1
|
Chen J, Wang Y, Cheng J, Ma Y, Zhang X, Bai X, Rehati P, Cui H, Wu F, Pan Q, Huang J. Synergistic impact of macrolide resistance and H3N2 infection on M. pneumoniae outbreak in children. Microbiol Spectr 2025; 13:e0184424. [PMID: 39998323 PMCID: PMC11960130 DOI: 10.1128/spectrum.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/26/2025] Open
Abstract
In November 2023, there was a substantial increase in the incidence of Mycoplasma pneumoniae infections in China following waves of SARS-CoV-2 Omicron variant and influenza outbreaks. This study aimed to elucidate the epidemiological features and clinical implications of M. pneumoniae infections in children and explore the potential influence of SARS-CoV-2 Omicron variants and influenza A infections on the M. pneumoniae outbreak. Among 38,668 children with lower respiratory tract infections from January to December 2023, 11,919 tested positive for M. pneumoniae, predominantly between October and December. The majority of the children with M. pneumoniae were aged 5-10 years, with type 1 strains and macrolide-resistant M. pneumoniae strains having the highest prevalence rates. Statistical analysis revealed elevated C-reactive protein, neutrophil, and monocyte levels and decreased lymphocyte, basophil, and eosinophil counts in M. pneumoniae-positive children. M. pneumoniae-positive children also presented significantly increased neutralizing antibody levels against preceding influenza A (H3N2) but not against SARS-CoV-2 Omicron variants. A parallel trend was observed between M. pneumoniae and H3N2 prevalence from June to December 2023. The emergence of macrolide-resistant strains and prior influenza A (H3N2) epidemics notably contributed to the M. pneumoniae outbreak. These findings suggested that H3N2 infection facilitates M. pneumoniae infection through various mechanisms. This study underscores the complex interactions between respiratory pathogens and highlights the need for comprehensive surveillance and response strategies.IMPORTANCEThis study identified key factors contributing to an outbreak of Mycoplasma pneumoniae that affected 11,919 children. The influencing factors included a high prevalence of macrolide-resistant epidemic strains (94.2%) and significantly higher H3N2 neutralizing antibody levels (P < 0.0001) stimulated by the preceding H3N2 influenza epidemic. These findings highlight the complex relationship between the prevalence of M. pneumoniae and H3N2 infection in children, indicating that it is necessary to consider pathogen interactions in respiratory disease management by continuously monitoring respiratory pathogens. The emergence of macrolide-resistant strains in China and the previous H3N2 influenza epidemic significantly exacerbated the severity of the M. pneumoniae outbreak. H3N2 infection potentially amplifies Mycoplasma transmission. This study elucidates the epidemiological and clinical aspects of M. pneumoniae infections in children, yields insights regarding the cause of the outbreak, and provides guidance for improving respiratory infection management.
Collapse
Affiliation(s)
- Jiali Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingdan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juan Cheng
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunping Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xin Zhang
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuezhou Bai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Palizhati Rehati
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Wu
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Jinghe Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang S, Liu C, Ding R, Wang S, Ye Y, He M. Alterations in Gut Microbiota and Serum Metabolites in Children with Mycoplasma pneumoniae Pneumonia. Infect Drug Resist 2024; 17:5097-5110. [PMID: 39584178 PMCID: PMC11585984 DOI: 10.2147/idr.s490547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background Over the past years, there has been a significant increase in the incidence of Mycoplasma pneumoniae (MP) infections, particularly among pediatric patients, nationwide. An emerging body of research has established a link between dysbiosis of the host microbiome and the metabolic functioning of the host, which contributes to the development of respiratory diseases. Methods A total of 25 children were included in the study, comprising 15 pneumonia patients and 10 healthy children. Stool samples were collected from all participants to analyze the 16S ribosomal RNA (16S rRNA) gene, while serum samples were prepared for untargeted metabolomics to qualitatively and quantitatively assess short-chain fatty acids. Results The gut microbial composition of individuals with Mycoplasma pneumoniae pneumonia (MPP) exhibited significant differences compared to healthy children. Notably, diseased children demonstrated higher microbial diversity and an enrichment of opportunistic pathogens, such as Erysipelatoclostridium and Eggerthella. Analysis revealed elevated levels of two specific short-chain fatty acids, namely acetic acid and isobutyric acid, in the MPP group, suggesting their potential as biomarkers for predicting MP infection. Metabolomic signature analysis identified a significant increase in major classes of glycerophospholipids in the MPP group. Moreover, we identified a total of 750 significant correlations between gut microbiota and circulating serum metabolites. MPP enriched genera Erysipelatoclostridium and Eggerthella, exhibited negative associations with indole-3-butyric acid. Additionally, Eggerthella showed a positive correlation with inflammatory metabolites LPC (18:0). Discussion Collectively, these findings provide novel insights into the selection of potential biomarkers and the pathogenesis of MPP in children based on the gut microbiota and systemic circulating metabolites.
Collapse
Affiliation(s)
- Shu Wang
- Department of Geriatrics, The First People’s Hospital of Hefei, Hefei, 230061, People’s Republic of China
| | - Chengzhong Liu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ruipei Ding
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shumei Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yousheng Ye
- Department of Geriatrics, The First People’s Hospital of Hefei, Hefei, 230061, People’s Republic of China
| | - Maozhang He
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
3
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Du H, Li J, Li X, Zhao J, Lu W, Zhang Q, Liu W, Luo X, Lu Q, Hu S, Ma J, He R, Sha B, Zhang L, Wu J, Yang J, Li H, Chen H, Li Y, Li Y, Lin Y, Liu Y, Wu Y, Liu Y, Li J, Lu X. Impact of the COVID-19 pandemic on epidemiological and clinical characteristics of Mycoplasma pneumoniae pneumonia in children: a multicenter study from Hubei, China. Front Pediatr 2024; 12:1388132. [PMID: 39525836 PMCID: PMC11543416 DOI: 10.3389/fped.2024.1388132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aims To investigate the epidemiological and clinical characteristics of children with Mycoplasma pneumoniae pneumonia (MPP) in Hubei, China. Methods We retrospectively analyzed inpatients with MPP from 20 hospitals in Hubei, China from January 2021 to December 2022. The co-detected pathogens of Mycoplasma pneumoniae (M. pneumoniae) were investigated using targeted next-generation sequencing (tNGS), and 23S rRNA gene mutations were analyzed to assess the macrolide resistance. Results M. pneumoniae infected 20.7% of patients with CAP, with cough (96.59%) and fever (80.28%) being the most prevalent symptoms. The infection rates in children younger than 1, 1-2, 3-6, 7-12, and older than 12 years were 6.17%, 19.98%, 26.97%, 43.93%, and 2.95%, respectively. Among 1,349 patients undergoing tNGS, the overall co-detection rate was 59.45%, with Streptococcus pneumoniae (29.30%), Haemophilus influenzae (23.57%), and Human rhinovirus (17.21%) being the most commonly co-detected pathogens. In 635 patients undergoing the 23S rRNA gene mutation test, 86.30% exhibited positive mutations (A2063G, 98.00%; A2064G, 1.50%; A2067G, 0.50%). Despite a significant age difference (P = 0.037) between macrolide-resistant M. pneumoniae and macrolide-sensitive M. pneumoniae groups, there were no significant differences in symptoms, lab data, or disease severity. Conclusions In Hubei Province, the prevalence of exhibited consistent changes during the COVID-19 pandemic. MPP was prevalent year-round, particularly in summer and autumn, with school-age children being more susceptible. Co-detections of viruses and bacteria were frequent in MPP cases, and macrolide resistance exceeded 85%. Ongoing surveillance of M. pneumoniae in children is crucial for understanding the healthcare impact of MPP.
Collapse
Affiliation(s)
- Hui Du
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Pediatrics, Maternal and Child Health Hospital of Huangshi, Huangshi, China
| | - Xilin Li
- Department of Pediatrics, People’s Hospital of Xishui, Huanggang, China
| | - Junhua Zhao
- Department of Pediatrics, Xiantao Maternal and Child Health Hospital, Xiantao, China
| | - Wei Lu
- Department of Pediatrics, Yichang Central People’s Hospital, Yichang, China
| | - Qiong Zhang
- Department of Pediatrics, People’s Hospital of Dangyang, Dangyang, China
| | - Wenchun Liu
- Department of Pediatrics, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Xinbing Luo
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiao Lu
- Department of Pediatrics, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Sanhong Hu
- Department of Pediatrics, People’s Hospital of Huangpi, Wuhan, China
| | - Jilong Ma
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Renzhong He
- Department of Pediatrics, Huangshi Central Hospital, Huangshi, China
| | - Bangwu Sha
- Department of Pediatrics, Jingmen Hospital of Traditional Chinese Medicine, Jingmen, China
| | - Lihua Zhang
- Department of Pediatrics, The Second People’s Hospital of Yichang, The Second Hospital of Three Gorges University Yichang, Yichang, China
| | - Jinhui Wu
- Department of Pediatrics, Jingmen People’s Hospital/Jingchu University of Technology Affiliated Central Hospital, Jingmen, China
| | - Junjie Yang
- Department of Pediatrics, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Li
- Department of Pediatrics, Maternal and Child Health Hospital of Hanchuan, Xiaogan, China
| | - Hebin Chen
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Lin
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuehu Liu
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yabin Wu
- Department of Pediatric Respiratory Medicine, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Yang Liu
- Department of Pediatrics, WuHan Asia General Hospital, Wuhan, China
| | - Jianmu Li
- Department of Pediatrics, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Rowlands RS, Sauteur PMM, Beeton ML. Mycoplasma pneumoniae: not a typical respiratory pathogen. J Med Microbiol 2024; 73:001910. [PMID: 39475213 PMCID: PMC11523975 DOI: 10.1099/jmm.0.001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia among school-aged children and young adults. Infections occur throughout the year but tend to surge during winter months across Europe. A characteristic epidemic cycle, where a substantial surge in the number of infections occurs, is seen approximately every 1-4 years and hypothesized to be driven by changes in immunity and a shift in circulating variants. Once thought to be an organism of low virulence, it has now been found to possess several virulence factors, including toxin production, biofilm formation and evasion of antibody-mediated immunity. The lack of a cell wall and reduced metabolic pathways limit the options for antibiotic treatment. Acquired macrolide resistance is a growing concern, with >80% of cases in China being macrolide-resistant. Although efforts have been made to develop a vaccine, there are still substantial hurdles to overcome in relation to vaccine-enhanced disease, which results from an inappropriate immune response among vaccinated individuals.
