1
|
Chen Y, Mao Y, Xie H, Zou X, Yang W, Gao R, Xie J, Zhang F. Overexpression of lncRNA22524 from Dongxiang Wild Rice Reduces Drought and Salt Stress Tolerance in Cultivated Rice. RICE (NEW YORK, N.Y.) 2025; 18:22. [PMID: 40128466 PMCID: PMC11933495 DOI: 10.1186/s12284-025-00777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Drought and salt stresses are major challenges to rice production, and a deep understanding of the mechanisms for tolerance could help deal with the challenges. Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation. Previously, lncRNA22524 has been identified as a drought stress-responsive lncRNA from Dongxiang wild rice (DXWR). Nevertheless, its reactions to abiotic stresses in genetics and physiology remained unclear. In this study, we employed a rapid amplification of cDNA ends (RACE) to obtain the full-length cDNA of lncRNA22524 from DXWR, analyzed its cellular localization, built an overexpression vector to generate transgenic lines of cultivated rice and evaluated its impact in genetics and physiology. After treated with drought and salt stress, the overexpressed lines exhibited much more injuries and lower rates of survival, more reactive oxygen species (ROS) and malondialdehyde (MDA), lower antioxidant enzymes and lower proline (Pro) and soluble sugar (SS) than their wild-type (WT). Furthermore, transcriptome analysis of overexpressed lines with weaker tolerance than WT revealed 1,233 differentially expressed genes (DEGs), where most DEGs were involved in phenylpropanoid biosynthesis, photosynthesis and glutathione metabolism. These findings demonstrated that lncRNA22524 negatively regulated rice responses to drought and salt stress, which clear way of working from transcription to metabolic products should be worth of further study.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
- Gao'an City Center for Disease Control and Prevention (CDC), Gao'an, Jiangxi Province, 330800, China
| | - Yingying Mao
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Hong Xie
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Xinjian Zou
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
- College of Life Sciences, Nanchang Normal University, Nanchang, Jiangxi Province, 330032, China
| | - Wanling Yang
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Rifang Gao
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Jiankun Xie
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China
| | - Fantao Zhang
- College of Life Sciences, Key Laboratory of Bioaffiliationersity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, China.
| |
Collapse
|
2
|
Hu Q, Yan N, Cui K, Li G, Wang W, Huang J, Peng S. Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development. PHYSIOLOGIA PLANTARUM 2024; 176:e14230. [PMID: 38413388 DOI: 10.1111/ppl.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024]
Abstract
The grain yield is closely associated with spikelet fertility in rice (Oryza sativa L.) under high temperatures, and nitrogen (N) plays a crucial role in yield formation. To investigate the effect of panicle N application on yield formation under high temperatures at the panicle initiation stage, two rice varieties [Liangyoupeijiu (LYPJ, heat susceptible) and Shanyou63 (SY63, heat tolerant)] were grown and exposed to high daytime temperature (HT) and control temperature (Control) during the panicle initiation stage. Low (LPN) and high (HPN) panicle N applications were conducted. HT markedly decreased the yields by 87% at LPN and 48% at HPN in LYPJ and 31% at LPN and 36% at HPN in SY63. The decrease in grain yield under HT was primarily attributed to the decline in spikelet fertility, HPN increased spikelet fertility. HT resulted in the abnormal development of anthers, which included disordered, enlarged, and broken anther wall layers, degraded and irregularly shaped microspores, delayed tapetum degradation, less vacuolated microspores per locule, abnormal and aborted pollen grains; however, HPN improved the development of anthers under HT, particularly in LYPJ. A high rate of evapotranspiration resulted in an approximately 1°C decrease in panicle temperatures at HPN compared with that at LPN in both varieties under HT. Overall, these results demonstrate that the increased panicle N application favors normal anther development in LYPJ by decreasing the panicle temperature, which results in high pollen viability and spikelet fertility, and consequently less yield loss under HT.
