in two bermudagrass genotypes with contrasting salt tolerance growing under saline conditions. RESULTS Putatively, 536 miRNA variants were salt-inducible, with the majority being downregulated in salt-tolerant vs sensitive varieties. Also, seven miRNAs putatively targeted 6 genes which were significantly annotated to light reaction photosynthesis. Among the microRNAs, highly abundant miRNA171f in the salt tolerant regime targeted Pentatricopeptide repeat-containing protein and dehydrogenase family 3 member F1 both annotated to electron transport and Light harvesting protein complex 1 genes annotated to light photosynthetic reaction in salt tolerant regime vs salt sensitive counterparts. To facilitate genetic breeding for photosynthetic capacity, we overexpressed miR171f in Medicago tracantula which resulted in a substantial increase in the chlorophyll transient curve, electron transport rate, quantum yield of photosystem II non photochemical quenching, NADPH and biomass accumulation under saline conditions while its targets were downregulated. At ambient light level the electron transport was negatively correlated with all parameters while the NADPH was positively associated higher dry matter in mutants. DISCUSSION These results demonstrate that miR171f improves photosynthetic performance and dry matter accumulation via transcriptional repression of genes in the electron transport pathway under saline conditions and thus a target for breeding.
Collapse
Affiliation(s)
- Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Erick Amombo
- African Sustainable Agriculture Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Sheila Avoga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Yating Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
10
|
H 2S Enhanced the Tolerance of Malus hupehensis to Alkaline Salt Stress through the Expression of Genes Related to Sulfur-Containing Compounds and the Cell Wall in Roots. Int J Mol Sci 2022; 23:ijms232314848. [PMID: 36499175 PMCID: PMC9736910 DOI: 10.3390/ijms232314848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Malus is an economically important plant that is widely cultivated worldwide, but it often encounters saline-alkali stress. The composition of saline-alkali land is a variety of salt and alkali mixed with the formation of alkaline salt. Hydrogen sulfide (H2S) has been reported to have positive effects on plant responses to abiotic stresses. Our previous study showed that H2S pretreatment alleviated the damage caused by alkaline salt stress to Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) roots by regulating Na+/K+ homeostasis and oxidative stress. In this study, transcriptome analysis was used to investigate the overall mechanism through which H2S alleviates alkaline salt stress in PYTC roots. Simultaneously, differentially expressed genes (DEGs) were explored. Transcriptional profiling of the Control-H2S, Control-AS, Control-H2S + AS, and AS-H2S + AS comparison groups identified 1618, 18,652, 16,575, and 4314 DEGs, respectively. Further analysis revealed that H2S could alleviate alkaline salt stress by increasing the energy maintenance capacity and cell wall integrity of M. hupehensis roots and by enhancing the capacity for reactive oxygen species (ROS) metabolism because more upregulated genes involved in ROS metabolism and sulfur-containing compounds were identified in M. hupehensis roots after H2S pretreatment. qRT-PCR analysis of H2S-induced and alkaline salt-response genes showed that these genes were consistent with the RNA-seq analysis results, which indicated that H2S alleviation of alkaline salt stress involves the genes of the cell wall and sulfur-containing compounds in PYTC roots.
Collapse
|
11
|
Liu J, Zhi L, Zhang N, Zhang W, Meng D, Batool A, Ren X, Ji J, Niu Y, Li R, Li J, Song L. Transcriptomic analysis reveals the contribution of QMrl-7B to wheat root growth and development. FRONTIERS IN PLANT SCIENCE 2022; 13:1062575. [PMID: 36457528 PMCID: PMC9706392 DOI: 10.3389/fpls.2022.1062575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Roots are the major organs for water and nutrient acquisition and substantially affect plant growth, development and reproduction. Improvements to root system architecture are highly important for the increased yield potential of bread wheat. QMrl-7B, a major stable quantitative trait locus (QTL) that controls maximum root length (MRL), essentially contributes to an improved root system in wheat. To further analyze the biological functions of QMrl-7B in root development, two sets of Triticum aestivum near-isogenic lines (NILs), one with superior QMrl-7B alleles from cultivar Kenong 9204 (KN9204) named NILKN9204 and another with inferior QMrl-7B alleles from cultivar Jing 411 (J411) named NILJ411, were subjected to transcriptomic analysis. Among all the mapped genes analyzed, 4871 genes were identified as being differentially expressed between the pairwise NILs under different nitrogen (N) conditions, with 3543 genes expressed under normal-nitrogen (NN) condition and 2689 genes expressed under low-nitrogen (LN) condition. These genes encode proteins that mainly include N O 3 - transporters, phytohormone signaling components and transcription factors (TFs), indicating the presence of a complex regulatory network involved in root determination. In addition, among the 13524 LN-induced differentially expressed genes (DEGs) detected in this study, 4308 and 2463 were specifically expressed in the NILKN9204 and NILJ411, respectively. These DEGs reflect different responses of the two sets of NILs to varying N supplies, which likely involve LN-induced root growth. These results explain the better-developed root system and increased root vitality conferred by the superior alleles of QMrl-7B and provide a deeper understanding of the genetic underpinnings of root traits, pointing to a valuable locus suitable for future breeding efforts for sustainable agriculture.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Zhi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Aamana Batool
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Ren
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruiqi Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Liqiang Song
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
12
|
Rahman MA, Woo JH, Lee SH, Park HS, Kabir AH, Raza A, El Sabagh A, Lee KW. Regulation of Na +/H + exchangers, Na +/K + transporters, and lignin biosynthesis genes, along with lignin accumulation, sodium extrusion, and antioxidant defense, confers salt tolerance in alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:1041764. [PMID: 36420040 PMCID: PMC9676661 DOI: 10.3389/fpls.2022.1041764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 06/12/2023]
Abstract
Accumulation of high sodium (Na+) leads to disruption of metabolic processes and decline in plant growth and productivity. Therefore, this study was undertaken to clarify how Na+/H+ exchangers and Na+/K+ transporter genes contribute to Na+ homeostasis and the substantial involvement of lignin biosynthesis genes in salt tolerance in alfalfa (Medicago sativa L.), which is poorly understood. In this study, high Na+ exhibited a substantial reduction of morphophysiological indices and induced oxidative stress indicators in Xingjiang Daye (XJD; sensitive genotype), while Zhongmu (ZM; tolerant genotype) remained unaffected. The higher accumulation of Na+ and the lower accumulation of K+ and K+/(Na+ + K+) ratio were found in roots and shoots of XJD compared with ZM under salt stress. The ZM genotype showed a high expression of SOS1 (salt overly sensitive 1), NHX1 (sodium/hydrogen exchanger 1), and HKT1 (high-affinity potassium transporter 1), which were involved in K+ accumulation and excess Na+ extrusion from the cells compared with XJD. The lignin accumulation was higher in the salt-adapted ZM genotype than the sensitive XJD genotype. Consequently, several lignin biosynthesis-related genes including 4CL2, CCoAOMT, COMT, CCR, C4H, PAL1, and PRX1 exhibited higher mRNA expression in salt-tolerant ZM compared with XJD. Moreover, antioxidant enzyme (catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activity was higher in ZM relative to XJD. This result suggests that high antioxidant provided the defense against oxidative damages in ZM, whereas low enzyme activity with high Na+ triggered the oxidative damage in XJD. These findings together illustrate the ion exchanger, antiporter, and lignin biosysthetic genes involving mechanistic insights into differential salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Jae Hoon Woo
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Sang-Hoon Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Hyung Soo Park
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
13
|
