1
|
Wang Y, Duan Y, Liu M, Ren M, Gao Y, Liu Z, Zhang P, He L, Fan R, Zhou X, Yang J. Target gene selection for sprayable dsRNA-based biopesticide against Tetranychus urticae Koch (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2025; 81:3055-3065. [PMID: 39887845 PMCID: PMC12074632 DOI: 10.1002/ps.8675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Because of the excessive use of synthetic chemicals, the two-spotted spider mite, Tetranychus urticae Koch, a highly polyphagous pest, has developed comprehensive resistance to a broad spectrum of pesticides with diverse modes of action, raising severe concerns over agroecosystems and human health. To resolve this emerging issue, we initiated a project to develop double-stranded RNA (dsRNA)-based biopesticides against T. urticae, aiming for a species-specific and sustainable pest management alternative. RESULTS To examine the uptake of dsRNAs using the egg-soaking delivery method, we fluorescently labeled extraneous dsRNAs, and later showed that T. urticae dsRNAs can permeate through eggshell in a time-dependent manner within the first 24 h. For target gene screening, silencing of Prosbeta-1 and -5 resulted in the highest mortality (>90%) and a dark body phenotype in T. urticae. Notably, each target gene was effective in both avermectin laboratory susceptible and field resistant populations. As such, Prosbeta-5 was selected as the candidate target gene for subsequent spray-induced gene silencing (SIGS). After two rounds of spray at day 5 and day 12, SIGS led to a substantial suppression of T. urticae populations (>90%). CONCLUSION Our combined results suggest viable molecular targets, confirm the feasibility of SIGS against T. urticae, and lay the foundation for the development of dsRNA-based biopesticides to control this devastating pest. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Wang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yuanpeng Duan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meibin Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meifeng Ren
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yue Gao
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Zhongfang Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Pengjiu Zhang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Lifei He
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Renjun Fan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Jing Yang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
2
|
Li Z, Liu J, Nanda S, Zhong Z, Luo X, Zhou X, Zhang Y, Yang C, Pan H. RNAi effect in target and non-target pests correlates with the length of continuous matches in dsRNA sequences. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106381. [PMID: 40262866 DOI: 10.1016/j.pestbp.2025.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
RNA interference (RNAi) has emerged as a promising and environmentally friendly approach for controlling the pest Henosepilachna vigintioctopunctata (Hvig). Identifying lethal target genes in Hvig and evaluating the efficacy of oral dsRNA administration are crucial steps in this process. Additionally, assessing the potential risks of RNAi to non-target organisms (NTOs) is essential to ensure environmental safety. A soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) is an essential component of membrane fusion machinery, offering as a potential target gene for RNAi-based pest control. This study found that silencing of Hvαsnap with varying dsRNA concentrations (6.25, 12.5, 25, 50, 100, 200 ng/μL) induced 53.33 %-100 % lethality in Hvig, with an LC50 value of 10.15 ng/μL. Feeding the NTO, Propylaea japonica with dsHvαsnap or dsPjαsnap-1 containing 3-21-nt consecutive matches had no notable effects on survival, development, pupal weight, or gene expression. However, injecting these dsRNAs significantly increased P. japonica mortality. A chimeric dsGFP-αsnap-17-nt suppressed Hvαsnap expression and reduced Hvig larval survival but failed to induce RNAi in P. japonica. Overall, this study suggests that different species exhibit varying sensitivities to dsRNA, and increasing the number of consecutive matching bases may enhance RNAi effects in NTOs.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Junna Liu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India
| | - Zexin Zhong
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Luo
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xuguo Zhou
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana 61801-3795, USA
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Huipeng Pan
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Xie J, Wang S, Zhuang Z, Wang X, Lin M, Liu X. Exploring the role of CYP6AB328 in spinetoram resistance and growth and development of Phthorimaea absoluta. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106316. [PMID: 40015908 DOI: 10.1016/j.pestbp.2025.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Phthorimaea absoluta is a major agricultural pest, affecting tomatoes and other solanaceous crops. Insect cytochrome P450 is a key enzyme that metabolizes xenobiotics (insecticides and plant toxins) and regulates endogenous compounds, but the functions of specific CYP genes in P. absoluta remain unclear. This study analyzed the expression pattern of 97 CYP genes in two regional populations of P. absoluta from Xinjiang, China. CYP6AB328 was identified as the most significantly overexpressed in the strain from Yining city (YN) compared to the strain from Alaer city (Ala), its expression level exhibited a positively correlated with the accumulating resistance of spinetoram. Following the cloning and sequence analysis of the target gene, it was named CYP6AB328. Additionally, a leaflet delivery system demonstrated the relatively stable presence of dsCYP6AB328 in the leaves from 12 to 24 h. The expression level of CYP6AB328 was significantly reduced by 68.9 % in 2nd instar larvae treated with 7.5 μg/200 μL dsCYP6AB328 at 48 h. Knockdown CYP6AB328 significantly increased susceptibility to spinetoram in the SPI-S strain (belongs to YN strain) and markedly decreased the spinetoram resistance ratio in the resistant strain (SPI-R: 250.57-fold). Notably, silencing CYP6AB328 inhibited nearly all 1st instar larvae fully mining the leaves, resulting in mortality up to 95.3 %, while in 2nd instar larvae, it prolonged leaf-mining time, reduced leaf damage, extended the development time of 2nd to 4th instar, caused 18 % larval abnormality and achieved an 84.4 % mortality on the 6th day of treatment. In summary, our findings indicate that CYP6AB328 plays an important role in promoting development of spinetoram resistance and growth and development of P. absoluta.
Collapse
Affiliation(s)
- Jingang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Shengyu Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ziyan Zhuang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xinhai Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Minghao Lin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
4
|
Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, Diez JJ, Niño-Sánchez J. Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:801-825. [PMID: 39912551 DOI: 10.1111/jipb.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Sergio Diez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| |
Collapse
|
5
|
Liu W, Wang X, Zhou A, Zhang J, Ge X, Moussian B, Yan C, Gao S, Wang Y. Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104754. [PMID: 39933636 DOI: 10.1016/j.jinsphys.2025.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
RNA interference (RNAi)-based pest control has emerged as a cutting-edge and highly promising approach in pest control, especially for insect pests, due to its advantages of reduced environmental risk, degradability, and good selectivity. This study provides a bibliometric analysis of RNAi-based pest control, evaluating the global scientific output in this field from the Web of Science Core Collection (WoSCC) and PubMed. From 2007, when the first RNAi-based Arthropod pest control strategy suited for field application was published, to August 2024, 722 English research articles were identified, focusing only on dsRNA delivery modes including feeding, soaking, and spraying, which hold high potential for field application. Articles examining gene function and potential targets by dsRNA injection were excluded. The 722 eligible articles were published in 132 journals by 3112 authors from 563 institutions in fifty countries. Over these 17 years, the number of publications on RNAi-based pest control has shown a trend of accelerating growth. PEST MANAGEMENT SCIENCE published the most articles, followed by PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, SCIENTIFIC REPORTS. China produced most articles, followed by the United States. However, China is significantly behind the United States in developing commercial products in this field. Hot target insects in RNAi-based pest control research included Bemisia tabaci, Helicoverpa armigera, Aphis gossypii Glover, Leptinotarsa decemlineata, and Diabrotica virgifera virgifera. Frequently studied target genes included vATPaseA, CHS1, SNF7, EcR and β-actin, ect. In recent years, various advanced technologies for dsRNA delivery have been developed and utilized in RNAi-based pest control system, including nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries. This study represents the first comprehensive analysis based on bibliometric methods, aiming to investigate the forefront hotspots and research trends of RNAi-based pest control, providing valuable references for researchers and developers in this field.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Junyu Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Ge
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d'Azur, Nice, France
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Shaobo Gao
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, 237016 Shanxi, China.
| |
Collapse
|
6
|
Duan Y, Wang Y, Yang F, Gao Y, Liu Z, Zhang P, Lu J, Fan R, Zhou X, Yang J, Ren M. Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae). Int J Biol Macromol 2025; 289:138982. [PMID: 39706416 DOI: 10.1016/j.ijbiomac.2024.138982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS). Suppression of AvSrp54k, AveIF4A-1, AvHel31B, AvCOPB2 and AvProsbeta5 led to a significantly higher mortality and caused minor damages to leaf discs in comparison to the controls. Among them, AvCOPB2 and AvProsbeta5 were the best candidates with the highest mortality (>95 %) and minimal leaf damages (<13 %). Given that LdProsbeta5 is the active ingredient of the first sprayable dsRNA-based biopesticide, Ledprona, against the Colorado Potato Beetle, Leptinotarsa decemlineata, we examined the suitability of AvProsbeta5 in managing A. viennensis. In comparison to the control, A. viennensis population was suppressed by >95 % at day-17, and the plant defoliation rate decreased to 0 at day-24. Our combined results not only provide two viable molecular targets for sprayable dsRNA-based biopesticides, but also confirm the practical implications of SIGS in managing A. viennensis, one of the most destructive arthropod pests in orchards and ornamental plants.