Collapse
Affiliation(s)
- Qiuqian Hu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Na Yan
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohui Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wencheng Wang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Transcriptome analysis of mulberry (Morus alba L.) leaves to identify differentially expressed genes associated with post-harvest shelf-life elongation. Sci Rep 2022; 12:18195. [PMID: 36307466 PMCID: PMC9616847 DOI: 10.1038/s41598-022-21828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Present study deals with molecular expression patterns responsible for post-harvest shelf-life extension of mulberry leaves. Quantitative profiling showed retention of primary metabolite and accumulation of stress markers in NS7 and CO7 respectively. The leaf mRNA profiles was sequenced using the Illumina platform to identify DEGs. A total of 3413 DEGs were identified between the treatments. Annotation with Arabidopsis database has identified 1022 DEGs unigenes. STRING generated protein-protein interaction, identified 1013 DEGs nodes with p < 1.0e-16. KEGG classifier has identified genes and their participating biological processes. MCODE and BiNGO detected sub-networking and ontological enrichment, respectively at p ≤ 0.05. Genes associated with chloroplast architecture, photosynthesis, detoxifying ROS and RCS, and innate-immune response were significantly up-regulated, responsible for extending shelf-life in NS7. Loss of storage sucrose, enhanced activity of senescence-related hormones, accumulation of xenobiotics, and development of osmotic stress inside tissue system was the probable reason for tissue deterioration in CO7. qPCR validation of DEGs was in good agreement with RNA sequencing results, indicating the reliability of the sequencing platform. Present outcome provides a molecular insight regarding involvement of genes in self-life extension, which might help the sericulture industry to overcome their pre-existing problems related to landless farmers and larval feeding during monsoon.
Collapse
|
4
|
Zhang Z, Zhong H, Nan B, Xiao B. Global identification and integrated analysis of heat-responsive long non-coding RNAs in contrasting rice cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:833-852. [PMID: 34846546 DOI: 10.1007/s00122-021-04001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Identified 2743 rice lncRNAs LncRNAs in response to heat stress Function prediction of HRLs Network among HRLs, genes and miRNAs co-localization of HRLs with QTLs Significant motifs in HRL sequences Long non-coding RNAs (lncRNAs) play vital roles in plant responses to environmental challenges. A better understanding of the gene regulation mediated by lncRNAs and their systematic identification would provide great benefits for modern agriculture. In this study, we performed strand-specific RNA sequencing for two rice varieties, heat-tolerant ZS97B and heat-susceptible SYD2 under heat stress. In total, 2743 putative lncRNAs were identified, and their expression profiles in response to heat treatments were established. We identified 231 differentially expressed lncRNAs (DELs) under heat stress, including 31 DELs common to both varieties and 103 and 97 specific to ZS97B and SYD2, respectively, all defined as heat-responsive lncRNAs (HRLs). The target-coding genes of HRLs were predicted, and GO and KEGG annotations of HRL targets revealed functions in which HRLs might be involved. The interaction network between HRLs, target genes and relevant miRNAs was constructed. The HRLs and their targets were compared with publicly available QTLs for rice seedling growth under heat stimulus. Ten HRLs and twelve target genes were linked with five heat stress-relevant QTLs. Sequence analysis revealed several motifs significantly enriched within the 231 HRL sequences. Our findings provide a valuable resource for further characterization of lncRNAs in terms of heat response and plant heat tolerance improvement.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Huahua Zhong
- College of Plant Science and Technology, Hua Zhong Agricultural University, Wuhan, 430070, China
| | - Bo Nan
- College of Plant Science and Technology, Hua Zhong Agricultural University, Wuhan, 430070, China
| | - Benze Xiao
- College of Plant Science and Technology, Hua Zhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress. PLANT CELL REPORTS 2022; 41:655-673. [PMID: 34628530 DOI: 10.1007/s00299-021-02795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
High temperature challenges global crop production by limiting the growth and development of the reproductive structures and seed. It impairs the developmental stages of male and female gametogenesis, pollination, fertilization, endosperm formation and embryo development. Among these, the male reproductive processes are highly prone to abnormalities under high temperature at various stages of development. The disruption of source-sink balance is the main constraint for satisfactory growth of the reproductive structures which is disturbed at the level of sucrose import and utilization within the tissue. Seed development after fertilization is affected by modulation in the activity of enzymes involved in starch metabolism. In addition, the alteration in the seed-filling rate and its duration affects the seed weight and quality. The present review critically discusses the role of sugar metabolism in influencing the various stages of gamete and seed development under high temperature stress. It also highlights the interaction of the sugars with hormones that mediate the transport of sugars to sink tissues. The role of transcription factors for the regulation of sugar availability under high temperature has also been discussed. Further, the omics-based systematic investigation has been suggested to understand the synergistic or antagonistic interactions between sugars, hormones and reactive oxygen species at various points of sucrose flow from source to sink under high temperature stress.