Li X, Fan S, Cui X, Shao A, Wang W, Xie Y, Fu J. Transcriptome analysis of perennial ryegrass reveals the regulatory role of Aspergillus aculeatus under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13805. [PMID: 36270788 DOI: 10.1111/ppl.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Perennial ryegrass (Lolium perenne) is an important turf grass and forage grass with moderately tolerant to salinity stress. Aspergillus aculeatus has been documented to involved in salt stress response of perennial ryegrass, while the A. aculeatus-mediated molecular mechanisms are unclear. Therefore, to investigate the molecular mechanisms underlying A. aculeatus-mediated salt tolerance, the comprehensive transcriptome analysis of the perennial ryegrass roots was performed. Twelve cDNA libraries from roots were constructed after 12 h of plant-fungus cocultivation under 300 mM salt stress concentrations. A total of 21,915 differentially expressed genes (DEGs) were identified through pairwise comparisons. Enrichment analysis revealed that potentially important A. aculeatus-induced salt responsive genes belonging to specific categories, such as hormonal metabolism (auxin and salicylic acid metabolism related genes), secondary metabolism (flavonoid's metabolism related genes) and transcription factors (MYB, HSF and AP2/EREBP family). In addition, weighted gene co-expression network analysis (WGCNA) showed that blue and black modules were significantly positively correlated with the peroxidase activity and proline content, then the hub genes within these two modules were further identified. Taken together, we found the categories of A. aculeatus-induced salt responsive genes, revealing underlying fungus-induced molecular mechanisms of salt stress response in perennial ryegrass roots. Besides, fungus-induced salt-tolerant hub genes represent a foundation for further exploring the molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xinyu Cui
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
14
|
Liu X, Zain ul Arifeen M, Xue Y, Liu C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Front Microbiol 2022; 13:923451. [PMID: 36003943 PMCID: PMC9393519 DOI: 10.3389/fmicb.2022.923451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Laccases are ligninolytic enzymes that play a crucial role in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. Lignin degradation is a complex process and its degradation in Schizophyllum commune is greatly affected by the availability of oxygen. Here, a total of six putative laccase genes (ScLAC) were identified from the S. commune 20R-7-F01 genome. These genes, which include three typical Cu-oxidase domains, can be classified into three groups based on phylogenetic analysis. ScLAC showed distinct intron-exon structures and conserved motifs, suggesting the conservation and diversity of ScLAC in gene structures. Additionally, the number and type of cis-acting elements, such as substrate utilization-, stress-, cell division- and transcription activation-related cis-elements, varied between ScLAC genes, suggesting that the transcription of laccase genes in S. commune 20R-7-F01 could be induced by different substrates, stresses, or other factors. The SNP analysis of resequencing data demonstrated that the ScLAC of S. commune inhabiting deep subseafloor sediments were significantly different from those of S. commune inhabiting terrestrial environments. Similarly, the large variation of conserved motifs number and arrangement of laccase between subseafloor and terrestrial strains indicated that ScLAC had a diverse structure. The expression of ScLAC5 and ScLAC6 genes was significantly up-regulated in lignin/lignite medium, suggesting that these two laccase genes might be involved in fungal utilization and degradation of lignite and lignin under anaerobic conditions. These findings might help in understanding the function of laccase in white-rot fungi and could provide a scientific basis for further exploring the relationship between the LAC family and anaerobic degradation of lignin by S. commune.
Collapse
Affiliation(s)
| | | | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | |
Collapse
|
15
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
16
|
Li Q, Song J, Zhou Y, Chen Y, Zhang L, Pang Y, Zhang B. Full-Length Transcriptomics Reveals Complex Molecular Mechanism of Salt Tolerance in Bromus inermis L. FRONTIERS IN PLANT SCIENCE 2022; 13:917338. [PMID: 35755679 PMCID: PMC9219601 DOI: 10.3389/fpls.2022.917338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Bromus inermis L. (commonly known as smooth bromegrass) is a grass species with high nutritional value, great palatability, cold tolerance, and grazing resistance, which has been widely cultivated for pasture and sand fixation in northern and northwestern China. Salt stress is a main environmental factor limiting growth and production of smooth bromegrass. In this study, we performed PacBio Iso-Seq to construct the first full-length transcriptome database for smooth bromegrass under 300 mM NaCl treatment at different time points. Third-generation full-length transcriptome sequencing yielded 19.67 G polymerase read bases, which were assembled into 355,836 full-length transcripts with an average length of 2,542 bp. A total of 116,578 differentially expressed genes were obtained by comparing the results of third-generation sequencing and second-generation sequencing. GO and KEGG enrichment analyses revealed that multiple pathways were differently activated in leaves and roots. In particular, a number of genes participating in the molecular network of plant signal perception, signal transduction, transcription regulation, antioxidant defense, and ion regulation were affected by NaCl treatment. In particular, the CBL-CIPK, MAPK, ABA signaling network, and SOS core regulatory pathways of Ca2+ signal transduction were activated to regulate salt stress response. In addition, the expression patterns of 10 salt-responsive genes were validated by quantitative real-time PCR, which were consistent with those detected by RNA-Seq. Our results reveal the molecular regulation of smooth bromegrass in response to salt stress, which are important for further investigation of critical salt responsive genes and molecular breeding of salt-tolerant smooth bromegrass.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yi Zhou
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Yingxia Chen
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
17
|
Protoplast Dissociation and Transcriptome Analysis Provides Insights to Salt Stress Response in Cotton. Int J Mol Sci 2022; 23:ijms23052845. [PMID: 35269989 PMCID: PMC8911145 DOI: 10.3390/ijms23052845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
As one of the pioneer crops widely planted in saline-alkaline areas, Gossypium provides daily necessities, including natural fiber, vegetable proteins, and edible oils. However, cotton fiber yield and quality are highly influenced by salt stress. Therefore, elucidating the molecular mechanisms of cotton in response to salinity stress is importance to breed new cultivars with high tolerance. In this study, we first developed a method for single-cell RNA-seq based on isolating protoplast from cotton root tips; then, we studied the impact of salinity stress on gene expression profiling and their dynamic changes using the developed high-efficiency method for protoplast dissociation suitable for single-cell RNA-seq. A total of 3391 and 2826 differentially expressed genes (DEGs) were identified in salt-treated samples before and after protoplast dissociation, respectively, which were enriched into several molecular components, including response to stimulus, response to stress, and cellular macromolecule metabolic process by gene ontology (GO) analysis. Plant hormone signal transduction, phenylpropanoid biosynthesis, and MAPK signaling pathway were found to be enriched via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Twenty-two and nine salinity-responsive DEGs participated in plant hormone signaling and MAPK signaling in roots, before and after protoplast dissociation, respectively; six upregulated DEGs were involved in ABA signaling transduction, namely, Ga04G2111, Ga07G0142, Ga09G2061, Ga10G0262, Ga01G0063, and Ga08G1915 which indicates their potential functions on plants adapting to salt stress. Additionally, 384 and 257 transcription factors (TFs) were differentially expressed in salt-stress roots before and after protoplast dissociation, respectively, of which significantly up-regulated TFs mainly belonged to the AP2/ERF-ERF family, which implied their potential roles responding to salt stress. These results not only provide novel insights to reveal the regulatory networks in plant’s root response to salt stress, but also lay the solid foundation for further exploration on cellular heterogeneity by single-cell transcriptome sequencing.
Collapse
|
18
|
Zhang J, Zhang Z, Liu W, Li L, Han L, Xu L, Zhao Y. Transcriptome Analysis Revealed a Positive Role of Ethephon on Chlorophyll Metabolism of Zoysia japonica under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030442. [PMID: 35161421 PMCID: PMC8839986 DOI: 10.3390/plants11030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/18/2023]
Abstract
Zoysia japonica is a warm-season turfgrass with a good tolerance and minimal maintenance requirements. However, its use in Northern China is limited due to massive chlorophyll loss in early fall, which is the main factor affecting its distribution and utilization. Although ethephon treatment at specific concentrations has reportedly improved stress tolerance and extended the green period in turfgrass, the potential mechanisms underlying this effect are not clear. In this study, we evaluated and analyzed chlorophyll changes in the physiology and transcriptome of Z. japonica plants in response to cold stress (4 °C) with and without ethephon pretreatment. Based on the transcriptome and chlorophyll content analysis, ethephon pretreatment increased the leaf chlorophyll content under cold stress by affecting two processes: the stimulation of chlorophyll synthesis by upregulating ZjMgCH2 and ZjMgCH3 expression; and the suppression of chlorophyll degradation by downregulating ZjPAO, ZjRCCR, and ZjSGR expression. Furthermore, ethephon pretreatment increased the ratio of chlorophyll a to chlorophyll b in the leaves under cold stress, most likely by suppressing the conversion of chlorophyll a to chlorophyll b due to decreased chlorophyll b synthesis via downregulation of ZjCAO. Additionally, the inhibition of chlorophyll b synthesis may result in energy redistribution between photosystem II and photosystem I.