Collapse
Affiliation(s)
- Yuanpeng Duan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yifei Wang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Fan Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
7
|
Buer B, Dönitz J, Milner M, Mehlhorn S, Hinners C, Siemanowski‐Hrach J, Ulrich JK, Großmann D, Cedden D, Nauen R, Geibel S, Bucher G. Superior target genes and pathways for RNAi-mediated pest control revealed by genome-wide analysis in the beetle Tribolium castaneum. PEST MANAGEMENT SCIENCE 2025; 81:1026-1036. [PMID: 39498580 PMCID: PMC11716340 DOI: 10.1002/ps.8505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND An increasing human population, the emergence of resistances against pesticides and their potential impact on the environment call for the development of new eco-friendly pest control strategies. RNA interference (RNAi)-based pesticides have emerged as a new option with the first products entering the market. Essentially, double-stranded RNAs targeting essential genes of pests are either expressed in the plants or sprayed on their surface. Upon feeding, pests mount an RNAi response and die. However, it has remained unclear whether RNAi-based insecticides should target the same pathways as classic pesticides or whether the different mode-of-action would favor other processes. Moreover, there is no consensus on the best genes to be targeted. RESULTS We performed a genome-wide screen in the red flour beetle to identify 905 RNAi target genes. Based on a validation screen and clustering, we identified the 192 most effective target genes in that species. The transfer to oral application in other beetle pests revealed a list of 34 superior target genes, which are an excellent starting point for application in other pests. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses of our genome-wide dataset revealed that genes with high efficacy belonged mainly to basic cellular processes such as gene expression and protein homeostasis - processes not targeted by classic insecticides. CONCLUSION Our work revealed the best target genes and target processes for RNAi-based pest control and we propose a procedure to transfer our short list of superior target genes to other pests. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Benjamin Buer
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Jürgen Dönitz
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Martin Milner
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Claudia Hinners
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Janna Siemanowski‐Hrach
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Julia K. Ulrich
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Daniela Großmann
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Doga Cedden
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| |
Collapse
|
8
|
Jinshi Z, Mei L, Jinjin L, Weilin Z. Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics 2024; 25:1036. [PMID: 39501148 PMCID: PMC11536790 DOI: 10.1186/s12864-024-10940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Nilaparvata lugens is one of the most destructive pests of rice. RNAi-based N. lugens control offers one alternative strategy to traditional chemical insecticides. However, selection of potential target for RNAi against N. lugens remains a major challenge. Only two target genes for nuclear transgenic N. lugens-resistant plants have been screened. Importantly, only one or few potential target genes against N. lugens were screened every time by knowledge of essential genes from model organisms in previous study. RESULTS Here, in silico genome-wide selection of potential target genes against N. lugens through homology comparison was performed. Through genome synteny comparisons, about 3.5% of Drosophila melanogaster genome was found to have conserved genomic synteny with N. lugens genome. By using N. lugens proteins to search D. melanogaster homologs defining lethal or sterile phenotype, 358 N. lugens genes were first screened as putative target genes. Transgenic rice lines expressing dsRNA of randomly selected gene (NlRan or NlSRP54) from 358 putative target genes enhanced resistance to N. lugens. After expression check and safety check, 115 N. lugens genes were screened as potential target candidates. CONCLUSION The combined efforts in this study firstly provide one in silico genome-wide homology-based screening approach for RNAi-based target genes against N. lugens, which not only offer one new opportunity to batch select potential target candidates in pests of interest, but also will facilitate the selection of RNAi target in many pest species by providing more than one hundred potential target candidates.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Li Mei
- Analysis Center of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
9
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Zhang Y, Ke Z, Xu L, Yang Y, Chang L, Zhang J. A faster killing effect of plastid-mediated RNA interference on a leaf beetle through induced dysbiosis of the gut bacteria. PLANT COMMUNICATIONS 2024; 5:100974. [PMID: 38751119 DOI: 10.1016/j.xplc.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
The expression of double-stranded RNAs (dsRNAs) from the plastid genome has been proven to be an effective method for controlling herbivorous pests by targeting essential insect genes. However, there are limitations to the efficiency of plastid-mediated RNA interference (PM-RNAi) due to the initial damage caused by the insects and their slow response to RNA interference. In this study, we developed transplastomic poplar plants that express dsRNAs targeting the β-Actin (dsACT) and Srp54k (dsSRP54K) genes of Plagiodera versicolora. Feeding experiments showed that transplastomic poplar plants can cause significantly higher mortality in P. versicolora larvae compared with nuclear transgenic or wild-type poplar plants. The efficient killing effect of PM-RNAi on P. versicolora larvae was found to be dependent on the presence of gut bacteria. Importantly, foliar application of a gut bacterial strain, Pseudomonas putida, will induce dysbiosis in the gut bacteria of P. versicolora larvae, leading to a significant acceleration in the speed of killing by PM-RNAi. Overall, our findings suggest that interfering with gut bacteria could be a promising strategy to enhance the effectiveness of PM-RNAi for insect pest control, offering a novel and effective approach for crop protection based on RNAi technology.
Collapse
Affiliation(s)
- Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
11
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
12
|
Cedden D, Güney G, Debaisieux X, Scholten S, Rostás M, Bucher G. Effective target genes for RNA interference-based management of the cabbage stem flea beetle. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38970375 DOI: 10.1111/imb.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. Gene expression measurements confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, for example, beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.
Collapse
Affiliation(s)
- Doga Cedden
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Xavier Debaisieux
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Cedden D, Güney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. PEST MANAGEMENT SCIENCE 2024; 80:2282-2293. [PMID: 37020381 DOI: 10.1002/ps.7494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The cabbage stem flea beetle (Psylliodes chrysocephala) is one of the most important insect pests of oilseed rape (Brassica napus) in northern Europe. The emergence of insecticide-resistant populations and the ban on neonicotinoid seed treatments have made the management of this pest challenging and research is needed to develop alternative strategies such as RNA interference (RNAi). We investigated lethal and sublethal effects of orally delivered double-stranded (ds)RNAs targeting P. chrysocephala orthologs of Sec23 and vacuolar adenosine triphosphatase subunit G (VatpG), which are involved in endoplasmic reticulum-Golgi transport and organelle acidification, respectively. RESULTS Feeding bioassays on P. chrysocephala adults showed that the highest concentration (200 ng/leaf disk) of dsSec23 caused mortalities of 76% and 56% in pre-aestivating and post-aestivating beetles, respectively, while the same concentration of dsVatpG led to mortality rates of ~34% in both stages. Moreover, sublethal effects, such as decreased feeding rates and attenuated locomotion were observed. Small RNA sequencing and gene expression measurements following the delivery of dsRNAs demonstrated the generation of ~21 nucleotide-long small interfering RNAs and a systemic RNAi response in P. chrysocephala. CONCLUSION We demonstrate that P. chrysocephala is a promising candidate for developing RNAi-based pest management strategies. Further research is necessary to identify more effective target genes and to assess potential non-target effects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Doga Cedden
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Dalakouras A, Koidou V, Papadopoulou K. DsRNA-based pesticides: Considerations for efficiency and risk assessment. CHEMOSPHERE 2024; 352:141530. [PMID: 38401868 DOI: 10.1016/j.chemosphere.2024.141530] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
In view of the ongoing climate change and the ever-growing world population, novel agricultural solutions are required to ensure sustainable food supply. Microbials, natural substances, semiochemicals and double stranded RNAs (dsRNAs) are all considered potential low risk pesticides. DsRNAs function at the molecular level, targeting specific regions of specific genes of specific organisms, provided that they share a minimal sequence complementarity of approximately 20 nucleotides. Thus, dsRNAs may offer a great alternative to conventional chemicals in environmentally friendly pest control strategies. Any low-risk pesticide needs to be efficient and exhibit low toxicological potential and low environmental persistence. Having said that, in the current review, the mode of dsRNA action is explored and the parameters that need to be taken into consideration for the development of efficient dsRNA-based pesticides are highlighted. Moreover, since dsRNAs mode of action differs from those of synthetic pesticides, custom-made risk assessment schemes may be required and thus, critical issues related to the risk assessment of dsRNA pesticides are discussed here.