Collapse
Affiliation(s)
- Richard S. Rowlands
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
| | - Patrick M. Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael L. Beeton
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
| | - On behalf of the ESCMID Study Group for Mycoplasma and Chlamydia Infections (ESGMAC)
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff. CF5 2YB, UK
- Division of Infectious Diseases and Hospital Epidemiology, Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Martineau M, Ambroset C, Lefebvre S, Kokabi É, Léon A, Tardy F. Unravelling the main genomic features of Mycoplasma equirhinis. BMC Genomics 2024; 25:886. [PMID: 39304803 DOI: 10.1186/s12864-024-10789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Mycoplasma spp. are wall-less bacteria with small genomes (usually 0.5-1.5 Mb). Many Mycoplasma (M.) species are known to colonize the respiratory tract of both humans and livestock animals, where they act as primary pathogens or opportunists. M. equirhinis was described for the first time in 1975 in horses but has been poorly studied since, despite regular reports of around 14% prevalence in equine respiratory disorders. We recently showed that M. equirhinis is not a primary pathogen but could play a role in co-infections of the respiratory tract. This study was a set up to propose the first genomic characterization to better our understanding of the M. equirhinis species. RESULTS Four circularized genomes, two of which were generated here, were compared in terms of synteny, gene content, and specific features associated with virulence or genome plasticity. An additional 20 scaffold-level genomes were used to analyse intra-species diversity through a pangenome phylogenetic approach. The M. equirhinis species showed consistent genomic homogeneity, pointing to potential clonality of isolates despite their varied geographical origins (UK, Japan and various places in France). Three different classes of mobile genetic elements have been detected: insertion sequences related to the IS1634 family, a putative prophage related to M. arthritidis and integrative conjugative elements related to M. arginini. The core genome harbours the typical putative virulence-associated genes of mycoplasmas mainly involved in cytoadherence and immune escape. CONCLUSION M. equirhinis is a highly syntenic, homogeneous species with a limited repertoire of mobile genetic elements and putative virulence genes.
Collapse
Affiliation(s)
- Matthieu Martineau
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Chloé Ambroset
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Stéphanie Lefebvre
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France
| | - Éléna Kokabi
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Albertine Léon
- Research Department, LABÉO, Saint-Contest, Caen, F-14000, France
- University of Caen Normandie, University of Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Florence Tardy
- University of Lyon, Anses, VetAgro Sup, UMR Animal Mycoplasmosis, Lyon, F-69007, France.
- Anses, Ploufragan-Plouzané-Niort Laboratory-Mycoplasmology, Bacteriology and Antimicrobial, Resistance Unit, Ploufragan, F-22440, France.
| |
Collapse
|
7
|
Jiang Y, Kang H, Dou H, Guo D, Yuan Q, Dong L, Du Z, Zhao W, Xin D. Comparative genomic sequencing to characterize Mycoplasma pneumoniae genome, typing, and drug resistance. Microbiol Spectr 2024; 12:e0361523. [PMID: 38904371 PMCID: PMC11302288 DOI: 10.1128/spectrum.03615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 06/22/2024] Open
Abstract
To analyze the characteristics of Mycoplasma pneumoniae as well as macrolide antibiotic resistance through whole-genome sequencing and comparative genomics. Thirteen clinical strains isolated from 2003 to 2019 were selected, 10 of which were resistant to erythromycin (MIC >64 µg/mL), including 8 P1-type I and 2 P1-type II. Three were sensitive (<1 µg/mL) and P1-type II. One resistant strain had an A→G point mutation at position 2064 in region V of the 23S rRNA, the others had it at position 2063, while the three sensitive strains had no mutation here. Genome assembly and comparative genome analysis revealed a high level of genome consistency within the P1 type, and the primary differences in genome sequences concentrated in the region encoding the P1 protein. In P1-type II strains, three specific gene mutations were identified: C162A and A430G in L4 gene and T1112G mutation in the CARDS gene. Clinical information showed seven cases were diagnosed with severe pneumonia, all of which were infected with drug-resistant strains. Notably, BS610A4 and CYM219A1 exhibited a gene multi-copy phenomenon and shared a conserved functional domain with the DUF31 protein family. Clinically, the patients had severe refractory pneumonia, with pleural effusion, necessitating treatment with glucocorticoids and bronchoalveolar lavage. The primary variations between strains occur among different P1-types, while there is a high level of genomic consistency within P1-types. Three mutation loci associated with specific types were identified, and no specific genetic alterations directly related to clinical presentation were observed.IMPORTANCEMycoplasma pneumoniae is an important pathogen of community-acquired pneumonia, and macrolide resistance brings difficulties to clinical treatment. We analyzed the characteristics of M. pneumoniae as well as macrolide antibiotic resistance through whole-genome sequencing and comparative genomics. The work addressed primary variations between strains that occur among different P1-types, while there is a high level of genomic consistency within P1-types. In P1-type II strains, three specific gene mutations were identified: C162A and A430G in L4 gene and T1112G mutation in the CARDS gene. All the strains isolated from severe pneumonia cases were drug-resistant, two of which exhibited a gene multi-copy phenomenon, sharing a conserved functional domain with the DUF31 protein family. Three mutation loci associated with specific types were identified, and no specific genetic alterations directly related to clinical presentation were observed.
Collapse
Affiliation(s)
- Yue Jiang
- Pediatric Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hailong Kang
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiwei Dou
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dongxing Guo
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qing Yuan
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lili Dong
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhenglin Du
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Wenming Zhao
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deli Xin
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang N, Chen Y, Qu X, Bian X, Hu J, Xu X, Xiao L, Liu Y, Zhang J. In vitro pharmacodynamics of nemonoxacin and other antimicrobial agents against Mycoplasma pneumoniae. Microbiol Spectr 2023; 11:e0243123. [PMID: 37975686 PMCID: PMC10715200 DOI: 10.1128/spectrum.02431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE This study first reported the in vitro effector kinetics of the new non-fluorinated quinolone, nemonoxacin, against macrolide-resistant M. pneumoniae (MRMP) and macrolide susceptible M. pneumoniae (MSMP) strains along with other antimicrobial agents. The time-kill assays and pharmacodynamic analysis showed that nemonoxacin has significant mycoplasmacidal activity against MRMP and MSMP. This study paves the road to establish appropriate dosing protocols of a new antimicrobial drug for children infected with M. pneumoniae.
Collapse
Affiliation(s)
- Na Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuancheng Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhang Z, Dou H, Yuan Q, Shi D, Wan R, Tu P, Xin D, Guo S. Proteomic and Phenotypic Studies of Mycoplasma pneumoniae Revealed Macrolide-Resistant Mutation (A2063G) Associated Changes in Protein Composition and Pathogenicity of Type I Strains. Microbiol Spectr 2023; 11:e0461322. [PMID: 37378520 PMCID: PMC10434051 DOI: 10.1128/spectrum.04613-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is an important respiratory pathogen, the prevalence of macrolide-resistant MP (mainly containing A2063G mutation in 23S rRNA) increased in recent years. Epidemiological studies suggest a higher prevalence of type I resistant (IR) strains than corresponding sensitive (IS/IIS) strains, but not type II resistant (IIR) strains. Here, we aimed to analyze the factors underlying the altered prevalence of IR strains. First, proteomic analyses exhibit the protein compositions were type specific, while more differential proteins were detected between IS and IR (227) than IIS and IIR strains (81). mRNA level detection suggested posttranscriptional regulation of these differential proteins. Differential protein-related phenotypic changes were also detected: (i) P1 abundance was different between genotypes (I < II, IR < IS), the adhesion of MPs showed accordance to P1 abundance within IS and IIS strains; (ii) type I, especially IR, strains had a higher proliferation rate, which is potentially associated with differential proteins participating in glycolysis and one carbon pool metabolisms; (iii) A549 cells infected with IR strains had lower activity of caspase-3 and higher levels IL-8, but the differences were not significant between groups (P > 0.05). Correlations of P1 abundance to caspase-3 activity and proliferation rate to the level of IL-8 were obtained. These results suggest changes in protein composition influenced the pathogenicity of MP, especially in IR strains, which may impact the prevalence of MP strains of different genotypes. IMPORTANCE The prevalence of macrolide-resistant MPs increased the difficulty in treatment of MP infections and posed potential threats to children's health. Epidemiological studies showed a high prevalence of IR-resistant strains (mainly A2063G in 23S rRNA) in these years. However, the trigger mechanisms for this phenomenon are not clear. In this paper, proteomic and phenotypic studies suggest that IR strains have reduced levels of multiple adhesion proteins and increased proliferation rate, which may lead to higher transmission rate of IR strains in the population. This suggests that we should pay attention to the prevalence of IR strains.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Luzhou, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuilong Guo
- Department of Science and Technology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Zhao H, Yan C, Feng Y, Du B, Feng J, Cui X, Cui J, Gan L, Fan Z, Xu Z, Fu T, Yu Z, Yuan J, Xue G. Absolute quantification of Mycoplasma pneumoniae in infected patients by droplet digital PCR to track disease severity and treatment efficacy. Front Microbiol 2023; 14:1177273. [PMID: 37426001 PMCID: PMC10324665 DOI: 10.3389/fmicb.2023.1177273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Mycoplasma pneumoniae is a common causative pathogen of community-acquired pneumonia. An accurate and sensitive detection method is important for evaluating disease severity and treatment efficacy. Digital droplet PCR (ddPCR) is a competent method enabling the absolute quantification of DNA copy number with high precision and sensitivity. We established ddPCR for M. pneumoniae detection, using clinical specimens for validation, and this showed excellent specificity for M. pneumoniae. The limit of detection of ddPCR was 2.9 copies/reaction, while that for real-time PCR was 10.8 copies/reaction. In total, 178 clinical samples were used to evaluate the ddPCR assay, which correctly identified and differentiated 80 positive samples, whereas the real-time PCR tested 79 samples as positive. One sample that tested negative in real-time PCR was positive in ddPCR, with a bacterial load of three copies/test. For samples that tested positive in both methods, the cycle threshold of real-time PCR was highly correlated with the copy number of ddPCR. Bacterial loads in patients with severe M. pneumoniae pneumonia were significantly higher than those in patients with general M. pneumoniae pneumonia. The ddPCR showed that bacterial loads were significantly decreased after macrolide treatment, which could have reflected the treatment efficacy. The proposed ddPCR assay was sensitive and specific for the detection of M. pneumoniae. Quantitative monitoring of bacterial load in clinical samples could help clinicians to evaluate treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jing Yuan