Collapse
Affiliation(s)
- Jiahang Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Zhiwei Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- CCTEG Ecological Environment Technology Co., Ltd., Beijing 100013, China
| | - Wen Liu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lijing Li
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- Correspondence: (L.X.); (Y.Z.)
| | - Yuhong Zhao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
- Correspondence: (L.X.); (Y.Z.)
| |
Collapse
|
19
|
Gharaghanipor N, Arzani A, Rahimmalek M, Ravash R. Physiological and Transcriptome Indicators of Salt Tolerance in Wild and Cultivated Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:819282. [PMID: 35498693 PMCID: PMC9047362 DOI: 10.3389/fpls.2022.819282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 05/05/2023]
Abstract
Barley is used as a model cereal to decipher salt tolerance mechanisms due to its simpler genome than wheat and enhanced salt tolerance compared to rice and wheat. In the present study, RNA-Seq based transcriptomic profiles were compared between salt-tolerant wild (Hordeum spontaneum, genotype no. 395) genotype and salt-sensitive cultivated (H. vulgare, 'Mona' cultivar) subjected to salt stress (300 mM NaCl) and control (0 mM NaCl) conditions. Plant growth and physiological attributes were also evaluated in a separate experiment as a comparison. Wild barley was significantly less impacted by salt stress than cultivated barley in growth and physiology and hence was more stress-responsive functionally. A total of 6,048 differentially expressed genes (DEGs) including 3,025 up-regulated and 3,023 down-regulated DEGs were detected in the wild genotype in salt stress conditions. The transcripts of salt-stress-related genes were profoundly lower in the salt-sensitive than the tolerant barley having a total of 2,610 DEGs (580 up- and 2,030 down-regulated). GO enrichment analysis showed that the DEGs were mainly enriched in biological processes associated with stress defenses (e.g., cellular component, signaling network, ion transporter, regulatory proteins, reactive oxygen species (ROS) scavenging, hormone biosynthesis, osmotic homeostasis). Comparison of the candidate genes in the two genotypes showed that the tolerant genotype contains higher functional and effective salt-tolerance related genes with a higher level of transcripts than the sensitive one. In conclusion, the tolerant genotype consistently exhibited better tolerance to salt stress in physiological and functional attributes than did the sensitive one. These differences provide a comprehensive understanding of the evolved salt-tolerance mechanism in wild barley. The shared mechanisms between these two sub-species revealed at each functional level will provide more reliable insights into the basic mechanisms of salt tolerance in barley species.
Collapse
Affiliation(s)
- Narges Gharaghanipor
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- *Correspondence: Narges Gharaghanipor,
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Ahmad Arzani, , orcid.org/0000-0001-5297-6724
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
20
|
Chen S, Xu X, Ma Z, Liu J, Zhang B. Organ-Specific Transcriptome Analysis Identifies Candidate Genes Involved in the Stem Specialization of Bermudagrass ( Cynodon dactylon L.). Front Genet 2021; 12:678673. [PMID: 34249097 PMCID: PMC8260954 DOI: 10.3389/fgene.2021.678673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
As an important warm-season turfgrass and forage grass species with wide applications, bermudagrass (Cynodon dactylon L.) simultaneously has shoot, stolon and rhizome, three types of stems with different physiological functions. To better understand how the three types of stems differentiate and specialize, we generated an organ-specific transcriptome dataset of bermudagrass encompassing 114,169 unigenes, among which 100,878 and 65,901 could be assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) terms, respectively. Using the dataset, we comprehensively analyzed the gene expression of different organs, especially the shoot, stolon and rhizome. The results indicated that six organs of bermudagrass all contained more than 52,000 significantly expressed unigenes, however, only 3,028 unigenes were enrich-expressed in different organs. Paired comparison analyses further indicated that 11,762 unigenes were differentially expressed in the three types of stems. Gene enrichment analysis revealed that 39 KEGG pathways were enriched with the differentially expressed unigenes (DEGs). Specifically, 401 DEGs were involved in plant hormone signal transduction, whereas 1,978 DEGs were transcription factors involved in gene expression regulation. Furthermore, in agreement with the starch content and starch synthase assay results, DEGs encoding starch synthesis-related enzymes all showed the highest expression level in the rhizome. These results not only provided new insights into the specialization of stems in bermudagrass but also made solid foundation for future gene functional studies in this important grass species and other stoloniferous/rhizomatous plants.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziyan Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Shao A, Wang W, Fan S, Xu X, Yin Y, Erick A, Li X, Wang G, Wang H, Fu J. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:175. [PMID: 33838660 PMCID: PMC8035780 DOI: 10.1186/s12870-021-02939-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/25/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of common bermudagrass (Cynodon dactylon (L.) Pers.) have not been explored. Therefore, in this study, to understand the underlying regulatory mechanism following the different period of salt exposure, a comprehensive transcriptome analysis of the bermudagrass roots was conducted. RESULTS The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories, such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols, glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment, suggesting a slightly slower reaction of metabolic adjustment. CONCLUSION Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future references to explore the molecular mechanisms of bermudagrass.
Collapse
Affiliation(s)
- An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Amombo Erick
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Hongli Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ 2021; 9:e10765. [PMID: 33717668 PMCID: PMC7934676 DOI: 10.7717/peerj.10765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Salt stress affects crop yield by limiting growth and delaying development. In this study, we constructed 16 transcriptome libraries from maize seedling roots using two maize lines, with contrasting salt tolerance, that were exposed to salt stress for 0, 6, 18 and 36 h. In total, 6,584 differential expression genes (DEGs; 3,669 upregulated, 2,915 downregulated) were induced in the salt-sensitive line and 6,419 DEGs (3,876 upregulated, 2,543 downregulated) were induced in the salt-tolerant line. Several DEGs common to both lines were enriched in the ABA signaling pathway, which was presumed to coordinate the process of maize salt response. A total of 459 DEGs were specifically induced in the salt-tolerant line and represented candidate genes responsible for high salt-tolerance. Expression pattern analysis for these DEGs indicated that the period between 0 and 6 h was a crucial period for the rapid response of the tolerant genes under salt stress. Among these DEGs, several genes, Aux/IAA, SAUR, and CBL-interacting kinase have been reported to regulate salt tolerance. In addition, the transcription factors WRKY, bZIP and MYB acted as regulators in the salt-responsive regulatory network of maize roots. Our findings will contribute to understanding of the mechanism on salt response and provide references for functional gene revelation in plants.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Peng Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Chunyan Qing
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Cong Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Yaou Shen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Langlang Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| |
Collapse
|
23
|
Zain Ul Arifeen M, Chu C, Yang X, Liu J, Huang X, Ma Y, Liu X, Xue Y, Liu C. The anaerobic survival mechanism of Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Environ Microbiol 2020; 23:1174-1185. [PMID: 33215844 DOI: 10.1111/1462-2920.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Fungi dominated the eukaryotic group in the anaerobic sedimentary environment below the ocean floor where they play an essential ecological role. However, the adaptive mechanism of fungi to these anaerobic environments is still unclear. Here, we reported the anaerobic adaptive mechanism of Schizophyllum commune 20R-7-F01, isolated from deep coal-bearing sediment down to ~2 km below the seafloor, through biochemical, metabolomic and transcriptome analyses. The fungus grows well, but the morphology changes obviously and the fruit body develops incompletely under complete hypoxia. Compared with aerobic conditions, the fungus has enhanced branched-chain amino acid biosynthesis and ethanol fermentation under anaerobic conditions, and genes related to these metabolisms have been significantly up-regulated. Additionally, the fungus shows novel strategies for synthesizing ethanol by utilizing both glycolysis and ethanol fermentation pathways. These findings suggest that the subseafloor fungi may adopt multiple mechanisms to cope with lack of oxygen.