Collapse
Affiliation(s)
| | - Venetia Koidou
- ELGO-DIMITRA, Institute of Industrial and Forage Crops, Larissa, Greece; University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, Greece
| | - Kalliope Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, Greece
| |
Collapse
|
15
|
Niu J, Chen R, Wang JJ. RNA interference in insects: the link between antiviral defense and pest control. INSECT SCIENCE 2024; 31:2-12. [PMID: 37162315 DOI: 10.1111/1744-7917.13208] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruoyu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
16
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. PLoS Pathog 2024; 20:e1012049. [PMID: 38408106 PMCID: PMC10919860 DOI: 10.1371/journal.ppat.1012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity across four distinct levels, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magnitude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
17
|
Rashed A, van Herk WG. Pest Elaterids of North America: New Insights and Opportunities for Management. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:1-20. [PMID: 37562049 DOI: 10.1146/annurev-ento-120220-123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The larval stages of click beetle (Coleoptera: Elateridae) species, several of which are serious agricultural pests, are called wireworms. Their cryptic subterranean habitat, resilience, among-species differences in ecology and biology, and broad host range, as well as the lack of objective economic injury thresholds, have rendered wireworms a challenging pest complex to control. Significant progress has been made in recent years, introducing a new effective class of insecticides and improving species identification and our understanding of species-specific phenology, chemical ecology (i.e., adult sex pheromones and larval olfactory cues), and abiotic and biotic factors influencing the efficacy of biological control agents. These new developments have created opportunities for further research into improving our risk assessment, monitoring, and integrated pest management capabilities.
Collapse
Affiliation(s)
- Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, Virginia, USA;
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada;
| |
Collapse
|
18
|
Ma YF, Liu TT, Zhao YQ, Luo J, Feng HY, Zhou YY, Gong LL, Zhang MQ, He YY, Hull JJ, Dewer Y, He M, He P. RNA Interference-Screening of Potentially Lethal Gene Targets in the White-Backed Planthopper Sogatella furcifera via a Spray-Induced and Nanocarrier-Delivered Gene Silencing System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1007-1016. [PMID: 38166405 DOI: 10.1021/acs.jafc.3c05659] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
RNA interference (RNAi) is a widespread post-transcriptional silencing mechanism that targets homologous mRNA sequences for specific degradation. An RNAi-based pest management strategy is target-specific and considered a sustainable biopesticide. However, the specific genes targeted and the efficiency of the delivery methods can vary widely across species. In this study, a spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system that incorporated gene-specific dsRNAs targeting conserved genes was used to evaluate phenotypic effects in white-backed planthopper (WBPH). At 2 days postspraying, transcript levels for all target genes were significantly reduced and knockdown of two gene orthologs, hsc70-3 and PP-α, resulted in an elevated mortality (>60%) and impaired ecdysis. These results highlight the utility of the SI-NDGS system for identifying genes involved in WBPH growth and development that could be potentially exploitable as high mortality target genes to develop an alternative method for WBPH control.
Collapse
Affiliation(s)
- Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Ting-Ting Liu
- Qianxinan Agricultural Technology Extension Center, Xingyi 562404, P. R. China
| | - Ya-Qin Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Juan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hong-Yan Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Yang-Yuntao Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Yin-Yin He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, Arizona 20250,United States
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
19
|
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mann M, Miller S, Weirauch MT, Vosberg C, Massimino C, Tank W, de Oliveira L, Chen C, Hoyt S, Adams R, Adkins S, Bailey ST, Chen X, Davis N, DeLaFlor Y, Espino M, Gervais K, Grace R, Harper D, Hasan DL, Hoang M, Holcomb R, Jernigan MR, Kemp M, Kennedy B, Kercher K, Klaessan S, Kruse A, Licata S, Lu A, Masse R, Mathew A, Michels S, Michels E, Neiman A, Norman S, Norus J, Ortiz Y, Panitz N, Paris T, Perentesis KMR, Perry M, Reynolds M, Sena MM, Tamayo B, Thate A, Vandervoort S, Ventura J, Weis N, Wise T, Shatters RG, Heck M, Benoit JB, Hunter WB, Mueller LA, Brown SJ, D'Elia T, Saha S. Diaci v3.0: chromosome-level assembly, de novo transcriptome, and manual annotation of Diaphorina citri, insect vector of Huanglongbing. Gigascience 2024; 13:giae109. [PMID: 39704701 PMCID: PMC11659978 DOI: 10.1093/gigascience/giae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/25/2023] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Diaphorina citri is an insect vector of "Candidatus Liberibacter asiaticus" (CLas), the gram-negative bacterial pathogen associated with citrus greening disease. Control measures rely on pesticides with negative impacts on the environment, natural ecosystems, and human and animal health. In contrast, gene-targeting methods have the potential to specifically target the vector species and/or reduce pathogen transmission. RESULTS To improve the genomic resources needed for targeted pest control, we assembled a D. citri genome based on PacBio long reads followed by proximity ligation-based scaffolding. The 474-Mb genome has 13 chromosomal-length scaffolds. In total, 1,036 genes were manually curated as part of a community annotation project, composed primarily of undergraduate students. We also computationally identified a total of 1,015 putative transcription factors (TFs) and were able to infer motifs for 337 TFs (33%). In addition, we produced a genome-independent transcriptome and genomes for D. citri endosymbionts. CONCLUSIONS Manual annotation provided more accurate gene models for use by researchers and provided an excellent training opportunity for students from multiple institutions. All resources are available on CitrusGreening.org and NCBI. The chromosomal-length D. citri genome assembly serves as a blueprint for the development of collaborative genomics projects for other medically and agriculturally significant insect vectors.