- *Correspondence: Jing Yuan, ; Guanhua Xue,
| | | |
Collapse
|
11
|
Kenri T, Yamazaki T, Ohya H, Jinnai M, Oda Y, Asai S, Sato R, Ishiguro N, Oishi T, Horino A, Fujii H, Hashimoto T, Nakajima H, Shibayama K. Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains. Front Microbiol 2023; 14:1202357. [PMID: 37405159 PMCID: PMC10316025 DOI: 10.3389/fmicb.2023.1202357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
We characterized 118 Mycoplasma pneumoniae strains isolated from three areas of Japan (Saitama, Kanagawa, and Osaka) during the period of 2019 and 2020. Genotyping of the p1 gene in these strains revealed that 29 of them were type 1 lineage (29/118, 24.6%), while 89 were type 2 lineage (89/118, 75.4%), thereby indicating that type 2 lineage was dominant in this period. The most prevalent variant of type 2 lineage was type 2c (57/89, 64%), while the second-most was type 2j, a novel variant identified in this study (30/89, 33.7%). Type 2j p1 is similar to type 2 g p1, but cannot be distinguished from reference type 2 (classical type 2) using the standard polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) with HaeIII digestion. Thus, we used MboI digestion in the PCR-RFLP analysis and re-examined the data from previous genotyping studies as well. This revealed that most strains reported as classical type 2 after 2010 in our studies were actually type 2j. The revised genotyping data showed that the type 2c and 2j strains have been spreading in recent years and were the most prevalent variants in Japan during the time-period of 2019 and 2020. We also analyzed the macrolide-resistance (MR) mutations in the 118 strains. MR mutations in the 23S rRNA gene were detected in 29 of these strains (29/118, 24.6%). The MR rate of type 1 lineage (14/29, 48.3%) was still higher than that of type 2 lineage (15/89, 16.9%); however, the MR rate of type 1 lineage was lower than that found in previous reports published in the 2010s, while that of type 2 lineage strains was slightly higher. Thus, there is a need for continuous surveillance of the p1 genotype and MR rate of M. pneumoniae clinical strains, to better understand the epidemiology and variant evolution of this pathogen, although M. pneumoniae pneumonia cases have decreased significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Rikako Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuhisa Ishiguro
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomohiro Oishi
- Department of Clinical Infectious Diseases, Kawasaki Medical School, Okayama, Japan
| | - Atsuko Horino
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Wang N, Xu X, Xiao L, Liu Y. Novel mechanisms of macrolide resistance revealed by in vitro selection and genome analysis in Mycoplasma pneumoniae. Front Cell Infect Microbiol 2023; 13:1186017. [PMID: 37284499 PMCID: PMC10240068 DOI: 10.3389/fcimb.2023.1186017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Mycoplasma pneumoniae is an important pathogen causing upper and lower respiratory tract infections in children and other age groups. Macrolides are the recommended treatments of choice for M. pneumoniae infections. However, macrolide resistance in M. pneumoniae is increasing worldwide, which complicates the treatment strategies. The mechanisms of macrolide resistance have been extensively studied focusing on the mutations in 23S rRNA and ribosomal proteins. Since the secondary treatment choice for pediatric patients is very limited, we decided to look for potential new treatment strategies in macrolide drugs and investigate possible new mechanisms of resistance. We performed an in vitro selection of mutants resistant to five macrolides (erythromycin, roxithromycin, azithromycin, josamycin, and midecamycin) by inducing the parent M. pneumoniae strain M129 with increasing concentrations of the drugs. The evolving cultures in every passage were tested for their antimicrobial susceptibilities to eight drugs and mutations known to be associated with macrolide resistance by PCR and sequencing. The final selected mutants were also analyzed by whole-genome sequencing. Results showed that roxithromycin is the drug that most easily induces resistance (at 0.25 mg/L, with two passages, 23 days), while with midecamycin it is most difficult (at 5.12 mg/L, with seven passages, 87 days). Point mutations C2617A/T, A2063G, or A2064C in domain V of 23S rRNA were detected in mutants resistant to the 14- and 15-membered macrolides, while A2067G/C was selected for the 16-membered macrolides. Single amino acid changes (G72R, G72V) in ribosomal protein L4 emerged during the induction by midecamycin. Genome sequencing identified sequence variations in dnaK, rpoC, glpK, MPN449, and in one of the hsdS (MPN365) genes in the mutants. Mutants induced by the 14- or 15-membered macrolides were resistant to all macrolides, while those induced by the 16-membered macrolides (midecamycin and josamycin) remained susceptible to the 14- and 15-membered macrolides. In summary, these data demonstrated that midecamycin is less potent in inducing resistance than other macrolides, and the induced resistance is restrained to the 16-membered macrolides, suggesting a potential benefit of using midecamycin as a first treatment choice if the strain is susceptible.
Collapse
Affiliation(s)
- Na Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
13
|
Leng M, Yang J, Zhou J. The molecular characteristics, diagnosis, and treatment of macrolide-resistant Mycoplasma pneumoniae in children. Front Pediatr 2023; 11:1115009. [PMID: 36937963 PMCID: PMC10017863 DOI: 10.3389/fped.2023.1115009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The purpose of this study is to review the molecular characteristics, the diagnosis, and treatment of the widespread infection of macrolide-resistant Mycoplasma pneumoniae (M. pneumoniae; MRMP) in children, thus providing a better knowledge of this infection and presenting the associated problems. Single point mutations in the V region of the 23S rRNA gene of M. pneumoniae genome are associated with macrolide resistance. P1-1, MLVA4-5-7-2, and ST3 are usually the predominated genetic types in the M. pneumoniae epidemics. The short-term two times serological IgM (or together with IgG) test in the acute stage can be used for confirmation. Combined serological testing and PCR might be a more prudent method to reduce macrolide consumption and antibiotic selective pressure in a clinical setting. Molecular methods for the detection of single-nucleotide mutations in the V region of the 23S rRNA gene can be used for the diagnosis of MRMP. The routine use of macrolide for the treatment of macrolide-sensitive Mycoplasma pneumoniae (MSMP) infections can get good effect, but the effects are limited for severe MRMP infections. Additional corticosteroids may be required for the treatment of severe MRMP infections in children in China during the era of MRMP.
Collapse
|
14
|
Dumke R. Molecular Tools for Typing Mycoplasma pneumoniae and Mycoplasma genitalium. Front Microbiol 2022; 13:904494. [PMID: 35722324 PMCID: PMC9203060 DOI: 10.3389/fmicb.2022.904494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are cell wall-less bacteria with strongly reduced genome content and close phylogenetic relatedness. In humans, the only known natural host, the microorganisms colonize the respiratory or genitourinary mucosa and may cause a broad range of clinical presentations. Besides fundamental differences in their tissue specificity, transmission route, and ability to cause prevalence peaks, both species share similarities such as the occurrence of asymptomatic carriers, preferred populations for infection, and problems with high rates of antimicrobial resistance. To further understand the epidemiology of these practically challenging bacteria, typing of strains is necessary. Since the cultivation of both pathogens is difficult and not performed outside of specialized laboratories, molecular typing methods with adequate discriminatory power, stability, and reproducibility have been developed. These include the characterization of genes containing repetitive sequences, of variable genome regions without the presence of repetitive sequences, determination of single and multi-locus variable-number tandem repeats, and detection of single nucleotide polymorphisms in different genes, respectively. The current repertoire of procedures allows reliable differentiation of strains circulating in different populations and in different time periods as well as comparison of strains occurring subsequently in individual patients. In this review, the methods for typing M. pneumoniae and M. genitalium, including the results of their application in different studies, are summarized and current knowledge regarding the association of typing data with the clinical characteristics of infections is presented.
Collapse
Affiliation(s)
- Roger Dumke
- TU Dresden, Institute of Medical Microbiology and Virology, Dresden, Germany
| |
Collapse
|
15
|
Li F, Xiao J, Yang H, Yao Y, Li J, Zheng H, Guo Q, Wang X, Chen Y, Guo Y, Wang Y, Shen C. Development of a Rapid and Efficient RPA-CRISPR/Cas12a Assay for Mycoplasma pneumoniae Detection. Front Microbiol 2022; 13:858806. [PMID: 35369478 PMCID: PMC8965353 DOI: 10.3389/fmicb.2022.858806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Mycoplasma pneumoniae (MP) is a one of most common pathogen in causing respiratory infection in children and adolescents. Rapid and efficient diagnostic methods are crucial for control and treatment of MP infections. Herein, we present an operationally simple, rapid and efficient molecular method for MP identification, which eliminates expensive instruments and specialized personnel. The method combines recombinase polymerase amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) 12a-based detection, with an optimal procedure less than 1 h from sample to result including DNA extraction (25 min), RPA reaction (39°C for 15-20 min), CRISPR/Cas12a detection (37°C for 10 min) and visual detection by naked eyes (2 min). This diagnostic method shows high sensitivity (two copies per reaction) and no cross-reactivity against other common pathogenic bacteria. Preliminary evaluation using 201 clinical samples shows sensitivity of 99.1% (107/108), specificity of 100% (93/93) and consistency of 99.5% (200/201), compared with real-time PCR method. The above data demonstrate that our developed method is reliable for rapid diagnosis of MP. In conclusion, the RPA-CRISPR/Cas12a has a great potential to be as a useful tool for reliable and quick diagnosis of MP infection, especially in primary hospitals with limited conditions.