Collapse
Affiliation(s)
- Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Sci Rep 2020; 10:15148. [PMID: 32939003 PMCID: PMC7494938 DOI: 10.1038/s41598-020-71529-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.
Collapse
|
25
|
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. RICE (NEW YORK, N.Y.) 2020; 13:55. [PMID: 32778977 PMCID: PMC7417472 DOI: 10.1186/s12284-020-00416-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Salt stress is one of the main abiotic stresses that limits rice production worldwide. Rice salt tolerance at the bud burst stage directly affects the seedling survival rate and the final yield in the direct seeding cultivation model. However, the reports on quantitative trait locus (QTL) mapping and map-based cloning for salt tolerance at the bud burst stage are limited. RESULTS Here, an F2:3 population derived from a cross between IR36 (salt-sensitive) and Weiguo (salt-tolerant) was used to identify salt-tolerant QTL interval at the bud burst stage using a whole-genome sequencing-based QTL-seq containing 40 extreme salt-tolerant and 40 extreme salt-sensitive individuals. A major QTL, qRSL7, related to relative shoot length (RSL) was detected on chromosome 7 using ΔSNP index algorithms and Euclidean Distance (ED) algorithms. According to single nucleotide polymorphisms (SNPs) between the parents, 25 Kompetitive allele-specific PCR (KASP) markers were developed near qRSL7, and regional QTL mapping was performed using 199 individuals from the F2:3 population. We then confirmed and narrowed down qRSL7 to a 222 kb genome interval. Additionally, RNA sequencing (RNA-seq) was performed for IR36 and Weiguo at 36 h after salt stress and control condition at the bud burst stage, and 5 differentially expressed genes (DEGs) were detected in the candidate region. The qRT-PCR results showed the same expression patterns as the RNA-seq data. Furthermore, sequence analysis revealed a 1 bp Indel difference in Os07g0569700 (OsSAP16) between IR36 and Weiguo. OsSAP16 encodes a stress-associated protein whose expression is increased under drought stress. CONCLUSION These results indicate that OsSAP16 was the candidate gene of qRSL7. The results is useful for gene cloning of qRSL7 and for improving the salt tolerance of rice varieties by marker assisted selection (MAS).
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Yanli Bi
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Xianwei Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaming Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
26
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
27
|
Xu HS, Guo SM, Zhu L, Xing JC. Growth, physiological and transcriptomic analysis of the perennial ryegrass Lolium perenne in response to saline stress. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200637. [PMID: 32874657 PMCID: PMC7428229 DOI: 10.1098/rsos.200637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 05/28/2023]
Abstract
Salinization of soil is a global environmental concern. To bioremediate or use saline-alkali lands, most studies focused on screening of halophytes and breeding of saline-tolerant non-halophyte vegetables. Seldom studies investigated effects of salinity on general landscape plants, which are important for landscape construction in urban areas. In the present study, effects of salinity on seed germination and seedling growth of the perennial ryegrass Lolium perenne were investigated. The final seed germination rate was not affected at salinity up to 6.4‰. Partial seedlings wilted in all saline treatments and the mortality of L. perenne was positively correlated with salinity. Treatments with salinity equal to or lower than 1.6‰ did not affect length and dry weight of shoot and root. These results suggested that L. perenne could be sowed and then grow well in low-salinity areas. To explore the underlying physiological mechanisms, contents of photosynthetic pigments and antioxidant indices were determined. The results showed that contents of chlorophyll a, b and carotenoid significantly decreased in all saline treatments, in comparison to the control. Similarly, activities of superoxide dismutase and peroxidase decreased and contents of glutathione and malondialdehyde increased in saline treatments. Additionally, transcriptome analysis identified 792 differentially expressed genes (DEGs) in L. perenne shoots between 6.4‰ saline treatment and the control. Compared with the control, genes in relation to iron transportation and amino acid metabolism were downregulated, but genes participating in energy metabolism were upregulated. These changes would inhibit toxicity of ion accumulation and provide more energy for plants to resist saline stress.
Collapse
Affiliation(s)
- Hai-Shun Xu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province 210037, People's Republic of China
| | - Su-Ming Guo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province 210037, People's Republic of China
| | - Lin Zhu
- Design Institution of Wujin Planning and Surveying, Changzhou City, Jiangsu Province 213100, People's Republic of China
| | - Jin-Cheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province 224000, People's Republic of China
| |
Collapse
|
28
|
Zhang K, Cui H, Li M, Xu Y, Cao S, Long R, Kang J, Wang K, Hu Q, Sun Y. Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110435. [PMID: 32169728 DOI: 10.1016/j.ecoenv.2020.110435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 05/20/2023]
Abstract
Soil salinization is one of most crucial environmental problems around the world and negatively affects plant growth and production. Carex rigescens is a turfgrass with favorable stress tolerance and great application prospect in salinity soil remediation and utilization; however, the molecular mechanisms behind its salt stress response are unknown. We performed a time-course transcriptome analysis between salt tolerant 'Huanghua' (HH) and salt sensitive 'Beijing' (BJ) genotypes. Physiological changes within 24 h were observed, with the HH genotype exhibiting increased salt tolerance compared to BJ. 5764 and 10752 differentially expressed genes were approved by transcriptome in BJ and HH genotype, respectively, and dynamic analysis showed a discrepant profile between two genotypes. In the BJ genotype, genes related to carbohydrate metabolism and stress response were more active and ABA signal transduction pathway might play a more important role in salt stress tolerance than in HH genotype. In the HH genotype, unique increases in the regulatory network of transcription factors, hormone signal transduction, and oxidation-reduction processes were observed. Moreover, trehalose and pectin biosynthesis and chitin catabolic related genes were specifically involved in the HH genotype, which may have contributed to salt tolerance. Moreover, some candidate genes like mannan endo-1,4-beta-mannosidase and EG45-like domain-containing protein are highlighted for future research about salt stress resistance in C. rigescens and other plant species. Our study revealed unique salt adaptation and resistance characteristics of two C. rigescens genotypes and these findings could help to enrich the currently available knowledge and clarify the detailed salt stress regulatory mechanisms in C. rigescens and other plants.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Mingna Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yi Xu
- Texas AgriLife Research and Extension Center, Texas A&M University, Dallas, 75252, USA.
| | - Shihao Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Kehua Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Qiannan Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
29
|
Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019; 9:E647. [PMID: 31653042 PMCID: PMC6920818 DOI: 10.3390/biom9110647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Heavy metal pollution is an increasing global concern. Among heavy metals, mercury (Hg) is especially dangerous because of its massive release into the environment and high toxicity, especially for aquatic organisms. The molecular response mechanisms of algae to Hg exposure are mostly unknown. Here, we combine physiological, biochemical, and transcriptomic analysis to provide, for the first time, a comprehensive view on the pathways activated in Chromera velia in response to toxic levels of Hg. Production of hydrogen peroxide and superoxide anion, two reactive oxygen species (ROS), showed opposite patterns in response to Hg2+ while reactive nitrogen species (RNS) levels did not change. A deep RNA sequencing analysis generated a total of 307,738,790 high-quality reads assembled in 122,874 transcripts, representing 89,853 unigenes successfully annotated in databases. Detailed analysis of the differently expressed genes corroborates the biochemical results observed in ROS production and suggests novel putative molecular mechanisms in the algal response to Hg2+. Moreover, we indicated that important transcription factor (TF) families associated with stress responses differentially expressed in C. velia cultures under Hg stress. Our study presents the first in-depth transcriptomic analysis of C. velia, focusing on the expression of genes involved in different detoxification defense systems in response to heavy metal stress.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Roberto De Michele
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Ayush Sharma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
30
|
He Y, Zhang M, Zhou W, Ai L, You J, Liu H, You J, Wang H, Wassie M, Wang M, Li H. Transcriptome analysis reveals novel insights into the continuous cropping induced response in Codonopsis tangshen, a medicinal herb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:279-290. [PMID: 31202192 DOI: 10.1016/j.plaphy.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/15/2019] [Accepted: 06/02/2019] [Indexed: 05/05/2023]
Abstract
Codonopsis tangshen Oliv. (C. tangshen Oliv.), a famous medicinal herb in China, is seriously affected by continuous cropping (C-cro). The physiological and biochemical results indicated that C-cro significantly affected the malonaldehyde (MDA) and chlorophyll content, as well as activities of catalase (CAT) and superoxide dismutase (SOD) when compared with the non-continuous cropping (NC-cro) group. Transcriptome profiling found 762 differentially expressed genes, including 430 up-regulated and 332 down-regulated genes by C-cro. In addition, pathway enrichment analysis revealed that genes related to 'Tyrosine degradation I', 'Glycogen synthesis' and 'Phenylalanine and tyrosine catabolism' were up-regulated, and genes associated with 'Signal transduction', 'Immune system', etc. were down-regulated by C-cro. The expression of target genes was further validated by Q-PCR. In this study, we demonstrated the effects of C-cro on C. tangshen at the transcriptome level, and found possible C-cro responsive candidate genes. These findings could be further beneficial for improving the continuous cropping tolerance.