Collapse
Affiliation(s)
- Teresa D Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Prashant S Hosmani
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Syngenta Seeds Inc, 9 Davis Dr, Research Triangle Park, NC 27709, USA
| | | | - Marina Mann
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Allen County Community College, Burlingame, KS 66413, USA
| | - Matthew T Weirauch
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 15012, USA
| | - Chad Vosberg
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Crissy Massimino
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Will Tank
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Lucas de Oliveira
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Chang Chen
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | | | - Rebekah Adams
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Samuel Adkins
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 15012, USA
| | - Nina Davis
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Yesmarie DeLaFlor
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Michelle Espino
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Kylie Gervais
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Rebecca Grace
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Douglas Harper
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Denisse L Hasan
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Maria Hoang
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Rachel Holcomb
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Margaryta R Jernigan
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Melissa Kemp
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Bailey Kennedy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kyle Kercher
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Stefan Klaessan
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Angela Kruse
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sophia Licata
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Andrea Lu
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ron Masse
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Anuja Mathew
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Sarah Michels
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Elizabeth Michels
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Alan Neiman
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Seantel Norman
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jordan Norus
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Yasmin Ortiz
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Thomson Paris
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA
- Entomology and Nematology Department, North Florida Research and Education Center, University of Florida, Fort Pierce, FL 32351, USA
| | - Kitty M R Perentesis
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Michael Perry
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Max Reynolds
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Madison M Sena
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Blessy Tamayo
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Amanda Thate
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sara Vandervoort
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jessica Ventura
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicholas Weis
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tanner Wise
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Robert G Shatters
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA-ARS, Ithaca, NY 14850, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wayne B Hunter
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA
| | | | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D'Elia
- Department of Biological Sciences, Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552815. [PMID: 37645726 PMCID: PMC10461925 DOI: 10.1101/2023.08.10.552815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity along a continuous gradient, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magintude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T. Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y. Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
21
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
22
|
Müller R, Bálint M, Hardes K, Hollert H, Klimpel S, Knorr E, Kochmann J, Lee KZ, Mehring M, Pauls SU, Smets G, Steinbrink A, Vilcinskas A. RNA interference to combat the Asian tiger mosquito in Europe: A pathway from design of an innovative vector control tool to its application. Biotechnol Adv 2023; 66:108167. [PMID: 37164239 DOI: 10.1016/j.biotechadv.2023.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/06/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The Asian tiger mosquito Aedes albopictus is currently spreading across Europe, facilitated by climate change and global transportation. It is a vector of arboviruses causing human diseases such as chikungunya, dengue hemorrhagic fever and Zika fever. For the majority of these diseases, no vaccines or therapeutics are available. Options for the control of Ae. albopictus are limited by European regulations introduced to protect biodiversity by restricting or phasing out the use of pesticides, genetically modified organisms (GMOs) or products of genome editing. Alternative solutions are thus urgently needed to avoid a future scenario in which Europe faces a choice between prioritizing human health or biodiversity when it comes to Aedes-vectored pathogens. To ensure regulatory compliance and public acceptance, these solutions should preferably not be based on chemicals or GMOs and must be cost-efficient and specific. The present review aims to synthesize available evidence on RNAi-based mosquito vector control and its potential for application in the European Union. The recent literature has identified some potential target sites in Ae. albopictus and formulations for delivery. However, we found little information concerning non-target effects on the environment or human health, on social aspects, regulatory frameworks, or on management perspectives. We propose optimal designs for RNAi-based vector control tools against Ae. albopictus (target product profiles), discuss their efficacy and reflect on potential risks to environmental health and the importance of societal aspects. The roadmap from design to application will provide readers with a comprehensive perspective on the application of emerging RNAi-based vector control tools for the suppression of Ae. albopictus populations with special focus on Europe.
Collapse
Affiliation(s)
- Ruth Müller
- Unit Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 9, 60590 Frankfurt am Main, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Germany
| | - Henner Hollert
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Media-related Toxicity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Evolutionary Ecology and Environmental Toxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Integrative Parasitology and Zoophysiology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Eileen Knorr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Judith Kochmann
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Marion Mehring
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; ISOE - Institute for Social-Ecological Research, Hamburger Allee 45, 60486 Frankfurt am Main, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Greet Smets
- Perseus BV, Kortrijksesteenweg 127 B1, B-9830 Sint-Martens-Latem, Belgium
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
23
|
Khalil SMS, Alahmed AM, Munawar K. RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Acta Trop 2023; 243:106938. [PMID: 37146864 DOI: 10.1016/j.actatropica.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
With increasing reports of resistance to traditional insecticides, there is a need for innovative ways for mosquito control. RNAi is a sequence-specific molecular biology technique for gene silencing through degradation of mRNA and prevention of protein translation. Some genes are essential for insect life and their silencing can lead to insect morbidity and/or mortality. Searching for lethal genes in Culex quinquefasciatus, we found dynamin, ROP, HMGR and JHAMT to be lethal targets for RNAi in initial screening through larval soaking in dsRNA solution. Two delivery methods, chitosan nanoparticles and genetically modified yeast cells, were used in this study and proved effective in inducing high larval mortality and low adult emergence. Adult emergence after chitosan nanoparticles/dsRNA treatment was 12.67% ± 1.76 (HMGR), 17.33% ± 1.76 (dynamin), 18.67% ± 0.67 (ROP), and 35.33% ± 0.67 (JHAMT). Genetically modified yeast increased mortalities as adult emergence was 8.33% ± 1.67 (HMGR), 13.33% ± 3.33 (dynamin), and 10% ± 2.89 (JHAMT and ROP). Chitosan nanoparticles retained 75% of its biological activity whereas yeast cells retained >95% of their activities after 7 days of incubation in water. In conclusion, our results showed that these four genes are good targets for C. quinquefasciatus control using RNAi packaged in either chitosan nanoparticles or genetically modified yeast cells.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia; Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, 12619, Egypt.
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
24
|
Xu W, Zhang M, Li Y, He W, Li S, Zhang J. Complete protection from Henosepilachna vigintioctopunctata by expressing long double-stranded RNAs in potato plastids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1003-1011. [PMID: 36382860 DOI: 10.1111/jipb.13411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful technology for pest management. Previously, we have shown that plastid-mediated RNAi (PM-RNAi) can be utilized to control the Colorado potato beetle, an insect pest in the Chrysomelidae family; however, whether this technology is suitable for controlling pests in the Coccinellidae remained unknown. The coccinellid 28-spotted potato ladybird (Henosepilachna vigintioctopunctata; HV) is a serious pest of solanaceous crops. In this study, we identified three efficient target genes (β-Actin, SRP54, and SNAP) for RNAi using in vitro double-stranded RNAs (dsRNAs) fed to HV, and found that dsRNAs targeting β-Actin messenger RNA (dsACT) induced more potent RNAi than those targeting the other two genes. We next generated transplastomic and nuclear transgenic potato (Solanum tuberosum) plants expressing HV dsACT. Long dsACT stably accumulated to up to 0.7% of the total cellular RNA in the transplastomic plants, at least three orders of magnitude higher than in the nuclear transgenic plants. Notably, the transplastomic plants also exhibited a significantly stronger resistance to HV, killing all larvae within 6 d. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for HV, extending the application range of this technology to Coccinellidae pests.
Collapse
Affiliation(s)
- Wenbo Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Miao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yangcun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wanwan He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
25
|
Zhang X, Fan Z, Zhang R, Kong X, Liu F, Fang J, Zhang S, Zhang Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. PEST MANAGEMENT SCIENCE 2023; 79:1566-1577. [PMID: 36527705 DOI: 10.1002/ps.7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall webworm, Hyphantria cunea, an invasive forest pest found worldwide, causes serious ecological and economic damage. Currently, the application of chemical pesticides is the most widely used strategy for H. cunea management. However, long-term pesticide use leads to pest resistance, phytotoxicity, human poisoning, and environmental deterioration. RNA interference (RNAi) technology may provide an environmentally friendly and cost-effective option for H. cunea control. However, effective RNAi targets and application methods for H. cunea are lacking. RESULTS We screened and obtained two highly effective RNAi targets, vATPase A (V-type proton ATPase catalytic subunit A) and Rop (Ras opposite), from 23 candidate genes, using initial and repeat screening tests with the double-stranded RNA (dsRNA) injection method. RNAi against these two genes was effective in suppressing each target messenger RNA level and interfering with larval growth, leading to significant larval mortality and pupal abnormality. For massive production of dsRNA and practical application of RNAi technology in H. cunea, transformed bacteria expressing dsRNAs of these two genes were prepared using the L4440 expression vector and HT115 strain of Escherichia coli. Oral administration of bacterially expressed dsRNA targeting vATPase A and Rop genes showed high mortality and the same malformed phenotype as the injection treatment. To further investigate the lethal effects of targeting these two genes on larval development, transcriptome sequencing (RNA-seq) was performed on RNAi samples. The results demonstrated disorders in multiple metabolic pathways, and the expression levels of most genes related to insect cuticle metabolism were significantly different, which may directly threaten insect survival. In addition, some new findings were obtained via RNA-seq analysis; for example, the progesterone-mediated oocyte maturation and oocyte meiosis processes were significantly different after silencing vATPase A, and the insect olfactory protein-related genes were significantly downregulated after dsHcRop treatment. CONCLUSION vATPase A and Rop are two highly effective RNAi-mediated lethal genes in H. cunea that regulate insect growth via multiple metabolic pathways. Oral delivery of bacterially expressed dsRNA specific to vATPase A and Rop can potentially be used for RNAi-based H. cunea management. This is the first study to apply bacteria-mediated RNAi for the control of this invasive pest, which is a major step forward in the application of the RNAi technology in H. cunea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
26
|
Chen S, Luo X, Nanda S, Yang C, Li Z, Zhang Y, Zhou X, Pan H. RNAi-Based Biopesticides Against 28-Spotted Ladybeetle Henosepilachna vigintioctopunctata Does Not Harm the Insect Predator Propylea japonica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3373-3384. [PMID: 36762732 DOI: 10.1021/acs.jafc.2c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA interference (RNAi)-mediated control of the notorious pest Henosepilachna vigintioctopunctata is an emerging environment friendly research area. However, the characterization of key target genes in H. vigintioctopunctata is crucial for this. Additionally, assessing the risk of RNAi to nontarget organisms (NTOs) is necessary for environmental safety. In this study, the potential of RNAi technology in controlling H. vigintioctopunctata infestation has been investigated by the oral delivery of double-stranded RNA (dsRNA). The results revealed that the silencing of six genes, including HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k, was highly lethal to H. vigintioctopunctata. The LC50 values of the dsRNAs used to silence these six genes were found to be less than 13 ng/μL. Moreover, the use of the bacterially expressed dsRNAs caused high mortality in the lab and field populations of H. vigintioctopunctata. Further, administration of HvHel25E and HvSrp54k dsRNAs in the predatory lady beetle Propylea japonica confirmed no transcriptional or organismal levels effects. This risk-assessment result ensured no off-target RNAi effects on the NTOs. Overall, the findings of the study suggested that HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k can be novel promising molecular targets with high specificity for H. vigintioctopunctata management with negligible effects on the NTOs.