Collapse
Affiliation(s)
- Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Jing Xiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Haiming Yang
- Department of Respiratory Diseases II, Beijing Children's Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yao Yao
- Department of Respiratory Diseases I, Beijing Children's Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jieqiong Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Qian Guo
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xiaotong Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yuying Chen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yajie Guo
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yonghong Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Chen Shen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| |
Collapse
|
16
|
Association of Tandem Repeat Number Variabilities in Subunit S of the Type I Restriction-Modification System with Macrolide Resistance in Mycoplasma pneumoniae. J Clin Med 2022; 11:jcm11030715. [PMID: 35160167 PMCID: PMC8836594 DOI: 10.3390/jcm11030715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Mycoplasma pneumoniae is one of the major pathogens responsible for pneumonia in children. Modern molecular genetics has advanced both the management and the epidemiologic study of this disease. Despite these advancements, macrolide resistance remains a global threat in the management of M. pneumoniae infection, for which the genetic background remains unrevealed. In this study, the result of whole genome analysis of 20 sequence type 3 (ST3) M. pneumoniae strains were examined to investigate the gene(s) associated with macrolide resistance. Overall, genetic similarities within M. pneumoniae, and especially ST3, were very high (over 99.99 %). Macrolide resistant ST3 strains shared 20 single nucleotide polymorphisms, of which one gene (mpn085) was found to be associated with resistance. BLAST comparison of M. pneumoniae revealed regular tandem repeat number variabilities between macrolide-susceptible and resistant strains for genes coding the Type I restriction-modification (R-M) system of subunit S (HsdS). Of the ten known HsdS genes, macrolide resistance was determined by the unique tandem repeat of mpn085 and mpn285. In conclusion, the use of whole genome sequencing (WGS) to target macrolide resistance in M. pneumoniae indicates that the determinant of macrolide resistance is variabilities in the tandem repeat numbers of the type I R-M system in subunit S.
Collapse
|
17
|
Su X, You X, Luo H, Liang K, Chen L, Tian W, Ye Z, He J. Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae. Front Microbiol 2021; 12:766591. [PMID: 34867898 PMCID: PMC8640204 DOI: 10.3389/fmicb.2021.766591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae infection often causes respiratory diseases in humans, particularly in children and adults with atypical pneumonia and community-acquired pneumonia (CAP), and is often exacerbated by co-infection with other lung diseases, such as asthma, bronchitis, and chronic obstructive pulmonary disorder. Community-acquired respiratory distress syndrome toxin (CARDS TX) is the only exotoxin produced by M. pneumoniae and has been extensively studied for its ADP-ribosyltransferase (ADPRT) activity and cellular vacuolization properties. Additionally, CARDS TX induces inflammatory responses, resulting in cell swelling, nuclear lysis, mucus proliferation, and cell vacuolization. CARDS TX enters host cells by binding to the host receptor and is then reverse transported to the endoplasmic reticulum to exert its pathogenic effects. In this review, we focus on the structural characteristics, functional activity, distribution and receptors, mechanism of cell entry, and inflammatory response of CARDS TX was examined. Overall, the findings of this review provide a theoretical basis for further investigation of the mechanism of M. pneumoniae infection and the development of clinical diagnosis and vaccines.
Collapse
Affiliation(s)
- Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
18
|
Shaw D, Miravet‐Verde S, Piñero‐Lambea C, Serrano L, Lluch‐Senar M. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol 2021; 14:2403-2419. [PMID: 33325626 PMCID: PMC8601177 DOI: 10.1111/1751-7915.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Samuel Miravet‐Verde
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Present address:
Pulmobiotics ltdDr. Aiguader 88Barcelona08003Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Universitat Pompeu Fabra (UPF)Barcelona08002Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del Vallès08195Spain
| |
Collapse
|
19
|
Jiang FC, Wang RF, Chen P, Dong LY, Wang X, Song Q, Wan YQ, Song QQ, Song J, Wang YH, Xia ZQ, Xia D, Han J. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J Glob Antimicrob Resist 2021; 27:273-278. [PMID: 34687926 DOI: 10.1016/j.jgar.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/16/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study assessed the incidence and resistance of Mycoplasma pneumoniae (MP) in children in Qingdao, China, in 2019. METHODS We detected MP infection in 78 pharyngeal swabs from children with pneumonia by qPCR. The RepMP4 element in the P1 adhesin gene, domain V of the 23S rRNA gene, and the L4/L22 ribosomal proteins were amplified by nested PCR. Evolutionary analysis was conducted based on the P1 gene sequence. Resistance mutations in domain V of the 23S rRNA gene and L4/L22 ribosomal proteins were analysed. RESULTS The incidence of MP infection in children with pneumonia was 59.0% (46/78). The mean duration of MP infection was longer than that of non-MP infection. According to P1 gene sequencing of 21 samples, 12 (57.1%) were type 1 and 9 (42.9%) were type 2. Drug resistance mutations A2063G in domain V of 23S rRNA gene and T508C in L22 were identified from all sequenced MP. However, mutations at positions 2064 and 2617 were not found in this study. C162A mutation appeared in most type 2 samples. A430G mutation appeared in one type 1 sample and in several type 2 samples. T279C mutation in L22 was mostly found in type 2 samples. CONCLUSION The incidence of MP infection was 59.0% in children with pneumonia in Qingdao in 2019. Type 1 MP infection was slightly more common than type 2, indicating that the genotype of MP is gradually shifting from type 1 to type 2. Macrolide resistance mutation A2063G could be detected in all sequenced MP.
Collapse
Affiliation(s)
- Fa-Chun Jiang
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Rui-Fang Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ping Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Li-Yan Dong
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Xia Wang
- District Center of Disease Control and Prevention of Shibei, Qingdao 266000, Shandong, China
| | - Qin Song
- District Center of Disease Control and Prevention of Chengyang, Qingdao 266041, Shandong, China
| | - Yi-Qiu Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Medical College of Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Qin-Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yan-Hai Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhi-Qiang Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
20
|
Abstract
Factors leading to the wide range of manifestations associated with Mycoplasma pneumoniae infection are unclear. We investigated whether M. pneumoniae genotypes are associated with specific clinical outcomes. We compared M. pneumoniae loads and genotypes of children with mucocutaneous disease to those of children with pneumonia, family members with upper respiratory tract infection (URTI), and carriers from a prospective cohort study (n = 47; 2016 to 2017) and to those of other children with mucocutaneous disease from a case series (n = 7; 2017 to 2020). Genotyping was performed using macrolide resistance determination, P1 subtyping, multilocus variable-number tandem-repeat analysis (MLVA), and multilocus sequence typing (MLST). Comparisons were performed with a pairwise Wilcoxon rank sum test and a Fisher exact test with corrections for multiple testing, as appropriate. M. pneumoniae loads did not statistically differ between patients with mucocutaneous disease and those with pneumonia or carriers. Macrolide resistance was detected in 1 (1.9%) patient with mucocutaneous disease. MLVA types from 2016 to 2017 included 3-5-6-2 (n = 21 [46.7%]), 3-6-6-2 (n = 2 [4.4%]), 4-5-7-2 (n = 14 [31.1%]), and 4-5-7-3 (n = 8 [17.8%]), and they correlated with P1 subtypes and MLST types. MLVA types were not associated with specific outcomes such as mucocutaneous disease, pneumonia, URTI, or carriage. They were almost identical within families but varied over geographic location. MLVA types in patients with mucocutaneous disease differed between 2016 to 2017 (3-5-6-2, n = 5 [62.5%]) and 2017 to 2020 (4-5-7-2, n = 5 [71.4%]) (P = 0.02). Our results suggest that M. pneumoniae genotypes may not determine specific clinical outcomes.
Collapse
|
21
|
Zhao F, Zhang J, Wang X, Liu L, Gong J, Zhai Z, He L, Meng F, Xiao D. A multisite SNP genotyping and macrolide susceptibility gene method for Mycoplasma pneumoniae based on MALDI-TOF MS. iScience 2021; 24:102447. [PMID: 33997713 PMCID: PMC8105657 DOI: 10.1016/j.isci.2021.102447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, a multisite SNP genotyping and macrolide (ML) susceptibility gene test method for Mycoplasma pneumoniae (M. pneumoniae) was developed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The detection limit of this method for nucleic acids was 102 -103 copies/reaction. Six SNP site-based genotyping and 3 ML susceptibility sites could be detected simultaneously based on multiplex PCR and mass probe. Using the method constructed in this study, 141 Chinese clinical isolates were divided into 8 SNP types. All the SNP test results for the ML susceptibility gene were in line with those of the 23S rRNA sequencing results. With this method, the multisite SNP genotyping and ML susceptibility determination of M. pneumoniae can be completed simultaneously in one test, which greatly reduces the workload and cost, improves the genotyping ability of M. pneumoniae and deserves clinical application. An all-in-one genotyping and macrolide resistance testing method for M. pneumoniae Multisite SNP detection technology was used for genotyping and resistance testing The cost of M. pneumoniae genotyping and macrolide resistance detection was reduced
Collapse
Affiliation(s)
- Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Xuemei Wang
- Intelligene Biosystems (Qingdao) Co., Ltd, Qingdao, China
| | - Liyong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jie Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Zhixiang Zhai
- Intelligene Biosystems (Qingdao) Co., Ltd, Qingdao, China
| | - Lihua He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Fanliang Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| |
Collapse
|
22
|
Monroe JG, McKay JK, Weigel D, Flood PJ. The population genomics of adaptive loss of function. Heredity (Edinb) 2021; 126:383-395. [PMID: 33574599 PMCID: PMC7878030 DOI: 10.1038/s41437-021-00403-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/23/2022] Open
Abstract
Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - John K McKay
- College of Agriculture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
23
|
Luzuriaga-Neira A, Sandmeier FC, Weitzman CL, Tracy CR, Bauschlicher SN, Tillett RL, Alvarez-Ponce D. Mycoplasma agassizii, an opportunistic pathogen of tortoises, shows very little genetic variation across the Mojave and Sonoran Deserts. PLoS One 2021; 16:e0245895. [PMID: 33534823 PMCID: PMC7857612 DOI: 10.1371/journal.pone.0245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/10/2021] [Indexed: 12/01/2022] Open
Abstract
Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M. agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M. agassizii strain PS6T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6T and 723, we did not detect any SNP between PS6T and our eight samples. Our whole genome analyses reveal that M. agassizii strain PS6T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.