Collapse
Affiliation(s)
- Yinsheng He
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan City, Hubei, 430070, PR China; Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Meide Zhang
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Wuxian Zhou
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Lunqiang Ai
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Jinwen You
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Haihua Liu
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Jingmao You
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Hua Wang
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Misganaw Wassie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan City, Hubei, 430074, PR China
| | - Mo Wang
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan City, Hubei, 430070, PR China.
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan City, Hubei, 430074, PR China.
| |
Collapse
|
31
|
Pan L, Yu X, Shao J, Liu Z, Gao T, Zheng Y, Zeng C, Liang C, Chen C. Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress. PLoS One 2019; 14:e0219799. [PMID: 31299052 PMCID: PMC6625716 DOI: 10.1371/journal.pone.0219799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023] Open
Abstract
Asparagus bean (Vigna unguiculata ssp. sesquipedalis) is a warm season legume which is widely distributed over subtropical regions and semiarid areas. It is mainly grown as a significant protein source in developing countries. Salinity, as one of the main abiotic stress factors, constrains the normal growth and yield of asparagus bean. This study used two cultivars (a salt-sensitive genotype and a salt-tolerant genotype) under salt stress vs. control to identify salt-stress-induced genes in asparagus bean using RNA sequencing. A total of 692,086,838 high-quality clean reads, assigned to 121,138 unigenes, were obtained from control and salt-treated libraries. Then, 216 root-derived DEGs (differentially expressed genes) and 127 leaf-derived DEGs were identified under salt stress between the two cultivars. Of these DEGs, thirteen were assigned to six transcription factors (TFs), including AP2/EREBP, CCHC(Zn), C2H2, WRKY, WD40-like and LIM. GO analysis indicated four DEGs might take effects on the "oxidation reduction", "transport" and "signal transduction" process. Moreover, expression of nine randomly-chosen DEGs was verified by quantitative real-time-PCR (qRT-PCR) analysis. Predicted function of the nine tested DEGs was mainly involved in the KEGG pathway of cation transport, response to osmotic stress, and phosphorelay signal transduction system. A salt-stress-related pathway of "SNARE interactions in vesicular transport" was concerned. As byproducts, 15, 321 microsatellite markers were found in all the unigenes, and 17 SNP linked to six salt-stress induced DEGs were revealed. These candidate genes provide novel insights for understanding the salt tolerance mechanism of asparagus bean in the future.
Collapse
Affiliation(s)
- Lei Pan
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
- Computational Biology Institute and Center for Biomolecular Sciences, Department of Physics, The George Washington University, Washington, DC, United States of America
| | - Xiaolu Yu
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Jingjie Shao
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Zhichao Liu
- Computational Biology Institute and Center for Biomolecular Sciences, Department of Physics, The George Washington University, Washington, DC, United States of America
| | - Tong Gao
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Chen Zeng
- Computational Biology Institute and Center for Biomolecular Sciences, Department of Physics, The George Washington University, Washington, DC, United States of America
| | - Chengzhi Liang
- Institute of Genetics and Development, Chinese Academy of Sciences, Beijing, China
| | - Chanyou Chen
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| |
Collapse
|
32
|
Genome-wide identification of internal reference genes for normalization of gene expression values during endosperm development in wheat. J Appl Genet 2019; 60:233-241. [PMID: 31297694 DOI: 10.1007/s13353-019-00503-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
Internal reference genes that are stably expressed are essential for normalization in comparative expression analyses. However, gene expression varies significantly among species, organisms, tissues, developmental stages, stresses, and treatments. Therefore, identification of stably expressed reference genes in developmental endosperm of bread wheat is important for expression analysis of endosperm genes. As the first study to systematically screen for reference genes across different developmental stages of wheat endosperm, nine genes were selected from among 76 relatively stable genes based on high-throughput RNA sequencing data. The expression stability of these candidate genes and five traditional reference genes was assessed by real-time quantitative PCR combined with three independent algorithms: geNorm, NormFinder, and BestKeeper. The results showed that ATG8d was the most stable gene during wheat endosperm development, followed by Ta54227, while the housekeeping gene GAPDH, commonly used as an internal reference, was the least stable. ATG8d and Ta54227 together formed the optimal combination of reference genes. Comparative expression analysis of glutenin genes indicated that credible quantification could be achieved by normalization against ATG8d in developmental endosperm. The stably expressed gene characterized here can act as a proper internal reference for expression analysis of wheat endosperm genes, especially nutrient- and nutrient synthesis-related genes.
Collapse
|
33
|
Chai WW, Wang WY, Ma Q, Yin HJ, Hepworth SR, Wang SM. Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:670-683. [PMID: 31064640 DOI: 10.1071/fp18295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Most studies on salt tolerance in plants have been conducted using glycophytes like Arabidopsis thaliana (L.) Heynh., with limited resistance to salinity. The xerohalophyte Zygophyllum xanthoxylum (Bunge) Engl. is a salt-accumulating desert plant that efficiently transports Na+ into vacuoles to manage salt and exhibits increased growth under salinity conditions, suggesting a unique transcriptional response compared with glycophytes. We used transcriptome profiling by RNA-seq to compare gene expression in roots of Z. xanthoxylum and A. thaliana under 50 mM NaCl treatments. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis suggested that 50 mM NaCl was perceived as a stimulus for Z. xanthoxylum whereas a stress for A. thaliana. Exposure to 50 mM NaCl caused metabolic shifts towards gluconeogenesis to stimulate growth of Z. xanthoxylum, but triggered defensive systems in A. thaliana. Compared with A. thaliana, a vast array of ion transporter genes was induced in Z. xanthoxylum, revealing an active strategy to uptake Na+ and nutrients from the environment. An ascorbate-glutathione scavenging system for reactive oxygen species was also crucial in Z. xanthoxylum, based on high expression of key enzyme genes. Finally, key regulatory genes for the biosynthesis pathways of abscisic acid and gibberellin showed distinct expression patterns between the two species and auxin response genes were more active in Z. xanthoxylum compared with A. thaliana. Our results provide an important framework for understanding unique patterns of gene expression conferring salt resistance in Z. xanthoxylum.