Collapse
Affiliation(s)
- Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Luo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761200, India
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Bai M, Liu ZL, Zhou YY, Xu QX, Liu TX, Tian HG. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum. PEST MANAGEMENT SCIENCE 2023; 79:45-54. [PMID: 36086883 DOI: 10.1002/ps.7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A significant variation in RNA interference (RNAi) efficiency hinders further functional gene studies and pest control application in many insects. The available double-stranded RNA (dsRNA) molecules introduced into the target cells are regarded as the crucial factor for efficient RNAi response. However, numerous studies have only focused on dsRNA stability in vivo; it is uncertain whether different dsRNA storage conditions in vitro play a role in variable RNAi efficiency among insects. RESULTS A marker gene cardinal, which leads to white eyes when knocked-down in the red flour beetle Tribolium castaneum, was used to evaluate the effects of RNAi efficiency under different dsRNA storage conditions. We demonstrated that the dsRNA molecule is very stable under typical cryopreservation temperatures (-80 and -20 °C) within 180 days, and RNAi efficiency shows no significant differences under either low temperature. Unexpectedly, while dsRNA molecules were treated with multiple freeze-thaw cycles up to 50 times between -80/-20 °C and room temperature, we discovered that dsRNA integrity and RNAi efficiency were comparable with fresh dsRNA. Finally, when the stability of dsRNA was further measured under refrigerated storage conditions (4 °C), we surprisingly found that dsRNA is still stable within 180 days and can induce an efficient RNAi response as that of initial dsRNA. CONCLUSION Our results indicate that dsRNA is extraordinarily stable under various temperature storage conditions that did not significantly impact RNAi efficiency in vivo insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zi-Ling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu-Yu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiu-Xuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
He L, Huang Y, Tang X. RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol 2022; 10:1080576. [PMID: 36524052 PMCID: PMC9744970 DOI: 10.3389/fbioe.2022.1080576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 10/21/2023] Open
Abstract
The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.
Collapse
Affiliation(s)
- Li He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| |
Collapse
|
29
|
Yang X, Liu S, Lu W, Du M, Qiao Z, Liang Z, An Y, Gao J, Li X. Delta and jagged are candidate target genes of RNAi biopesticides for the control of Nilaparvata lugens. Front Bioeng Biotechnol 2022; 10:1023729. [PMID: 36466326 PMCID: PMC9715739 DOI: 10.3389/fbioe.2022.1023729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/10/2022] [Indexed: 11/07/2023] Open
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is an important pest in rice cultivation, and chemical pesticide over-use and ineffectiveness of existing Bt transgenic rice against piercing-sucking insects make novel control methods necessary. RNA interference (RNAi) biopesticide is a new type of product with high efficiency and specificity and are simple to use. The Notch signaling pathway has extensive and important physiological functions and plays a key role in the development of insects. In this study, two key ligand genes of the Notch signaling pathway, delta (dl) and jagged (jag), were selected and their lethal effects and functional analysis were systematically evaluated using a stable short-winged population (Brachypterous strain) and a long-winged population (Macropterous strain) of BPHs. The full-length coding sequences of Nldl and Nljag comprised 1,863 and 3,837 base pairs, encoding 620 and 1,278 amino acids, respectively. The nucleic acid sequences of Nldl and Nljag were identical between the two strains. The expression levels of Nldl and Nljag were relatively high in the head of the nymphs, followed by those in the abdomen. Through RNAi treatment, we found that injection of BPH nymphs of both strains with dsNldl (10-50 ng/nymph) or dsNljag (100 ng/nymph) produced lethal or teratogenic effects. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, suggesting that RNAi rapidly exhibits effects which persist for long periods of time in BPHs. Taken together, our results confirm the potential of Nldl and Nljag as target genes of RNAi biopesticides, and we propose optimized dosages for the control of BPHs.