Collapse
Affiliation(s)
- Agusto Luzuriaga-Neira
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Franziska C. Sandmeier
- Biology Department, Colorado State University, Pueblo, Colorado, United States of America
- * E-mail: (FCS); (DAP)
| | - Chava L. Weitzman
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, United States of America
| | - C. Richard Tracy
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Shalyn N. Bauschlicher
- Biology Department, Colorado State University, Pueblo, Colorado, United States of America
| | - Richard L. Tillett
- Nevada Center for Bioinformatics, University of Nevada, Reno, Nevada, United States of America
| | - David Alvarez-Ponce
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
- * E-mail: (FCS); (DAP)
| |
Collapse
|
24
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
25
|
Pouladi I, Mirnejad R, Rostampur S, Viesy S, Niakan M. Molecular Detection and Evaluation of MLـ Resistance M. Pneumoniae Associated with Mutation in 23S RNA Gene among Iranian Patients with Respiratory Infections. Rep Biochem Mol Biol 2020; 9:223-229. [PMID: 33178873 DOI: 10.29252/rbmb.9.2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Mycoplasma pneumoniae is a common cause of community-acquired pneumonia. The global increased resistance of M. pneumoniae strains to macrolide (ML) has become a worrisome health problem. The widespread use of these medications has led to increased rate of reported ML-resistant M. pneumoniae (MRMP) throughout the world. This study was aimed to evaluate the resistance of M. pneumoniae against erythromycin due to mutations in the 23S rRNA gene of patients with respiratory infections in Iran. Methods In this study, 100 samples of throat swab from a patient with respiratory problems were collected. After the cultured of all samples in M. pneumonia-specific PPLO medium, PCR technique was performed with specific primers. Afterwards, the broth micro-dilution MIC assay was employed. Finally, the PCR product of the 23S rRNA gene was sequenced to detect mutations of domain V in 23S rRNA gene of MRMP. Results It was found that 17 cases (17%) were positive for mycoplasma genus and six cases (6%) positive for M. pneumoniae species. Also, analysis of the sequence of 23S rRNA gene, revealed that one of the samples had mutations at positions A2431G and G2491A. All positive samples M. pneumoniae with 23S rRNA gene were sensitive to erythromycin. Conclusion These use of these antibiotics should be limited to prevent the emergence of MRMP in Iran.
Collapse
Affiliation(s)
- Iman Pouladi
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, System biology and Poisoning institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Susan Rostampur
- Student Research Committee of faculty paramedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soghra Viesy
- Department of Medical parasitology, Faculty of paramedicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Niakan
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
26
|
Molecular Characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. J Clin Microbiol 2020; 58:JCM.00710-20. [PMID: 32817226 PMCID: PMC7512161 DOI: 10.1128/jcm.00710-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae is a major cause of community-acquired pneumonia. There are limited data in the United States on the molecular epidemiological characteristics of M. pneumoniae. We collected 446 M. pneumoniae-positive specimens from 9 states between August 2012 and October 2018. Culture, antimicrobial susceptibility testing, P1 subtyping, and multilocus VNTR (variable-number tandem repeats) analysis (MLVA) were performed to characterize the isolates. Mycoplasma pneumoniae is a major cause of community-acquired pneumonia. There are limited data in the United States on the molecular epidemiological characteristics of M. pneumoniae. We collected 446 M. pneumoniae-positive specimens from 9 states between August 2012 and October 2018. Culture, antimicrobial susceptibility testing, P1 subtyping, and multilocus VNTR (variable-number tandem repeats) analysis (MLVA) were performed to characterize the isolates. Macrolide-resistant M. pneumoniae (MRMp) was detected in 37 (8.3%) specimens. P1 subtype 2 (P1-2) was the predominant P1 subtype (59.8%). P1 subtype distribution did not change significantly chronologically or geographically. The macrolide resistance rate in P1 subtype 1 (P1-1) samples was significantly higher than that in P1-2 (12.9% versus 5.5%). Six P1-2 variants were identified, including two novel types, and variant 2c was predominant (64.6%). P1-2 variants were distributed significantly differently among geographic regions. Classical P1-2 was more frequent in lower respiratory tract specimens and had longer p1 trinucleotide repeats. Classical P1-2 was most common in MRMp (35.7%), while variant 2c was most common in macrolide-susceptible M. pneumoniae (67.5%). Fifteen MLVA types were identified; 3-5-6-2 (41.7%), 4-5-7-2 (35.3%), and 3-6-6-2 (16.6%) were the major types, and four MLVA clusters were delineated. The distribution of MLVA types varied significantly over time and geographic location. The predominant MLVA type switched from 4-5-7-2 to 3-5-6-2 in 2015. MLVA type was associated with P1 subtypes and P1-2 variant types but not with macrolide resistance. To investigate the M. pneumoniae genotype shift and its impact on clinical presentations, additional surveillance programs targeting more diverse populations and prolonged sampling times are required.
Collapse
|
27
|
Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, Fujii H, Hashimoto T, Nakajima H, Katsukawa C, Kuroda M, Shibayama K. Periodic Genotype Shifts in Clinically Prevalent Mycoplasma pneumoniae Strains in Japan. Front Cell Infect Microbiol 2020; 10:385. [PMID: 32850484 PMCID: PMC7424021 DOI: 10.3389/fcimb.2020.00385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Nationwide increases in Mycoplasma pneumoniae pneumonia cases in Japan were reported in 2011, 2012, 2015, and 2016. In this study, we isolated 554 M. pneumoniae strains in 4 areas in Japan (Kanagawa, Okayama, Osaka, and Saitama) between 2006 and 2019, and performed genotyping analysis. More than 80% of the strains isolated in 2011 and 2012 harbored type 1 p1 adhesin gene; however, strains harboring type 2 or its variant p1 gene increased in 2015 and 2016 and dominated after 2017. These findings suggested that a shift in the prevalent genotype of M. pneumoniae clinical strains occurred recently in Japan. More than 90% of the type 1 strains isolated after 2010 harbored macrolide-resistance mutations in their 23S rRNA gene, whereas most type 2 lineage strains had no such mutations. Consequently, the increase in type 2 lineage strains in Japan has reduced the macrolide resistance rate of clinical M. pneumoniae strains. During this analysis, we also identified M. pneumoniae strains carrying a novel variant type 1 p1 gene, and we classified it as type 1b. We then sequenced the genomes of 81 selected M. pneumoniae strains that we collected between 1976 and 2017 in Japan, and compared them with 156 M. pneumoniae genomes deposited in public databases to provide insights into the interpretation of M. pneumoniae genotyping methods, including p1 typing, multiple-locus variable-number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST), and typing by 8 single-nucleotide polymorphism markers (SNP-8). As expected, p1 typing, MLST, and SNP-8 results exhibited good correlation with whole-genome SNP analysis results in terms of phylogenetic relationships; however, MLVA typing results were less comparable to those of the other methods. MLVA may be useful for the discrimination of strains derived from a single outbreak within a limited area; however, is not reliable for classification of strains collected from distantly separated areas at different time points. This study showed the usefulness of genome-based comparison of M. pneumoniae for molecular epidemiology. Genome sequencing of more strains will improve our understanding of global propagation routes of this pathogen and evolutionary aspects of M. pneumoniae strains.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Chihiro Katsukawa
- Osaka Institute of Public Health, Osaka, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
28
|
Xue G, Li S, Zhao H, Yan C, Feng Y, Cui J, Jiang T, Yuan J. Use of a rapid recombinase-aided amplification assay for Mycoplasma pneumoniae detection. BMC Infect Dis 2020; 20:79. [PMID: 31992210 PMCID: PMC6988361 DOI: 10.1186/s12879-019-4750-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/28/2019] [Indexed: 12/29/2022] Open
Abstract
Background Mycoplasma pneumoniae is one of the most common causative pathogens of community-acquired pneumonia (CAP), accounting for as many as 30–50% of CAP during peak years. An early and rapid diagnostic method is key for guiding clinicians in their choice of antibiotics. Methods The recombinase-aided amplification (RAA) assay is a recently developed, rapid detection method that has been used for the detection of several pathogens. The assays were performed in a one-step single tube reaction at 39° Celsius within 15–30 min. In this study, we established an RAA assay for M. pneumoniae using clinical specimens for validation and commercial real-time PCR as the reference method. Results The analytical sensitivity of the RAA assay was 2.23 copies per reaction, and no cross-reactions with any of the other 15 related respiratory bacterial pathogens were observed. Compared with the commercial real-time PCR assay used when testing 311 respiratory specimens, the RAA assay obtained 100% sensitivity and 100% specificity with a kappa value of 1. Conclusions These results demonstrate that the proposed RAA assay will be of benefit as a faster, sensitive, and specific alternative tool for the detection of M. pneumoniae.
Collapse
Affiliation(s)
- Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Tingting Jiang
- Department of Obstetrics, Southern District of the Fifth Medical Center of PLA General Hospital, No. 8 Dongdajie Road, Fengtai District, Beijing, 100071, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
29
|
Yan C, Yang H, Sun H, Zhao H, Feng Y, Xue G, Li S, Cui J, Ni S. Diversity in Genotype Distribution of Mycoplasma pneumoniae Obtained from Children and Adults. Jpn J Infect Dis 2020; 73:14-18. [PMID: 31474699 DOI: 10.7883/yoken.jjid.2019.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore whether there was any specific genotype responsible for the high prevalence of Mycoplasma pneumoniae infection in children. A total of 247 M. pneumoniae-DNA positive clinical specimens including 200 from children and 47 from adults, collected in Beijing, China, during the same period, were analyzed. We performed P1-restriction fragment length polymorphism analysis (RFLP), multi-locus variable number tandem repeat analysis (MLVA) and detected the macrolide resistance-associated mutations in 23S rRNA of the clinical specimens. In the present study, we observed P1 genotype 1 and MLVA type M4-5-7-2 accounted for the majority of the cases across all ages in Beijing. Macrolide resistance-associated mutants of M. pneumoniae were also at a high level with 90.5% (181/200) in children and 76.6% (36/47) in adults. However, more diverse genotypes and a higher prevalence of macrolide resistance-associated mutations were found in the pediatric specimens. Further investigations are warranted to help to explain the difference of morbidity and molecular characteristics across the demographic spectrum.