Collapse
Affiliation(s)
- Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Corresponding author.
| |
Collapse
|
34
|
Huang S, Jiang S, Liang J, Chen M, Shi Y. Current knowledge of bermudagrass responses to abiotic stresses. BREEDING SCIENCE 2019; 69:215-226. [PMID: 31481830 PMCID: PMC6711739 DOI: 10.1270/jsbbs.18164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/21/2019] [Indexed: 06/08/2023]
Abstract
Bermudagrass (Cynodon spp.) is a common turfgrass found in parks, landscapes, sports fields, and golf courses. It is also grown as a forage crop for animal production in many countries. Consequently, bermudagrass has significant ecological, environmental, and economic importance. Like many other food crops, bermudagrass production also faces challenges from various abiotic and biotic stresses. In this review we will focus on abiotic stresses and their impacts on turfgrass quality and yield. Among the abiotic stresses, drought, salinity and cold stress are known to be the most damaging stresses that can directly affect the production of turfgrass worldwide. In this review, we also discuss the impacts of nutrient supply, cadmium, waterlogging, shade and wear stresses on bermudagrass growth and development. Detailed discussions on abiotic stress effects on bermudagrass morphology, physiology, and gene expressions should benefit our current understanding on molecular mechanisms controlling bermudagrass tolerance against various abiotic stresses. We believe that the rapid development of transcriptomics and proteomics, as well as bermudagrass stable transformation technologies will promote the production of new bermudagrass cultivars with desirable tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Shilian Huang
- College of Life Sciences, South China Agricultural University,
483 Wushan Road, Guangzhou, Guangdong, 510642,
China
| | - Shaofeng Jiang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University,
109 Huan Cheng North 2nd Road, Guilin, Guangxi, 541004,
China
| | - Junsong Liang
- College of Biology & Pharmacy, Yulin Normal University,
1303 Jiaoyudong Road, Yulin, Guangxi, 537000,
China
| | - Miao Chen
- Faculty of Agricultural Science, Guangdong Ocean University,
Haida Road #1, Zhanjiang, Guangdong, 524088,
China
| | - Yancai Shi
- Guangxi Institute of Botany, Chinese Academy of Sciences,
85 Yanshan Town, Guilin, Guangxi, 541006,
China
| |
Collapse
|
35
|
Long L, Yang WW, Liao P, Guo YW, Kumar A, Gao W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:72-81. [PMID: 30824063 DOI: 10.1016/j.plantsci.2019.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 05/27/2023]
Abstract
Salinity is a major abiotic stress limiting plant growth and development that has caused severe damage to yield and quality of cotton fiber. Uncovering the mechanisms of response to salt stress is important in breeding salt-tolerant cotton varieties. Transcriptome analysis identified 2356 differentially expressed genes in cotton under salt stress, of which 9.4% were predicted transcription factors (TFs). Approximately 17.6% (39 out of 222) of the differentially expressed TFs belonged to the ethylene response factor (ERF) family. Expression pattern analysis showed significant changes in these ERFs during salt stress. Moreover, the number of down-regulated ERFs was more than that of the up-regulated ERFs. Two of the ERFs, GhERF4L and GhERF54L, showed increased (12-15 times) expression after 12 h of salt treatment. Silencing of GhERF4L and GhERF54L significantly reduced salt tolerance of cotton seedlings, indicating their role in regulating cotton response to salt stress. This study revealed the essential role of ERF transcription factors in the salt response mechanism of plants, and provided important genetic resources for breeding salt-tolerant cotton.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Peng Liao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Ya-Wei Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Arvind Kumar
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, PR China.
| |
Collapse
|
36
|
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F, Zhang L. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. Int J Mol Sci 2019. [PMID: 30875790 DOI: 10.artn128910.3390/ijms20061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Kentucky bluegrass (KB, Poa pratensis) is one of the most widely used cool-season turfgrass species, but it is sensitive to drought stress. Molecular studies in KB are hindered by its large and complex genome structure. In this study, a comparative transcriptomic study was conducted between a short and long period of water deficiency. Three transcriptome libraries were constructed and then sequenced by using leaf RNA samples of plants at 0, 2, and 16 h after PEG6000 treatment. A total of 199,083 differentially expressed genes (DEGs) were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that DEGs were enriched in "Plant hormone signal transduction" and "MAPK signaling pathway-Plant". Some key up-regulated genes, including PYL, JAZ, and BSK, were involved in hormone signaling transduction of abscisic acid, jasmonic acid, and brassinosteroid and possibly these genes play important roles in coping with drought stress in KB. Furthermore, our results showed that the concentrations of ABA, JA and BR increased significantly with the extension of the drought period. The specific DEGs encoding functional proteins, kinase and transcription factors, could be valuable information for genetic manipulation to promote drought tolerance of KB in the future.
Collapse
Affiliation(s)
- Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yifeng Jin
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Huashan Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F, Zhang L. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. Int J Mol Sci 2019; 20:E1289. [PMID: 30875790 PMCID: PMC6471471 DOI: 10.3390/ijms20061289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 01/17/2023] Open
Abstract
Kentucky bluegrass (KB, Poa pratensis) is one of the most widely used cool-season turfgrass species, but it is sensitive to drought stress. Molecular studies in KB are hindered by its large and complex genome structure. In this study, a comparative transcriptomic study was conducted between a short and long period of water deficiency. Three transcriptome libraries were constructed and then sequenced by using leaf RNA samples of plants at 0, 2, and 16 h after PEG6000 treatment. A total of 199,083 differentially expressed genes (DEGs) were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that DEGs were enriched in "Plant hormone signal transduction" and "MAPK signaling pathway-Plant". Some key up-regulated genes, including PYL, JAZ, and BSK, were involved in hormone signaling transduction of abscisic acid, jasmonic acid, and brassinosteroid and possibly these genes play important roles in coping with drought stress in KB. Furthermore, our results showed that the concentrations of ABA, JA and BR increased significantly with the extension of the drought period. The specific DEGs encoding functional proteins, kinase and transcription factors, could be valuable information for genetic manipulation to promote drought tolerance of KB in the future.
Collapse
Affiliation(s)
- Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yifeng Jin
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Huashan Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
38
|
Chen C, Cao Q, Jiang Q, Li J, Yu R, Shi G. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC PLANT BIOLOGY 2019; 19:35. [PMID: 30665365 PMCID: PMC6341601 DOI: 10.1186/s12870-019-1654-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Iron (Fe) is an essential element for plant growth and development, whereas cadmium (Cd) is non-essential and highly toxic. Previous studies showed that Fe deficiency enhanced Cd uptake and accumulation in peanuts. However, the molecular mechanism underlying the increased Cd accumulation in Fe-deficient peanut plants is poorly understood. RESULTS We employed a comparative transcriptome analysis approach to identify differentially expressed genes (DEGs) in peanut roots exposed to Fe-sufficient without Cd, Fe-deficient without Cd, Fe-sufficient with Cd and Fe-deficient with Cd. Compared with the control, Fe deficiency induced 465 up-regulated and 211 down-regulated DEGs, whereas the up- and down-regulated DEGs in Cd exposed plants were 329 and 189, respectively. Under Fe-deficient conditions, Cd exposure resulted in 907 up-regulated DEGs and 953 down-regulated DEGs. In the presence of Cd, Fe deficiency induced 1042 up-regulated and 847 down-regulated genes, respectively. Based on our array data, we found that metal transporter genes such as CAX4, COPT1, IRT1, NRAMP5, OPT3, YSL3, VIT3 and VIT4 might be involved in iron homeostasis. Moreover, combined with quantitative real-time PCR, IRT1, NRAMP3, NRAMP5, OPT3, YSL3, ABCC3, ZIP1, and ZIP5 were verified to be responsible for Cd uptake and translocation in peanut plants under iron deficiency. Additionally, a larger amount of ABC transporter genes was induced or suppressed by iron deficiency under Cd exposure, indicating that this family may play important roles in Fe/Cd uptake and transport. CONCLUSIONS The up-regulated expression of NRAMP5 and IRT1 genes induced by iron deficiency may enhance Cd uptake in peanut roots. The decrease of Cd translocation from roots to shoots may be resulted from the down-regulation of ZIP1, ZIP5 and YSL3 under iron deficiency.