Collapse
Affiliation(s)
- Xifa Yang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture/College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenhui Lu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuangzhuang Qiao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhen Liang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yiting An
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jing Gao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
30
|
Mondal M, Carver M, Brown JK. Characteristics of environmental RNAi in potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Front Physiol 2022; 13:931951. [PMID: 36330211 PMCID: PMC9623324 DOI: 10.3389/fphys.2022.931951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) has potential to become a major tool for integrated management of insect pests of agricultural crops based on sequence-specificity and low doses of rapidly biodegradable dsRNA. Deploying ‘environmental RNAi’ for control of insect vectors of plant pathogens is of increasing interest for combatting emerging plant diseases. Hemipteran insect vectors, including psyllids, are vascular feeders, making their development difficult to control specifically by targeting with pesticidal chemistries. Psyllids transmit “Candidatus Liberibacter solanacearum” the causal organism of potato zebra chip and tomato vein greening diseases, transmitted, respectively, by the potato or tomato psyllid (PoP). Until now, the optimal effective concentration(s) of double-stranded RNA (dsRNA) required for significant gene knockdown and RNAi persistence in PoP have not been determined. The objective of this study was to optimize RNAi in young PoP adults and 3rd instars for screening by oral delivery of dsRNAs. The minimal effective dsRNA concentrations required for robust knockdown and persistence were evaluated by delivering seven concentrations spanning 0.1 ng/μL to 500 ng/μL over post ingestion-access periods (IAP) ranging from 48 h to 12 days. The PoP gene candidates evaluated as targets were vacuolar ATPase subunit A, clathrin heavy chain, and non-fermenting protein 7, which were evaluated for knockdown by qPCR amplification. The minimum and/or the second most effective dsRNA concentration resulting in effective levels of gene knockdown was 100 ng/μL for all three targets. Higher concentrations did not yield further knockdown, indicating potential RISC saturation at the higher doses. Gene silencing post-IAP of 100 ng/μL dsRNA persisted for 3–5 days in adults and nymphs, with the PoP 3rd instar, followed by teneral and mature adults, respectively, exhibiting the most robust RNAi-response.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- RNAissance Ag LLC, St. Louis, MO, United States
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Judith K. Brown,
| |
Collapse
|
31
|
Bensoussan N, Milojevic M, Bruinsma K, Dixit S, Pham S, Singh V, Zhurov V, Grbić M, Grbić V. Localized efficacy of environmental RNAi in Tetranychus urticae. Sci Rep 2022; 12:14791. [PMID: 36042376 PMCID: PMC9427735 DOI: 10.1038/s41598-022-19231-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental RNAi has been developed as a tool for reverse genetics studies and is an emerging pest control strategy. The ability of environmental RNAi to efficiently down-regulate the expression of endogenous gene targets assumes efficient uptake of dsRNA and its processing. In addition, its efficiency can be augmented by the systemic spread of RNAi signals. Environmental RNAi is now a well-established tool for the manipulation of gene expression in the chelicerate acari, including the two-spotted spider mite, Tetranychus urticae. Here, we focused on eight single and ubiquitously-expressed genes encoding proteins with essential cellular functions. Application of dsRNAs that specifically target these genes led to whole mite body phenotypes—dark or spotless. These phenotypes were associated with a significant reduction of target gene expression, ranging from 20 to 50%, when assessed at the whole mite level. Histological analysis of mites treated with orally-delivered dsRNAs was used to investigate the spatial range of the effectiveness of environmental RNAi. Although macroscopic changes led to two groups of body phenotypes, silencing of target genes was associated with the distinct cellular phenotypes. We show that regardless of the target gene tested, cells that displayed histological changes were those that are in direct contact with the dsRNA-containing gut lumen, suggesting that the greatest efficiency of the orally-delivered dsRNAs is localized to gut tissues in T. urticae.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, 33882, Villenave d'Ornon, France
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sean Pham
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vinayak Singh
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
32
|
List F, Tarone AM, Zhu‐Salzman K, Vargo EL. RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management. PEST MANAGEMENT SCIENCE 2022; 78:3215-3225. [PMID: 35338587 PMCID: PMC9541735 DOI: 10.1002/ps.6884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 05/27/2023]
Abstract
RNA interference (RNAi) selectively targets genes and silences their expression in vivo, causing developmental defects, mortality and altered behavior. Consequently, RNAi has emerged as a promising research area for insect pest management. However, it is not yet a viable alternative over conventional pesticides despite several theoretical advantages in safety and specificity. As a first step toward a more standardized approach, a machine learning algorithm was used to identify factors that predict trial efficacy. Current research on RNAi for pest management is highly variable and relatively unstandardized. The applied random forest model was able to reliably predict mortality ranges based on bioassay parameters with 72.6% accuracy. Response time and target gene were the most important variables in the model, followed by applied dose, double-stranded RNA (dsRNA) construct size and target species, further supported by generalized linear mixed effect modeling. Our results identified informative trends, supporting the idea that basic principles of toxicology apply to RNAi bioassays and provide initial guidelines standardizing future research similar to studies of traditional insecticides. We advocate for training that integrates genetic, organismal, and toxicological approaches to accelerate the development of RNAi as an effective tool for pest management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fabian List
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | - Aaron M Tarone
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Edward L Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
33
|
Klingler M, Bucher G. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 2022; 13:14. [PMID: 35854352 PMCID: PMC9295526 DOI: 10.1186/s13227-022-00201-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.
Collapse
Affiliation(s)
- Martin Klingler
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058, Erlangen, Germany.
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
34
|
Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int J Mol Sci 2022; 23:ijms23073918. [PMID: 35409279 PMCID: PMC8999928 DOI: 10.3390/ijms23073918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Plant-mediated RNA interference (RNAi) holds great promise for insect pest control, as plants can be transformed to produce double-stranded RNA (dsRNA) to selectively down-regulate insect genes essential for survival. For optimum potency, dsRNA can be produced in plant plastids, enabling the accumulation of unprocessed dsRNAs. However, the relative effectiveness of this strategy in inducing an RNAi response in insects using different feeding mechanisms is understudied. To investigate this, we first tested an in vitro-synthesized 189 bp dsRNA matching a highly conserved region of the v-ATPaseA gene from cotton mealybug (Phenacoccus solenopsis) on three insect species from two different orders that use leaf-chewing, lacerate-and-flush, or sap-sucking mechanisms to feed, and showed that the dsRNA significantly down-regulated the target gene. We then developed transplastomic Micro-tom tomato plants to produce the dsRNA in plant plastids and showed that the dsRNA is produced in leaf, flower, green fruit, red fruit, and roots, with the highest dsRNA levels found in the leaf. The plastid-produced dsRNA induced a significant gene down-regulation in insects using leaf-chewing and lacerate-and-flush feeding mechanisms, while sap-sucking insects were unaffected. Our results suggest that plastid-produced dsRNA can be used to control leaf-chewing and lacerate-and-flush feeding insects, but may not be useful for sap-sucking insects.
Collapse
|
35
|
Tank W, Shippy T, Thate A, Massimino C, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Ubiquitin-proteasome pathway annotation in Diaphorina citri can reveal potential targets for RNAi-based pest management. GIGABYTE 2022; 2022:gigabyte43. [PMID: 36824528 PMCID: PMC9933519 DOI: 10.46471/gigabyte.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/26/2022] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is an ATP-dependent process that targets proteins for degradation by the proteasome. Here, we annotated 15 genes from the ubiquitin-proteasome pathway in the Asian citrus psyllid, Diaphorina citri. This psyllid vector has come to prominence in the last decade owing to its role in the transmission of the devastating bacterial pathogen, Candidatus Liberibacter asiaticus (CLas). Infection of citrus crops by this pathogen causes Huanglongbing (HLB), or citrus greening disease, and results in the eventual death of citrus trees. The identification and correct annotation of these genes in D. citri will be useful for functional genomic studies to aid the development of RNAi-based management strategies aimed at reducing the spread of HLB. Investigating the effects of CLas infection on the expression of ubiquitin-proteasome pathway genes may provide new information about the role these genes play in the acquisition and transmission of CLas by D. citri.
Collapse
Affiliation(s)
- Will Tank
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda Thate
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
36
|
Dang C, Zhang Y, Sun C, Li R, Wang F, Fang Q, Yao H, Stanley D, Ye G. dsRNAs Targeted to the Brown Planthopper Nilaparvata lugens: Assessing Risk to a Non-Target, Beneficial Predator, Cyrtorhinus lividipennis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:373-380. [PMID: 34967611 DOI: 10.1021/acs.jafc.1c05487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi) technology is becoming a maturing insect management approach. Before commercial-scale application, however, it is necessary to assess risks to non-target organisms (NTOs). Here, we evaluated the influence of RNAi technology, targeted to the brown planthopper (BPH, Nilaparvata lugens, Hemiptera: Delphacidae), a serious pest of Asian rice cropping systems, by dsRNA feeding. Three dsRNA fragments, targeting sodium channel protein Nach-like (dsNlNa), autophagy protein 5 (dsNlAup5), and V-type proton ATPase catalytic subunit A (dsNlvATP-A), which were highly lethal to BPH, were selected to evaluate their effects on an important predator of BPH, Cyrtorhinus lividipennis (Hemiptera: Miridae). It showed that these three dsRNA fragments posed no risks to C. lividipennis at worst-case treatments when fed with high concentrations (10×) dsRNAs. These findings not only establish part of a risk assessment protocol for RNAi-based products on NTOs but also contribute to the development and deployment of new technologies for BPH management.