Collapse
Affiliation(s)
- Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Huijuan Yang
- Department of Clinical Laboratory, Beijing Puren Hospital
| | - Hongmei Sun
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics
| | - Shanshan Ni
- Department of Bacteriology, Capital Institute of Pediatrics
| |
Collapse
|
30
|
The Prevalence of Atypical Pneumonia Caused by Mycoplasma pneumoniae (P1 gene) in Patients with Respiratory Infections by Culture and Molecular PCR Methods in Tehran, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.84174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Cleary DFR, Polónia ARM, Huang YM, Swierts T. Compositional variation between high and low prokaryotic diversity coral reef biotopes translates to different predicted metagenomic gene content. Antonie van Leeuwenhoek 2019; 113:563-587. [PMID: 31802337 DOI: 10.1007/s10482-019-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In a previous study, we identified host species that housed high and low diversity prokaryotic communities. In the present study, we expand on this and assessed the prokaryotic communities associated with seawater, sediment and 11 host species from 7 different phyla in a Taiwanese coral reef setting. The host taxa sampled included hard, octo- and black corals, molluscs, bryozoans, flatworms, fish and sea urchins. There were highly significant differences in composition among host species and all host species housed distinct communities from those found in seawater and sediment. In a hierarchical clustering analysis, samples from all host species, with the exception of the coral Galaxea astreata, formed significantly supported clusters. In addition to this, the coral G. astreata and the bryozoan Triphyllozoon inornatum on the one hand and the coral Tubastraea coccinea, the hermit crab Calcinus laevimanus and the flatworm Thysanozoon nigropapillosum on the other formed significantly supported clusters. In addition to composition, there were highly pronounced differences in richness and evenness among host species from the most diverse species, the bryozoan T. inornatum at 2518 ± 240 OTUs per 10,000 sequences to the least diverse species, the octocoral Cladiella sp. at 142 ± 14 OTUs per 10,000 sequences. In line with the differences in composition, there were significant differences in predicted metagenomic gene counts among host species. Furthermore, there were pronounced compositional and predicted functional differences between high diversity hosts (Liolophura japonica, G. astreata, T. coccinea, C. laevimanus, T. inornatum) and low diversity hosts (Antipathes sp., Pomacentrus coelestis, Modiolus auriculatus, T. nigropapillosum, Cladiella sp. and Diadema savigny). In particular, we found that all tested low diversity hosts were predicted to be enriched for the phosphotransferase system compared to high diversity hosts.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ana Rita M Polónia
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Penghu, Taiwan.,Department of Marine Recreation, University of Science and Technology, Penghu, Taiwan
| | - Thomas Swierts
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Lee JK, Seong MW, Shin D, Kim JI, Han MS, Yeon Y, Cho SI, Park SS, Choi EH. Comparative genomics of Mycoplasma pneumoniae isolated from children with pneumonia: South Korea, 2010-2016. BMC Genomics 2019; 20:910. [PMID: 31783732 PMCID: PMC6884898 DOI: 10.1186/s12864-019-6306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 12/03/2022] Open
Abstract
Background Mycoplasma pneumoniae is a common cause of respiratory tract infections in children and adults. This study applied high-throughput whole genome sequencing (WGS) technologies to analyze the genomes of 30 M. pneumoniae strains isolated from children with pneumonia in South Korea during the two epidemics from 2010 to 2016 in comparison with a global collection of 48 M. pneumoniae strains which includes seven countries ranging from 1944 to 2017. Results The 30 Korean strains had approximately 40% GC content and ranged from 815,686 to 818,669 base pairs, coding for a total of 809 to 828 genes. Overall, BRIG revealed 99% to > 99% similarity among strains. The genomic similarity dropped to approximately 95% in the P1 type 2 strains when aligned to the reference M129 genome, which corresponded to the region of the p1 gene. MAUVE detected four subtype-specific insertions (three in P1 type 1 and one in P1 type 2), of which were all hypothetical proteins except one tRNA insertion in all P1 type 1 strains. The phylogenetic associations of 30 strains were generally consistent with the multilocus sequence typing results. The phylogenetic tree constructed with 78 genomes including 30 genomes from Korea formed two clusters and further divided into two sub-clusters. eBURST analysis revealed two clonal complexes according to P1 typing results showing higher diversity among P1 type 2 strains. Conclusions The comparative whole genome approach was able to define high genetic identity, unique structural diversity, and phylogenetic associations among the 78 M. pneumoniae strains isolated worldwide.
Collapse
Affiliation(s)
- Joon Kee Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pediatrics, Chungbuk National University Hospital, Cheongju, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dongjin Shin
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Mi Seon Han
- Department of Pediatrics, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Youbin Yeon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Sung Im Cho
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Pediatrics, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
33
|
Ruiz E, Talenton V, Dubrana MP, Guesdon G, Lluch-Senar M, Salin F, Sirand-Pugnet P, Arfi Y, Lartigue C. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System. ACS Synth Biol 2019; 8:2547-2557. [PMID: 31663334 DOI: 10.1021/acssynbio.9b00224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past decade, a new strategy was developed to bypass the difficulties to genetically engineer some microbial species by transferring (or "cloning") their genome into another organism that is amenable to efficient genetic modifications and therefore acts as a living workbench. As such, the yeast Saccharomyces cerevisiae has been used to clone and engineer genomes from viruses, bacteria, and algae. The cloning step requires the insertion of yeast genetic elements in the genome of interest, in order to drive its replication and maintenance as an artificial chromosome in the host cell. Current methods used to introduce these genetic elements are still unsatisfactory, due either to their random nature (transposon) or the requirement for unique restriction sites at specific positions (TAR cloning). Here we describe the CReasPy-cloning, a new method that combines both the ability of Cas9 to cleave DNA at a user-specified locus and the yeast's highly efficient homologous recombination to simultaneously clone and engineer a bacterial chromosome in yeast. Using the 0.816 Mbp genome of Mycoplasma pneumoniae as a proof of concept, we demonstrate that our method can be used to introduce the yeast genetic element at any location in the bacterial chromosome while simultaneously deleting various genes or group of genes. We also show that CReasPy-cloning can be used to edit up to three independent genomic loci at the same time with an efficiency high enough to warrant the screening of a small (<50) number of clones, allowing for significantly shortened genome engineering cycle times.
Collapse
Affiliation(s)
- Estelle Ruiz
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Vincent Talenton
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Marie-Pierre Dubrana
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Gabrielle Guesdon
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) , The Barcelona Institute of Science and Technology , Dr Aiguader 88 , Barcelona 08003 , Spain
- Universitat Pompeu Fabra (UPF) , 08003 Barcelona , Spain
| | - Franck Salin
- BIOGECO, INRA , Univ. Bordeaux , 33610 Cestas , France
| | - Pascal Sirand-Pugnet
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Yonathan Arfi
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| | - Carole Lartigue
- INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
- Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France
| |
Collapse
|
34
|
Zhao F, Li J, Liu J, Guan X, Gong J, Liu L, He L, Meng F, Zhang J. Antimicrobial susceptibility and molecular characteristics of Mycoplasma pneumoniae isolates across different regions of China. Antimicrob Resist Infect Control 2019; 8:143. [PMID: 31463046 PMCID: PMC6708159 DOI: 10.1186/s13756-019-0576-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background In China mainland, most Mycoplasma pneumoniae related studies are carried out in Beijing and Shanghai, while rare studies are performed in the other regions. In this study, we analyzed the molecular biology characteristics and antimicrobial susceptibility of clinical isolates of M. pneumoniae from 5 regions between January 2017 and December 2018. Methods Genotyping was performed to 154 M. pneumoniae isolates from 5 cities using PCR and multiple-locus variable-number tandem repeat analysis (MLVA) method. Antimicrobial susceptibility test was performed to all the isolates against 4 antibiotics. Sequencing was performed to the amplification products of the 23S rRNA drug resistant gene. Results Genotype I was detected in 118 M. pneumoniae isolates (76.6%), and genotype II was identified in 36 isolates (23.4%). The majority (92.2%) of the MLVA genotypes were 4-5-7-2 and 3-5-6-2, which represented the genotype I and II, respectively. The total macrolide (ML) resistance rate was 79.7%. The minimum inhibitory concentration (MIC) of the erythromycin was in a range of 128- > 256 μg/ml, while that for the azithromycin was 2-32 μg/ml. There were mutations in the 23S rRNA in each ML resistance isolate. Jilin city showed the highest prevalence of genotype I (100%) and ML resistance rate (100%), while Jinan showed the lowest prevalence of genotype I (45.5%) and ML resistance rate (54.5%). Conclusions A large variance was identified in the M. pneumoniae genotype and ML resistance among the 5 cities. The proportion of M. pneumoniae with a genotype II genotype (3-5-6-2) showed an increased trend.
Collapse
Affiliation(s)
- Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Jing Li
- Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Nanlishi Road 56, Xicheng District, Beijing, China
| | - Xuemei Guan
- Affiliated Hospital of Beihua University, Jilin, 132011 China
| | - Jie Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Liyong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Lihua He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Fanliang Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| |
Collapse
|
35
|
Dai W, Wang H, Zhou Q, Li D, Feng X, Yang Z, Wang W, Qiu C, Lu Z, Xu X, Lyu M, Xie G, Li Y, Bao Y, Liu Y, Shen K, Yao K, Feng X, Yang Y, Zhou K, Li S, Zheng Y. An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia. Gigascience 2019; 8:giz093. [PMID: 31367746 PMCID: PMC6669060 DOI: 10.1093/gigascience/giz093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The imbalanced respiratory microbiota observed in pneumonia causes high morbidity and mortality in childhood. Respiratory metagenomic analysis demands a comprehensive microbial gene catalogue, which will significantly advance our understanding of host-microorganism interactions. RESULTS We collected 334 respiratory microbial samples from 171 healthy children and 76 children with pneumonia. The respiratory microbial gene catalogue we established comprised 2.25 million non-redundant microbial genes, covering 90.52% of prevalent genes. The major oropharyngeal microbial species found in healthy children were Prevotella and Streptococcus. In children with Mycoplasma pneumoniae pneumonia (MPP), oropharyngeal microbial diversity and associated gene numbers decreased compared with those of healthy children. The concurrence network of oropharyngeal microorganisms in patients predominantly featured Staphylococcus spp. and M. pneumoniae. Functional orthologues, which are associated with the metabolism of various lipids, membrane transport, and signal transduction, accumulated in the oropharyngeal microbiome of children with pneumonia. Several antibiotic resistance genes and virulence factor genes were identified in the genomes of M. pneumoniae and 13 other microorganisms reconstructed via metagenomic data. Although the common macrolide/β-lactam resistance genes were not identified in the assembled M. pneumoniae genome, a single-nucleotide polymorphism (A2063G) related to macrolide resistance was identified in a 23S ribosomal RNA gene. CONCLUSIONS The results of this study will facilitate exploration of unknown microbial components and host-microorganism interactions in studies of the respiratory microbiome. They will also yield further insights into the microbial aetiology of MPP.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Qian Zhou
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Dongfang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Xin Feng
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Zhenyu Yang
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Chuangzhao Qiu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Zhiwei Lu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Ximing Xu
- Institute of Statistics, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Mengxuan Lyu
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Gan Xie
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Yinhu Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Yanhong Liu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Kunling Shen
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Kaihu Yao
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Xikang Feng
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Yonghong Yang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Ke Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| |
Collapse
|
36
|
Molecular Typing of Mycoplasma pneumoniae Strains in Sweden from 1996 to 2017 and the Emergence of a New P1 Cytadhesin Gene, Variant 2e. J Clin Microbiol 2019; 57:JCM.00049-19. [PMID: 30918047 PMCID: PMC6535615 DOI: 10.1128/jcm.00049-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 01/03/2023] Open
Abstract
Mycoplasma pneumoniae causes respiratory infections, such as community-acquired pneumonia (CAP), with epidemics recurring every 3 to 7 years. In 2010 and 2011, many countries experienced an extraordinary epidemic peak. Mycoplasma pneumoniae causes respiratory infections, such as community-acquired pneumonia (CAP), with epidemics recurring every 3 to 7 years. In 2010 and 2011, many countries experienced an extraordinary epidemic peak. The cause of these recurring epidemics is not understood, but decreasing herd immunity and shifts in the strains’ antigenic properties have been suggested as contributing factors. M. pneumoniae PCR-positive samples were collected between 1996 and 2017 from four neighboring counties inhabited by 12% of Sweden’s population. A total of 578 isolates were characterized directly from 624 clinical samples using P1 typing by sequencing and multilocus variable number tandem repeat analysis (MLVA). A fluorescence resonance energy transfer (FRET)-PCR approach was also used to detect mutations associated with macrolide resistance in the 23S rRNA gene. Through P1 typing, the strains were classified into type 1 and type 2, as well as variants 2a, 2b, 2c, and a new variant found in nine of the strains, denoted variant 2e. Twelve MLVA types were distinguished, and 3-5-6-2 (42.4%), 4-5-7-2 (37.4%), and 3-6-6-2 (14.9%) predominated. Several P1 and MLVA types cocirculated each year, but type 2/variant 2 strains and MLVA types 3-5-6-2 and 4-5-7-2 predominated during the epidemic period comprising the peak of 2010 and 2011. In 2016 and 2017, type 1 became more common, and MLVA type 4-5-7-2 predominated. We also found that 0.2% (1/578) of the strains carried a macrolide resistance-associated mutation, indicating a very low prevalence of macrolide resistance in this region of Sweden.