Collapse
Affiliation(s)
- Chu Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qiqi Cao
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qun Jiang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Jin Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| |
Collapse
|
39
|
Liu Q, Tang J, Wang W, Zhang Y, Yuan H, Huang S. Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:250-260. [PMID: 30199796 DOI: 10.1016/j.ecoenv.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 05/25/2023]
Abstract
The remediation and subsequent use of saline-alkaline land are of great significance to ecological environment construction and sustainable agricultural development. Iris halophila Pall. is a salt-tolerant medicinal and ornamental plant, which has good application prospects in the ecological construction of saline-alkaline land; therefore, study of the molecular mechanisms of salt tolerance in I. halophila has important theoretical and practical value. To evaluate the molecular mechanism of the response of I. halophila to salt toxicity, I. halophila seedlings were treated with salt (300 mM NaCl) and subjected to deep RNA sequencing. The clean reads were obtained and assembled into 297,188 unigenes. Among them, 1120 and 100 salt-responsive genes were identified in I. halophila shoots and roots, respectively. Among them, the key flavonoid and lignin biosynthetic genes, hormone signaling genes, sodium/potassium ion transporter genes, and transcription factors were analyzed and summarized. Quantitative reverse-transcription PCR analysis strengthened the reliability of the RNA sequencing results. This work provides an overview of the transcriptomic responses to salt toxicity in I. halophila and identifies the responsive genes that may contribute to its reduced salt toxicity. These results lay an important foundation for further study of the molecular mechanisms of salt tolerance in I. halophila and related species.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jun Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
40
|
Guo L, Qiu J, Li LF, Lu B, Olsen K, Fan L. Genomic Clues for Crop-Weed Interactions and Evolution. TRENDS IN PLANT SCIENCE 2018; 23:1102-1115. [PMID: 30293809 DOI: 10.1016/j.tplants.2018.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 05/11/2023]
Abstract
Agronomically critical weeds that have evolved alongside crop species are characterized by rapid adaptation and invasiveness, which can result in an enormous reduction in annual crop yield worldwide. We discuss here recent genome-based research studies on agricultural weeds and crop-weed interactions that reveal several major evolutionary innovations such as de-domestication, interactions mediated by allelochemical secondary metabolites, and parasitic genetic elements that play crucial roles in enhancing weed invasiveness in agricultural settings. We believe that these key studies will guide future research into the evolution of crop-weed interactions, and further the development of practical applications in agricultural weed control and crop breeding.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; These authors contributed equally to this work
| | - Jie Qiu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; These authors contributed equally to this work
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kenneth Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Zhang B, Liu J, Wang X, Wei Z. Full-length RNA sequencing reveals unique transcriptome composition in bermudagrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:95-103. [PMID: 30176433 DOI: 10.1016/j.plaphy.2018.08.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Bermudagrass [Cynodon dactylon (L.) Pers.] is an important perennial warm-season turfgrass species with great economic value. However, the reference genome and transcriptome information are still deficient in bermudagrass, which severely impedes functional and molecular breeding studies. In this study, through analyzing a mixture sample of leaves, stolons, shoots, roots and flowers with single-molecule long-read sequencing technology from Pacific Biosciences (PacBio), we reported the first full-length transcriptome dataset of bermudagrass (C. dactylon cultivar Yangjiang) comprising 78,192 unigenes. Among the unigenes, 66,409 were functionally annotated, whereas 27,946 were found to have two or more isoforms. The annotated full-length unigenes provided many new insights into gene sequence characteristics and systematic phylogeny of bermudagrass. By comparison with transcriptome dataset in nine grass species, KEGG pathway analyses further revealed that C4 photosynthesis-related genes, notably the phosphoenolpyruvate carboxylase and pyruvate, phosphate dikinase genes, are specifically enriched in bermudagrass. These results not only explained the possible reason why bermudagrass flourishes in warm areas but also provided a solid basis for future studies in this important turfgrass species.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaoshan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Li J, Zong J, Chen J, Wang Y, Li D, Li L, Wang J, Guo H, Liu J. De novo assembly and comparative transcriptome analysis reveals genes potentially involved in tissue-color changes in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:345-355. [PMID: 30053740 DOI: 10.1016/j.plaphy.2018.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Turf color is the most important characteristics of visual quality for a turfgrass species with high ornamental value and wide application prospects. Centipedegrass is a well-adapted warm-season turfgrass species in tropical, subtropical and temperate regions, possessing many outstanding properties including uniform green color. However, quite a few centipedegrass accessions or cultivars produce stolons and spike tissues with red-purple color, thereby decreasing their aesthetic value. A research focus in centipedegrass is to develop high-quality cultivars with uniform green color. To explore the major genes associated with the color changes in certain organs/tissues contributes to understand the molecular mechanisms of the same tissues having different phenotypic characteristics. In the present study, two phenotypically distinct centipedegrass accessions, E092 being a wild-type (WT) with red-purple stolons and spike tissues and E092-1 being a mutant (MT) with uniform green stolons and spike tissues, were used. Using the Illumina sequencing platform, approximately 401.7 million high-quality paired-end reads were obtained. After de novo assembly and quantitative assessment, 352,513 transcript sequences corresponding to 293,033 unigenes were generated with an average length of 735 bp. A total of 145,032 (49.49%) unigenes were annotated by alignment with public protein databases. Of these unigenes, 329 differentially expressed genes (DEGs) were identified between WT and MT stolons, with 156 up-regulated and 173 down-regulated; and 829 DEGs were detected between WT and MT spike tissues, including 497 up-regulated and 332 down-regulated. The expression profile of 10 randomly selected DEGs was confirmed with RT-qPCR. Candidate genes involved in the flavonoid biosynthesis were identified showing significant transcript changes between WT and MT organs/tissues. And transcript abundances of these flavonoid biosynthetic pathway-related genes were positively correlated with the accumulation of total anthocyanin in respective organs/tissues. This assembled transcriptome of centipedegrass can be served as a global description of expressed genes of above-ground organs/tissues and provide more molecular resources for future functional characterization analysis of genomics in warm-season turfgrass. Identified genes related to centipedegrass organ/tissue changes will contribute to molecular improvement of turf quality through genetic manipulation.
Collapse
Affiliation(s)
- Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Yi Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Ling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
43
|
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S. Root cell wall solutions for crop plants in saline soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:47-55. [PMID: 29606216 DOI: 10.1016/j.plantsci.2017.12.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 05/05/2023]
Abstract
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia. http://twitter.com/BotanicGeek
| | - Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
44
|
Xie R, Pan X, Zhang J, Ma Y, He S, Zheng Y, Ma Y. Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct Integr Genomics 2017; 18:155-173. [DOI: 10.1007/s10142-017-0582-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
|
45
|
Identification and Characterization of the Diverse Stress-Responsive R2R3-RMYB Transcription Factor from Hibiscus sabdariffa L. Int J Genomics 2017; 2017:2763259. [PMID: 29181384 PMCID: PMC5664376 DOI: 10.1155/2017/2763259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
Various regulatory proteins play a fundamental role to manage the healthy plant growth under stress conditions. Differential display reverse transcriptase PCR and random amplification of cDNA ends (RACE) was used to explore the osmotic stress-responsive transcripts. We identified and characterized the salt stress-responsive R2R3 type RMYB transcription factor from Hibiscus sabdariffa which has an open reading frame of 690 bp, encoding 229 long chain amino acids. In silico analysis confirmed the conserved R2 and R3 domain as well as an NLS-1 localization site. The deduced amino acids of RMYB shared 83, 81, 80, 79, 72, 71, and 66% homology with Arabidopsis thaliana, Glycine max, Oryza sativa, Zea maize, Malus domestica, Populus tremula × Populus alba, and Medicago sativa specific MYB family, respectively. We observed the gene upregulation in stem, leaf, and root tissue in response to abiotic stress. Furthermore, RMYB gene was cloned into plant expression vector under CaMV35S promoter and transformed to Gossypium hirsutum: a local cotton cultivar. Overexpression of RMYB was observed in transgenic plants under abiotic stresses which further suggests its regulatory role in response to stressful conditions. The RMYB transcription factor-overexpressing in transgenic cotton plants may be used as potential agent for the development of stress tolerant crop cultivars.