Collapse
Affiliation(s)
- Cong Dang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Yupan Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Chuyi Sun
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Ran Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - David Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, Missouri 65203, United States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| |
Collapse
|
37
|
Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:347-365. [PMID: 34614365 DOI: 10.1146/annurev-ento-080921-075157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species' potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum's sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
Collapse
Affiliation(s)
- James F Campbell
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, USA;
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos 382 21, Greece;
| | - David W Hagstrum
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| |
Collapse
|
38
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
39
|
Chatterjee M, Yadav J, Rathinam M, Karthik K, Chowdhary G, Sreevathsa R, Rao U. Amenability of Maruca vitrata (Lepidoptera: Crambidae) to gene silencing through exogenous administration and host-delivered dsRNA in pigeonpea ( Cajanus cajan L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:189-202. [PMID: 35221579 PMCID: PMC8847478 DOI: 10.1007/s12298-022-01133-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 05/13/2023]
Abstract
UNLABELLED Insect pests are one of the major biotic stresses limiting yield in commercially important crops. The lepidopteran polyphagous spotted pod borer, Maruca vitrata causes significant economic losses in legumes including pigeonpea. RNA interference (RNAi)-based gene silencing has emerged as one of the potential biotechnological tools for crop improvement. We report in this paper, RNAi in M. vitrata through exogenous administration of dsRNA with sequence specificity to three functionally important genes, Alpha-amylase (α-amylase), Chymotrypsin-like serine protease (CTLP) and Tropomyosin (TPM) into the larval haemolymph and their host-delivered RNAi in pigeonpea. Significant decline in the expression of selected genes supported by over-expression of DICER and generation of siRNA indicated the occurrence of RNAi in the dsRNA-injected larvae. Additionally, the onset of RNAi in the herbivore was demonstrated in pigeonpea, one of the prominent hosts, by host-delivered dsRNA. Transgenics in pigeonpea (cv. Pusa 992), a highly recalcitrant crop, were developed through a shoot apical meristem-targeted in planta transformation strategy and evaluated. Plant level bioassays in transgenic events characterized and selected at molecular level showed mortality of M. vitrata larvae as well as reduced feeding when compared to wild-type. Furthermore, molecular evidence for down regulation of target genes in the insects that fed on transgenic plants authenticated RNAi. Considering the variability of gene silencing in lepidopteran pests, this study provided corroborative proof for the possibility of gene silencing in M. vitrata through both the strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01133-3.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Jyoti Yadav
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Gopal Chowdhary
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
40
|
Mehlhorn S, Hunnekuhl VS, Geibel S, Nauen R, Bucher G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Front Zool 2021; 18:60. [PMID: 34863212 PMCID: PMC8643023 DOI: 10.1186/s12983-021-00444-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.
Collapse
Affiliation(s)
- Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
41
|
Zeng J, Mu LL, Jin L, Ali Anjum A, Li GQ. RNAi of vacuolar-type H +-ATPase genes causes growth delay and molting defect in Henosepilachna vigintioctopunctata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:705-714. [PMID: 34112278 DOI: 10.1017/s0007485321000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Henosepilachna vigintioctopunctata is one of the most serious insect pests to a large number of nightshades and cucurbits. RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) offers a reduced risk approach to control the beetle. Identification of amenable target genes and determination of appropriate life stage for dsRNA treatment are two critical steps in order to improve RNAi efficiency. In the present paper, we identified three vATPase genes, namely HvvATPaseC, HvvATPaseE and HvvATPaseH. We found that the three transcripts were widely expressed in the eggs, first- to fourth-instar larvae, prepupae, pupae and adults. They were abundantly transcribed in the hindgut and Malpighian tubules, in contrast to the epidermis and fat body. Three days' ingestion of dsvATPaseC, dsvATPaseE and dsvATPaseH by the fourth-instar larvae significantly decreased corresponding transcript level by 90.1, 88.9 and 97.2%, greatly reduced larval fresh weight by 28.0, 29.9 and 28.0%, and caused 66.7, 100 and 78.7% larval lethality respectively. Comparably, 3 days' exposure of the third-instar larvae to dsvATPaseC significantly reduced HvvATPaseC mRNA level by 89.5%, decreased approximately 80% of the larval fresh weight, and killed 100% of the treated larvae. Therefore, the three vATPase genes, especially HvvATPaseE, are potential amenable target genes and young larvae are more susceptible to dsRNA. Our findings will enable the development of the dsRNA-based pesticide to control H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jie Zeng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
42
|
Beder T, Aromolaran O, Dönitz J, Tapanelli S, Adedeji E, Adebiyi E, Bucher G, Koenig R. Identifying essential genes across eukaryotes by machine learning. NAR Genom Bioinform 2021; 3:lqab110. [PMID: 34859210 PMCID: PMC8634067 DOI: 10.1093/nargab/lqab110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/09/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Identifying essential genes on a genome scale is resource intensive and has been performed for only a few eukaryotes. For less studied organisms essentiality might be predicted by gene homology. However, this approach cannot be applied to non-conserved genes. Additionally, divergent essentiality information is obtained from studying single cells or whole, multi-cellular organisms, and particularly when derived from human cell line screens and human population studies. We employed machine learning across six model eukaryotes and 60 381 genes, using 41 635 features derived from the sequence, gene function information and network topology. Within a leave-one-organism-out cross-validation, the classifiers showed high generalizability with an average accuracy close to 80% in the left-out species. As a case study, we applied the method to Tribolium castaneum and Bombyx mori and validated predictions experimentally yielding similar performances. Finally, using the classifier based on the studied model organisms enabled linking the essentiality information of human cell line screens and population studies.
Collapse
Affiliation(s)
- Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Internal Medicine II, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Olufemi Aromolaran
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jürgen Dönitz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Department of Medical Bioinformatics, University Medical Center Göttingen (UMG), 37099 Göttingen, Germany
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Eunice O Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
43
|
Khalil SMS, Munawar K, Alahmed AM, Mohammed AMA. RNAi-Mediated Screening of Selected Target Genes Against Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2177-2185. [PMID: 34197598 DOI: 10.1093/jme/tjab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 06/13/2023]
Abstract
Culex quinquefasciatus, a member of the Culex pipiens complex, is widespread in Saudi Arabia and other parts of the world. It is a vector for lymphatic filariasis, Rift Valley fever, and West Nile virus. Studies have shown the deleterious effect of RNA interference (RNAi)-mediated knockdown of various lethal genes in model and agricultural pest insects. RNAi was proposed as a tool for mosquito control with a focus on Aedes aegypti and Anopheles gambiae. In this study, we examined the effect of RNAi of selected target genes on both larval mortality and adult emergence of Cx. quinquefasciatus through two delivery methods: soaking and nanoparticles. Ten candidate genes were selected for RNAi based on their known lethal effect in other insects. Disruption of three genes, chitin synthase-1, inhibitor of apoptosis 1, and vacuolar adenosine triphosphatase, resulted in the highest mortality among the selected genes using the two treatment methods. Silencing the other seven genes resulted in a medium to low mortality in both assays. These three genes are also active against a wide range of insects and could be used for RNAi-based mosquito control in the future.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, Egypt
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M A Mohammed
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, Egypt
| |
Collapse
|
44
|
Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. FRONTIERS IN PLANT SCIENCE 2021; 12:673576. [PMID: 34733295 PMCID: PMC8558349 DOI: 10.3389/fpls.2021.673576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) is a method of gene silencing where dsRNA is digested into small interfering RNA (siRNA) in the presence of enzymes. These siRNAs then target homologous mRNA sequences aided by the RNA-induced silencing complex (RISC). The mechanism of dsRNA uptake has been well studied and established across many living organisms including insects. In insects, RNAi is a novel and potential tool to develop future pest management means targeting various classes of insects including dipterans, coleopterans, hemipterans, lepidopterans, hymenopterans and isopterans. However, the extent of RNAi in individual class varies due to underlying mechanisms. The present review focuses on three major insect classes viz hemipterans, lepidopterans and coleopterans and the rationale behind this lies in the fact that studies pertaining to RNAi has been extensively performed in these groups. Additionally, these classes harbour major agriculturally important pest species which require due attention. Interestingly, all the three classes exhibit varying levels of RNAi efficiencies with the coleopterans exhibiting maximum response, while hemipterans are relatively inefficient. Lepidopterans on the other hand, show minimum response to RNAi. This has been attributed to many facts and few important being endosomal escape, high activity dsRNA-specific nucleases, and highly alkaline gut environment which renders the dsRNA unstable. Various methods have been established to ensure safe delivery of dsRNA into the biological system of the insect. The most common method for dsRNA administration is supplementing the diet of insects via spraying onto leaves and other commonly eaten parts of the plant. This method is environment-friendly and superior to the hazardous effects of pesticides. Another method involves submergence of root systems in dsRNA solutions and subsequent uptake by the phloem. Additionally, more recent techniques are nanoparticle- and Agrobacterium-mediated delivery systems. However, due to the novelty of these biotechnological methods and recalcitrant nature of certain crops, further optimization is required. This review emphasizes on RNAi developments in agriculturally important insect species and the major hurdles for efficient RNAi in these groups. The review also discusses in detail the development of new techniques to enhance RNAi efficiency using liposomes and nanoparticles, transplastomics, microbial-mediated delivery and chemical methods.