Collapse
|
37
|
Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S, Zhang J. Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control 2019; 8:18. [PMID: 30697421 PMCID: PMC6346583 DOI: 10.1186/s13756-019-0469-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The presence of macrolide-resistant Myocplasma pneumoniae has been frequently reported in recent years, especially in China. In this study, we investigated the antimicrobial susceptibility and genotype against M. pneumoniae isolates from 2014 to 2016, Beijing. Methods We investigated the activities of four antibiotics against 81 M. pneumoniae isolates in vitro. All isolates were amplification of domains II and V of the 23S rRNA gene and the L4 and L22 ribosomal protein fragments. All isolates were genotyped with duplex real-time PCR, MLVA and VNTR detection in p1 gene. Results The macrolide resistance rate was 65.4% (53/81). Each of the macrolide-resistant M. pneumoniae isolates was resistant to erythromycin (Minimum Inhibitory Concentration, MIC, ≥256 μg/ml) and azithromycin (MIC, 2-64 μg/ml), but susceptible to tetracycline and levofloxacin in vitro. Fifty two macrolide-resistant isolates harbored the A2063G mutation, and only 1 macrolide-resistant isolates harbored the A2064G mutation in domain V of the 23S ribosomal RNA gene. The C162A, A430G, and T279C mutations in the L4 and L22 ribosomal protein genes were not responsible for macrolide resistance, but they were related to the particular genotype of M. pneumoniae. 95.7% of type 1 isolates (45/47) were macrolide-resistance, and 23.5% of the type 2 isolates (8/34) were macrolide-resistance. Type 2 M. pneumoniae macrolide-resistance rate was 50.6% higher than that of the previous reports in China. The eight macrolide-resistant type 2 M. pneumoniae isolates were belong to 3/5/6/2 and 3/5/7/2 MLVA genotypes. Conclusion To our knowledge, this phenomenon likely resulted from a combination of genotype shifting from type1 to type 2 and antibiotic selection pressure in M. pneumoniae in China in recent years. The increase of resistance in type 2 is not due to the spread of same clone. However, the relationship between genotype shifts and macrolide resistance in M. pneumoniae needs to be further verified with more extensive surveillance data.
Collapse
Affiliation(s)
- Fei Zhao
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Jinrong Liu
- 3Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Nanlishi Road 56, Xicheng District, Beijing, China
| | - Weixian Shi
- 4Beijing Center for Disease Control and Prevention, 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013 China
| | - Fang Huang
- 4Beijing Center for Disease Control and Prevention, 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013 China
| | - Liyong Liu
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Shunying Zhao
- 3Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Nanlishi Road 56, Xicheng District, Beijing, China
| | - Jianzhong Zhang
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| |
Collapse
|
38
|
Ma XX, Cao X, Ma P, Chang QY, Li LJ, Zhou XK, Zhang DR, Li MS, Ma ZR. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas. J Basic Microbiol 2018. [PMID: 29537653 DOI: 10.1002/jobm.201700490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolutionary factors in influencing the genetic characteristics of nucleotide, synonymous codon, and amino acid usage of 18 mycoplasma species were analyzed. The nucleotide usage at the 1st and 2nd codon position which determines amino acid composition of proteins has a significant correlation with the total nucleotide composition of gene population of these mycoplasma species, however, the nucleotide usage at the 3rd codon position which affects synonymous codon usage patterns has a slight correlation with either the total nucleotide composition or the nucleotide usage at the 1st and 2nd codon position. Other evolutionary factors join in the evolutionary process of mycoplasma apart from mutation pressure caused by nucleotide usage constraint based on the relationships between effective number of codons/codon adaptation index and nucleotide usage at the 3rd codon position. Although nucleotide usage of gene population in mycoplasma dominates in forming the overall codon usage trends, the relative abundance of codon with nucleotide context and amino acid usage pattern show that translation selection involved in translation accuracy and efficiency play an important role in synonymous codon usage patterns. In addition, synonymous codon usage patterns of gene population have a bigger power to represent genetic diversity among different species than amino acid usage. These results suggest that although the mycoplasmas reduce its genome size during the evolutionary process and shape the form, which is opposite to their hosts, of AT usages at high levels, this kind organism still depends on nucleotide usage at the 1st and 2nd codon positions to control syntheses of the requested proteins for surviving in their hosts and nucleotide usage at the 3rd codon position to develop genetic diversity of different mycoplasma species. This systemic analysis with 18 mycoplasma species may provide useful clues for further in vivo genetic studies on the related species.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xin Cao
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Peng Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Qiu-Yan Chang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Lin-Jie Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xiao-Kai Zhou
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - De-Rong Zhang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Ming-Sheng Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Zhong-Ren Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
39
|
Krause DC, Hennigan SL, Henderson KC, Clark HJ, Dluhy RA. Variable Selection and Biomarker Correlation in the Analysis of Mycoplasma pneumoniaeStrains by Surface-Enhanced Raman Spectroscopy. ANAL LETT 2017; 50:2412-2425. [DOI: 10.1080/00032719.2017.1287713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Duncan C. Krause
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | | | - Richard A. Dluhy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
40
|
Roachford OSE, Nelson KE, Mohapatra BR. Comparative genomics of four Mycoplasma species of the human urogenital tract: Analysis of their core genomes and virulence genes. Int J Med Microbiol 2017; 307:508-520. [PMID: 28927691 DOI: 10.1016/j.ijmm.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022] Open
Abstract
The variation in Mycoplasma lipoproteins attributed to genome rearrangements and genetic insertions leads to phenotypic plasticity that allows for the evasion of the host's defence system and pathogenesis. This paper compared for the first time the genomes of four human urogenital Mycoplasma species (M. penetrans HF-2, M. fermentans JER, M. genitalium G37 and M. hominis PG21) to categorise the metabolic functions of the core genes and to assess the effects of tandem repeats, phage-like genetic elements and prophages on the virulence genes. The results of this comparative in silico genomic analysis revealed that the genes constituting their core genomes can be separated into three distinct categories: nuclear metabolism, protein metabolism and energy generation each making up 52%, 31% and 23%, respectively. The genomes have repeat sequences ranging from 3.7% in M. hominis PG21 to 9.5% in M. fermentans JER. Tandem repeats (mostly minisatellites) and phage-like proteins (including DNA gyrases/topoisomerases) were randomly distributed in the Mycoplasma genomes. Here, we identified a coiled-coil structure containing protein in M. penetrans HF-2 which is significantly similar to the Mem protein of M. fermentans ɸMFV1. Therefore, a Mycoplasma prophage seems to be embedded within M. penetrans HF-2 unannotated genome. To the best of our knowledge, no Mycoplasma phages or prophages have been detected in M. penetrans. This study is important not only in understanding the complex genetic factors involved in phenotypic plasticity and virulence in the relatively understudied Mycoplasma species but also in elucidating the effective arrangement of their redundant minimal genomes.
Collapse
Affiliation(s)
- Orville St E Roachford
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown BB 11000, Barbados.
| | - Karen E Nelson
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Bidyut R Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown BB 11000, Barbados
| |
Collapse
|
41
|
Cooper LP, Roberts GA, White JH, Luyten YA, Bower EKM, Morgan RD, Roberts RJ, Lindsay JA, Dryden DTF. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nucleic Acids Res 2017; 45:3395-3406. [PMID: 28180279 PMCID: PMC5399793 DOI: 10.1093/nar/gkx067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this ‘untransformable’ bacterium.