Collapse
|
46
|
Huang S, Wang C, Liang J. Genetic resources and genetic transformation in bermudagrass – a review. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1398051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Shilian Huang
- Guangdong Engineering Research Center for Grassland Science, College of Life Science, South China Agricultural University, Guangzhou, P. R. China
| | - Chen Wang
- Guangdong Engineering Research Center for Grassland Science, College of Life Science, South China Agricultural University, Guangzhou, P. R. China
| | - Junsong Liang
- Department of Chemistry and Bichemistry, College of Biology & Pharmacy, Yulin Normal University, Yulin, P. R. China
- Department of Garden and Flower, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, P. R. China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, P. R. China
| |
Collapse
|
47
|
Iqbal A, Wang T, Wu G, Tang W, Zhu C, Wang D, Li Y, Wang H. Physiological and transcriptome analysis of heteromorphic leaves and hydrophilic roots in response to soil drying in desert Populus euphratica. Sci Rep 2017; 7:12188. [PMID: 28939837 PMCID: PMC5610244 DOI: 10.1038/s41598-017-12091-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Populus euphratica Olivier, which has been considered as a tree model for the study of higher plant response to abiotic stresses, survive in the desert ecosystem characterized by extreme drought stress. To survive in the harsh environmental condition the plant species have developed some plasticity such as the development of heteromorphic leaves and well-developed roots system. We investigated the physiological and molecular mechanisms enabling this species to cope with severe stress caused by drought. The heterophylly, evolved from linear to toothed-ovate shape, showed the significant difference in cuticle thickness, stomata densities, and sizes. Physiological parameters, SOD, POD, PPO, CAT activity, free proline, soluble protein and MDA contents fluctuated in response to soil drying. Gene expression profile of roots monitored at control and 4 moisture gradients regimes showed the up-regulation of 124, 130, 126 and 162 and down-regulation of 138, 251, 314, 168 DEGs, respectively. Xyloglucan endotransglucosylase/ hydrolase gene (XET) up-regulated at different moisture gradients, was cloned and expressed in tobacco. The XET promoter sequence harbors the drought signaling responsive cis-elements. The promoter expression activity varies in different organs. Over-expression and knocked down transgenic tobacco plant analysis confirmed the role of XET gene in roots growth and drought resistance.
Collapse
Affiliation(s)
- Arshad Iqbal
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Tianxiang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Wensi Tang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Chen Zhu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Dapeng Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- Department of Plant Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
48
|
Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pak choi cultivars. Sci Rep 2017; 7:9217. [PMID: 28835647 PMCID: PMC5569009 DOI: 10.1038/s41598-017-09838-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
To identify key regulatory genes involved in ROS scavenging in response to cadmium (Cd) exposure in pak choi, eight cDNA libraries from Cd-treated and Cd-free roots of two cultivars, Baiyewuyueman (high Cd accumulator) and Kuishan’aijiaoheiye (low Cd accumulator), were firstly performed by RNA-sequencing. Totally 0.443 billion clean reads and 244,190 unigenes were obtained from eight transcriptome. About 797 and 1167 unigenes encoding ROS related proteins and transcription factors were identified. Of them, 11 and 16 ROS scavenging system related DEGs, and 29 and 15 transcription factors related DEGs were found in Baiyewuyueman and Kuishan’aijiaoheiye, respectively. Ten ROS-scavenging genes (Cu/Zn-SOD, GST1, PODs, TrxR2, PrxR, FER3 and NDPK) showed higher expression levels in Cd-exposed seedings of Baiyewuyueman than those of Kuishan’aijiaoheiye. Four genes (GPX, APX, GRX and GST3) specifically expressed in Cd-free roots of Kuishan’aijiaoheiye. For transcription factors, ERF12/13/22 and WRKY31 was up-regulated by Cd in Baiyewuyueman, while in Kuishan’aijiaoheiye, Cd induced down-regulations of bZIP, NAC and ZFP families. The results indicate that the two cultivars differed in the mechanism of ROS scavenging in response to Cd stress. Fe SOD1, POD A2/44/54/62 and GST1 may be responsible for the difference of Cd tolerance between Baiyewuyueman and Kuishan’aijiaoheiye.
Collapse
|
49
|
Zhang P, Lyu D, Jia L, He J, Qin S. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics 2017; 18:649. [PMID: 28830345 PMCID: PMC5568329 DOI: 10.1186/s12864-017-4055-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress. However, the limited availability of Cerasus genomic resources has considerably restricted the exploration of its waterlogging response mechanism. To understand its reaction to short-term waterlogging, we analyzed the physiology and transcriptomes of C. sachalinensis roots in response to different waterlogging durations. Results In this study, 12,487 differentially expressed genes (DEGs) were identified from Cerasus sachalinensis roots under different waterlogging durations. Carbon metabolism and energy maintenance formed the first coping mechanism stage of C. sachalinensis in response to low oxygen conditions. Root energy processes, including root respiration and activities of the fermentation enzymes alcohol dehydrogenase, pyruvate decarboxylase, and lactate dehydrogenase, showed unique changes after 0 h, 3 h, 6 h, and 24 h of waterlogging exposure. Ribonucleic acid sequencing was used to analyze transcriptome changes in C. sachalinensis roots treated with 3 h, 6 h, and 24 h of waterlogging stress. After de novo assembly, 597,474 unigenes were recognized, of which 355,350 (59.47%) were annotated. To identify the most important pathways represented by DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to compare these genes. The first stage of root reaction to waterlogging stress was activation of carbohydrate metabolism to produce more glucose and maintain energy levels. At 3 h, the glycolytic and fermentation pathways were activated to maintain adenosine triphosphate production. At 24 h, pathways involved in the translation of proteins were activated to further assist the plant in tolerating waterlogging stress. These findings will facilitate a further understanding of the potential mechanisms of plant responses to waterlogging at physiological and transcriptome levels. Conclusions Carbon metabolism and energy maintenance formed the first coping mechanism C. sachalinensis in response to low oxygen conditions, and they may be responsible for its short-term waterlogging response. Our study not only provides the assessment of genomic resources of Cerasus but also paves the way for probing the metabolic and molecular mechanisms underlying the short-term waterlogging response in C. sachalinensis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4055-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture/Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Deguo Lyu
- College of Horticulture/Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Luting Jia
- College of Horticulture/Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiali He
- College of Horticulture/Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Sijun Qin
- College of Horticulture/Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
50
|
Yu R, Li D, Du X, Xia S, Liu C, Shi G. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 2017; 18:587. [PMID: 28789614 PMCID: PMC5549386 DOI: 10.1186/s12864-017-3973-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Cadmium translocation from roots to shoots is a complex biological process that is controlled by gene regulatory networks. Pak choi exhibits wide cultivar variations in Cd accumulation. However, the molecular mechanism involved in cadmium translocation and accumulation is still unclear. To isolate differentially expressed genes (DEGs) involved in transporter-mediated regulatory mechanisms of Cd translocation in two contrasting pak choi cultivars, Baiyewuyueman (B, high Cd accumulator) and Kuishan’aijiaoheiye (K, low Cd accumulator), eight cDNA libraries from the roots of two cultivars were constructed and sequenced by RNA-sequencing. Results A total of 244,190 unigenes were obtained. Of them, 6827 DEGs, including BCd10 vs. BCd0 (690), KCd10 vs. KCd0 (2733), KCd0 vs. BCd0 (2919), and KCd10 vs. BCd10 (3455), were identified. Regulatory roles of these DEGs were annotated and clarified through GO and KEEG enrichment analysis. Interestingly, 135 DEGs encoding ion transport (i.e. ZIPs, P1B-type ATPase and MTPs) related proteins were identified. The expression patterns of ten critical genes were validated using RT-qPCR analysis. Furthermore, a putative model of cadmium translocation regulatory network in pak choi was proposed. Conclusions High Cd cultivar (Baiyewuyueman) showed higher expression levels in plasma membrane-localized transport genes (i.e., ZIP2, ZIP3, IRT1, HMA2 and HMA4) and tonoplast-localized transport genes (i.e., CAX4, HMA3, MRP7, MTP3 and COPT5) than low Cd cultivar (Kuishan’aijiaoheiye). These genes, therefore, might be involved in root-to-shoot Cd translocation in pak choi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3973-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Dan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China.
| |
Collapse
|