Collapse
Affiliation(s)
- Rahul B. Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Satnam Singh
- Punjab Agricultural University (PAU), Regional Research Station, Faridkot, India
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Amardeep Kour
- Punjab Agricultural University (PAU), Regional Research Station, Bathinda, India
| | | | - Naveen Arora
- Department of Genetics and Plant Breeding, Punjab Agricultural University (PAU), Ludhiana, India
| |
Collapse
|
45
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
46
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
47
|
Mehlhorn S, Ulrich J, Baden CU, Buer B, Maiwald F, Lueke B, Geibel S, Bucher G, Nauen R. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104870. [PMID: 34119215 DOI: 10.1016/j.pestbp.2021.104870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) is a promising, selective pest control technology based on the silencing of targeted genes mediated by the degradation of mRNA after the ingestion of double-stranded (ds) RNA. However, the identification of the best target genes remains a challenge, because large scale screening is only feasible in lab model systems and it remains unclear, to what degree such data can be transferred to pest species. Here, we report on our efforts to transfer target genes found in a lab model to the mustard leaf beetle, Phaedon cochleariae. The mustard leaf beetle can be reared easily and resource-efficient in large quantities all year round and is an established chrysomelid pest for higher throughput screening approaches in the crop protection industry. Mustard leaf beetle transcriptome sequencing and assembly revealed genes orthologous to those previously described as highly efficient RNAi targets in the model beetle Tribolium castaneum. First, we observed mortality after injection of dsRNA targeting the respective orthologous genes in 2nd instar mustard beetle larvae. Next, we adopted a robust, automated multi-well plate foliar RNAi screening procedure with 2nd instar larvae of the mustard leaf beetle to assess those genes. Indeed, foliar application and oral uptake of dsRNA targeting the same genes resulted in larval mortality as well. The most effective target genes with a strong (lethal) phenotype - at dsRNA doses as low as 300 ng/leaf disc (equal to 9.6 g/ha) - were srp54k, rop, αSNAP, rpn7 and rpt3. Rather limited effects were observed after application of dsRNA targeting cactus, shibire and PP-α, though they had previously been shown to be highly lethal in red flour beetle. Importantly, our experiments demonstrated that the overall efficacy pattern obtained after oral dsRNA application was well correlated with the results obtained after dsRNA injection. RT-qPCR confirmed significant target gene knock-down after normalization by employing three reference genes shown to be stably expressed across life stages. In summary, several RNAi targeted genes elicited a strong lethal phenotype and significant target gene knock-down after feeding, suggesting P. cochleariae as a potential coleopteran screening model for foliarly applied exogenous RNAi.
Collapse
Affiliation(s)
- Sonja Mehlhorn
- Johann-Friedrich-Blumenbach-Institut, GZMB, Georg-August-Universität Göttingen, Justus von-Liebig-Weg 11, 37077 Göttingen, Germany; Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Julia Ulrich
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Christian U Baden
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, Georg-August-Universität Göttingen, Justus von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany.
| |
Collapse
|
48
|
Silver K, Cooper AM, Zhu KY. Strategies for enhancing the efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2021; 77:2645-2658. [PMID: 33440063 DOI: 10.1002/ps.6277] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low RNA interference (RNAi) efficiency in many insect pests has significantly prevented its widespread application for insect pest management. This article provides a comprehensive review of recent research in developing various strategies for enhancing RNAi efficiency. Our review focuses on the strategies in target gene selection and double-stranded RNA (dsRNA) delivery technologies. For target gene selection, genome-wide or large-scale screening strategies have been used to identify most susceptible target genes for RNAi. Other strategies include the design of dsRNA constructs and manipulate the structure of dsRNA to maximize the RNA efficiency for a target gene. For dsRNA delivery strategies, much recent research has focused on the applications of complexed or encapsulated dsRNA using various reagents, polymers, or peptides to enhance dsRNA stability and cellular uptake. Other dsRNA delivery strategies include genetic engineering of microbes (e.g. fungi, bacteria, and viruses) and plants to produce insect-specific dsRNA. The ingestion of the dsRNA-producing organisms or tissues will have lethal or detrimental effects on the target insect pests. This article also identifies obstacles to further developing RNAi for insect pest management and suggests future avenues of research that will maximize the potential for using RNAi for insect pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
49
|
Xu L, Xu S, Sun L, Zhang Y, Luo J, Bock R, Zhang J. Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. MICROBIOME 2021; 9:98. [PMID: 33947455 PMCID: PMC8097945 DOI: 10.1186/s40168-021-01066-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/31/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA interference (RNAi) has emerged as an efficient tool to control insect pests. When insects ingest double-stranded RNAs (dsRNAs) targeted against essential genes, strong gene silencing and mortality can be induced. To exert their function, dsRNA molecules must pass through the insect's gut and enter epithelial cells and/or the hemolymph. Gut bacteria are known to play multifarious roles in food digestion and nutrition, and confer protection against pathogens and parasites. Whether there is a cross talk between gut bacteria and ingested dsRNAs and whether the microbiome affects RNAi efficiency are unknown. RESULTS Here, using a leaf beetle gut microbiota system, we investigated whether gut bacteria interact with dsRNA molecules and how the gut microbiota affects RNAi responses in insects. We first showed that the leaf beetle Plagiodera versicolora (Coleoptera) is highly susceptible to RNAi. We then demonstrated that ingestion of dsRNAs by non-axenic P. versicolora larvae results in (i) significantly accelerated mortality compared with axenic larvae, and (ii) overgrowth and dysbiosis of the gut microbiota. The latter may be caused by bacterial utilization of dsRNA degradation products. Furthermore, we found that Pseudomonas putida, a gut bacterium of P. versicolora, acts as major accelerator of the death of P. versicolora larvae by transitioning from commensal to pathogenic lifestyle. CONCLUSIONS The present study illuminates the complex interplay between lethal dsRNA, the insect host, and its gut microbiota. The ingestion of dsRNA by the leaf beetle caused a dysbiosis of gut bacterial community, and the dsRNA degradation products by host insect preferentially promoted the growth of an entomopathogenic bacterium, which accelerated dsRNA lethality to the insect. Our findings reveal a synergistic role of the gut microbiota in dsRNA-induced mortality of pest insects, and provide new insights in the mechanisms of RNAi-based pest control. Video abstract.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liuwei Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
50
|
Jin H, Abouzaid M, Lin Y, Hull JJ, Ma W. Cloning and RNAi-mediated three lethal genes that can be potentially used for Chilo suppressalis (Lepidoptera: Crambidae) management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104828. [PMID: 33838721 DOI: 10.1016/j.pestbp.2021.104828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) has gained attention in recent years as a viable pest control strategy. Here, RNAi assays were performed to screen the potential functionality of genes in Chilo suppressalis, a serious pest of rice, and to determine their potential for developing a highly targeted molecular control approach. Potential homologs of NADH dehydrogenase (ND), glycerol 3-phosphate dehydrogenase (GPDH) and male specific lethal 3 (MSL3) were cloned from C. suppressalis, and their spatiotemporal gene expression evaluated. The expression of all three genes was higher in the pupal and adult stages than the larval stages and largely higher in the larval head compared to other tissues. Newly hatched larvae exhibited high mortalities and suppressed growth when fed bacteria producing double-stranded RNAs (dsRNAs) corresponding to the three target genes. This study provides insights into the function of ND, GPDH and MSL3 during C. suppressalis larval development and suggests that all may be candidate gene targets for C. suppressalis pest management.
Collapse
Affiliation(s)
- Huihui Jin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|