Collapse
Affiliation(s)
- Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
42
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Diaz MH, Desai HP, Morrison SS, Benitez AJ, Wolff BJ, Caravas J, Read TD, Dean D, Winchell JM. Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants. PLoS One 2017; 12:e0174701. [PMID: 28410368 PMCID: PMC5391922 DOI: 10.1371/journal.pone.0174701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022] Open
Abstract
Mycoplasma pneumoniae is a significant cause of respiratory illness worldwide. Despite a minimal and highly conserved genome, genetic diversity within the species may impact disease. We performed whole genome sequencing (WGS) analysis of 107 M. pneumoniae isolates, including 67 newly sequenced using the Pacific BioSciences RS II and/or Illumina MiSeq sequencing platforms. Comparative genomic analysis of 107 genomes revealed >3,000 single nucleotide polymorphisms (SNPs) in total, including 520 type-specific SNPs. Population structure analysis supported the existence of six distinct subgroups, three within each type. We developed a predictive model to classify an isolate based on whole genome SNPs called against the reference genome into the identified subtypes, obviating the need for genome assembly. This study is the most comprehensive WGS analysis for M. pneumoniae to date, underscoring the power of combining complementary sequencing technologies to overcome difficult-to-sequence regions and highlighting potential differential genomic signatures in M. pneumoniae.
Collapse
Affiliation(s)
- Maureen H. Diaz
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Heta P. Desai
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shatavia S. Morrison
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alvaro J. Benitez
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard J. Wolff
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jason Caravas
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deborah Dean
- Center for Immunobiology and Vaccine Research, University of California San Francisco Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- Joint Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, Oakland, California, United States of America
| | - Jonas M. Winchell
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Multi-center evaluation of one commercial and 12 in-house real-time PCR assays for detection of Mycoplasma pneumoniae. Diagn Microbiol Infect Dis 2017; 88:111-114. [PMID: 28318608 DOI: 10.1016/j.diagmicrobio.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 11/21/2022]
Abstract
Detection of Mycoplasma pneumoniae by real-time PCR is not yet standardized across laboratories. We have implemented a standardization protocol to compare the performance of thirteen commercial and in-house approaches. Despite differences on threshold values of samples, all assays were able to detect at least 20M. pneumoniae genomes per reaction.
Collapse
|
45
|
Complete Genome Sequence of Mycoplasma pneumoniae Type 2 Reference Strain FH Using Single-Molecule Real-Time Sequencing Technology. GENOME ANNOUNCEMENTS 2017; 5:5/8/e01629-16. [PMID: 28232437 PMCID: PMC5323616 DOI: 10.1128/genomea.01629-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mycoplasma pneumoniae
type 2 strain FH was previously sequenced with Illumina (FH-Illumina) and 454 (FH-454) technologies according to Xiao et al. (2015) and Krishnakumar et al. (2010). Comparative analyses revealed differences in genomic content between these sequences, including a 6-kb region absent from the FH-454 submission. Here, we present a complete genome sequence of FH sequenced with the Pacific Biosciences RSII platform.
Collapse
|
46
|
Totten AH, Xiao L, Crabb DM, Ratliff AE, Dybvig K, Waites KB, Atkinson TP. Shaken or stirred?: Comparison of methods for dispersion of Mycoplasma pneumoniae aggregates for persistence in vivo. J Microbiol Methods 2017; 132:56-62. [DOI: 10.1016/j.mimet.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
|
47
|
Jironkin A, Brown RJ, Underwood A, Chalker VJ, Spiller OB. Genomic determination of minimum multi-locus sequence typing schemas to represent the genomic phylogeny of Mycoplasma hominis. BMC Genomics 2016; 17:964. [PMID: 27881098 PMCID: PMC5120421 DOI: 10.1186/s12864-016-3284-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Background Mycoplasma hominis is an opportunistic human pathogen, associated with clinically diverse disease. Currently, there is no standardised method for typing M. hominis, which would aid in understanding pathogen epidemiology and transmission. Due to availability and costs of whole genome sequencing and the challenges in obtaining adequate M. hominis DNA, the use of whole genome sequence analysis to provide clinical guidance is unpractical for this bacterial species as well as other fastidious organisms. Results This study identified pan-genome set of 700 genes found to be present in four published reference genomes. A subset of 417 genes was identified to be core genome for 18 isolates and 1 reference. Leave-one-out analysis of the core genes highlighted set of 48 genes that are required to recapture the original phylogenetic relationships observed using whole genome SNP analysis. Three 7-locus MLST schemas with high diversity index (97%) and low dN/dS ratios (0.1, 0.13, and 0.11) were derived that could be used to confer good discrimination between strains and could be of practical use in future studies direct on clinical specimens. Conclusions The genes proposed in this study could be utilised to design a cost-effective and rapid PCR-based MLST assay that could be applied directly to clinical isolates, without prior isolation. This study includes additional genomic analysis revealing high levels of genetic heterogeneity among this species. This provides a novel and evidence based approach for the development of MLST schema that accurately represent genomic phylogeny for use in epidemiology and transmission studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3284-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rebecca J Brown
- Colindale, Public Health England, London, UK.,School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
48
|
Spuesens EBM, Brouwer RWW, Mol KHJM, Hoogenboezem T, Kockx CEM, Jansen R, Van IJcken WFJ, Van Rossum AMC, Vink C. Comparison of Mycoplasma pneumoniae Genome Sequences from Strains Isolated from Symptomatic and Asymptomatic Patients. Front Microbiol 2016; 7:1701. [PMID: 27833597 PMCID: PMC5081376 DOI: 10.3389/fmicb.2016.01701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a common cause of respiratory tract infections (RTIs) in children. We recently demonstrated that this bacterium can be carried asymptomatically in the respiratory tract of children. To identify potential genetic differences between M. pneumoniae strains that are carried asymptomatically and those that cause symptomatic infections, we performed whole-genome sequence analysis of 20 M. pneumoniae strains. The analyzed strains included 3 reference strains, 3 strains isolated from asymptomatic children, 13 strains isolated from clinically well-defined patients suffering from an upper (n = 4) or lower (n = 9) RTI, and one strain isolated from a follow-up patient who recently recovered from an RTI. The obtained sequences were each compared to the sequences of the reference strains. To find differences between strains isolated from asymptomatic and symptomatic individuals, a variant comparison was performed between the different groups of strains. Irrespective of the group (asymptomatic vs. symptomatic) from which the strains originated, subtype 1 and subtype 2 strains formed separate clusters. We could not identify a specific genotype associated with M. pneumoniae virulence. However, we found marked genetic differences between clinical isolates and the reference strains, which indicated that the latter strains may not be regarded as appropriate representatives of circulating M. pneumoniae strains.
Collapse
Affiliation(s)
- Emiel B M Spuesens
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital Rotterdam, Netherlands
| | | | - Kristin H J M Mol
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital Rotterdam, Netherlands
| | - Theo Hoogenboezem
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital Rotterdam, Netherlands
| | | | - Ruud Jansen
- Regional Laboratory of Public Health Kennemerland, Department of Molecular Biology Haarlem, Netherlands
| | | | - Annemarie M C Van Rossum
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital Rotterdam, Netherlands
| | - Cornelis Vink
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's HospitalRotterdam, Netherlands; Department of Life Sciences, Erasmus University CollegeRotterdam, Netherlands
| |
Collapse
|
49
|
Zhang J, Song X, Ma MJ, Xiao L, Kenri T, Sun H, Ptacek T, Li S, Waites KB, Atkinson TP, Shibayama K, Dybvig K, Feng Y. Inter- and intra-strain variability of tandem repeats in Mycoplasma pneumoniae based on next-generation sequencing data. Future Microbiol 2016; 12:119-129. [PMID: 27728978 DOI: 10.2217/fmb-2016-0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To characterize inter- and intra-strain variability of variable-number tandem repeats (VNTRs) in Mycoplasma pneumoniae to determine the optimal multilocus VNTR analysis scheme for improved strain typing. METHODS Whole genome assemblies and next-generation sequencing data from diverse M. pneumoniae isolates were used to characterize VNTRs and their variability, and to compare the strain discriminability of new VNTR and existing markers. RESULTS We identified 13 VNTRs including five reported previously. These VNTRs displayed different levels of inter- and intra-strain copy number variations. All new markers showed similar or higher discriminability compared with existing VNTR markers and the P1 typing system. CONCLUSION Our study provides novel insights into VNTR variations and potential new multilocus VNTR analysis schemes for improved genotyping of M. pneumoniae.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing, China.,Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacology, Sichuan University, Chengdu, Sichuan, China
| | | | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hongmei Sun
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | | | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kevin Dybvig
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Yanmei Feng
- Department of Pulmonary Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Yamazaki T, Kenri T. Epidemiology of Mycoplasma pneumoniae Infections in Japan and Therapeutic Strategies for Macrolide-Resistant M. pneumoniae. Front Microbiol 2016; 7:693. [PMID: 27242718 PMCID: PMC4876131 DOI: 10.3389/fmicb.2016.00693] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 12/02/2022] Open
Abstract
Pneumonia caused by Mycoplasma pneumoniae (M. pneumoniae pneumonia) is a major cause of community-acquired pneumonia worldwide. The surveillance of M. pneumoniae pneumonia is important for etiological and epidemiological studies of acute respiratory infections. In Japan, nation-wide surveillance of M. pneumoniae pneumonia has been conducted as a part of the National Epidemiological Surveillance of Infectious Diseases (NESID) program. This surveillance started in 1981, and significant increases in the numbers of M. pneumoniae pneumonia patients were noted in 1984, 1988, 2006, 2010, 2011, 2012, and 2015. The epidemics in 2011 and 2012 were particularly widespread and motivated researchers to conduct detailed epidemiological studies, including genotyping and drug resistance analyses of M. pneumoniae isolates. The genotyping studies based on the p1 gene sequence suggested that the p1 gene type 1 lineage has been dominant in Japan since 2003, including the epidemic period during 2011-2012. However, more detailed p1 typing analysis is required to determine whether the type 2 lineages become more relevant after the dominance of the type 1 lineage. There has been extensive research interest in implications of the p1 gene types on the epidemiology of M. pneumoniae infections. Serological characterizations of sera from patients have provided a glimpse into these associations, showing the presence of type specific antibody in the patient sera. Another important epidemiological issue of M. pneumoniae pneumonia is the emergence of macrolide-resistant M. pneumoniae (MRMP). MRMPs were noted among clinical isolates in Japan after 2000. At present, the isolation rate of MRMPs from pediatric patients is estimated at 50-90% in Japan, depending on the specific location. In view of the situation, Japanese societies have issued guiding principles for treating M. pneumoniae pneumonia. In these guiding principles, macrolides are still recommended as the first-line drug, however, if the fever does not subside in 48-72 h from first-line drug administration, a change of antibiotics to second-line drugs is recommended.
Collapse
Affiliation(s)
| | - Tsuyoshi Kenri
- Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious DiseasesTokyo, Japan
| |
Collapse
|