Collapse
Affiliation(s)
- Sunil Kumar
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Meenakshi Thakur
- College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Sudipta Basu
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
6
|
Beleggia R, Omranian N, Holtz Y, Gioia T, Fiorani F, Nigro FM, Pecchioni N, De Vita P, Schurr U, David JL, Nikoloski Z, Papa R. Comparative Analysis Based on Transcriptomics and Metabolomics Data Reveal Differences between Emmer and Durum Wheat in Response to Nitrogen Starvation. Int J Mol Sci 2021; 22:4790. [PMID: 33946478 PMCID: PMC8124848 DOI: 10.3390/ijms22094790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
Mounting evidence indicates the key role of nitrogen (N) on diverse processes in plant, including development and defense. Using a combined transcriptomics and metabolomics approach, we studied the response of seedlings to N starvation of two different tetraploid wheat genotypes from the two main domesticated subspecies: emmer and durum wheat. We found that durum wheat exhibits broader and stronger response in comparison to emmer as seen from the expression pattern of both genes and metabolites and gene enrichment analysis. They showed major differences in the responses to N starvation for transcription factor families, emmer showed differential reduction in the levels of primary metabolites while durum wheat exhibited increased levels of most of them to N starvation. The correlation-based networks, including the differentially expressed genes and metabolites, revealed tighter regulation of metabolism in durum wheat in comparison to emmer. We also found that glutamate and γ-aminobutyric acid (GABA) had highest values of centrality in the metabolic correlation network, suggesting their critical role in the genotype-specific response to N starvation of emmer and durum wheat, respectively. Moreover, this finding indicates that there might be contrasting strategies associated to GABA and glutamate signaling modulating shoot vs. root growth in the two different wheat subspecies.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (N.O.); (Z.N.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Yan Holtz
- Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 34060 Montpellier, France; (Y.H.); (J.L.D.)
| | - Tania Gioia
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Fabio Fiorani
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, 52428 Julich, Germany; (F.F.); (U.S.)
| | - Franca M. Nigro
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
| | - Ulrich Schurr
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, 52428 Julich, Germany; (F.F.); (U.S.)
| | - Jacques L. David
- Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 34060 Montpellier, France; (Y.H.); (J.L.D.)
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (N.O.); (Z.N.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Roberto Papa
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (F.M.N.); (N.P.); (P.D.V.)
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
7
|
Khlaimongkhon S, Chakhonkaen S, Tongmark K, Sangarwut N, Panyawut N, Wasinanon T, Sikaewtung K, Wanchana S, Mongkolsiriwatana C, Chunwonges J, Muangprom A. RNA Sequencing Reveals Rice Genes Involved in Male Reproductive Development under Temperature Alteration. PLANTS 2021; 10:plants10040663. [PMID: 33808467 PMCID: PMC8066911 DOI: 10.3390/plants10040663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important food crops, providing food for nearly half of the world population. Rice grain yields are affected by temperature changes. Temperature stresses, both low and high, affect male reproductive development, resulting in yield reduction. Thermosensitive genic male sterility (TGMS) rice is sterile at high temperature and fertile at low temperature conditions, facilitating hybrid production, and is a good model to study effects of temperatures on male development. Semithin sections of the anthers of a TGMS rice line under low (fertile) and high (sterile) temperature conditions showed differences starting from the dyad stage, suggesting that genes involved in male development play a role during postmeiotic microspore development. Using RNA sequencing (RNA-Seq), transcriptional profiling of TGMS rice panicles at the dyad stage revealed 232 genes showing differential expression (DEGs) in a sterile, compared to a fertile, condition. Using qRT-PCR to study expression of 20 selected DEGs using panicles of TGMS and wild type rice plants grown under low and high temperature conditions, revealed that six out of the 20 selected genes may be unique to TGMS, while the other 14 genes showed common responses to temperatures in both TGMS and wild-type rice plants. The results presented here would be useful for further investigation into molecular mechanisms controlling TGMS and rice responses to temperature alteration.
Collapse
Affiliation(s)
- Sudthana Khlaimongkhon
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Sriprapai Chakhonkaen
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Keasinee Tongmark
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Numphet Sangarwut
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Natjaree Panyawut
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Thiwawan Wasinanon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Kannika Sikaewtung
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Chareerat Mongkolsiriwatana
- Division of Genetics, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Julapark Chunwonges
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Amorntip Muangprom
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
- Correspondence: ; Tel.: +66-25646700 (ext. 3348)
| |
Collapse
|
8
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Xu ML, Zhu YG, Gu KH, Zhu JG, Yin Y, Ji R, Du WC, Guo HY. Transcriptome Reveals the Rice Response to Elevated Free Air CO 2 Concentration and TiO 2 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11714-11724. [PMID: 31509697 DOI: 10.1021/acs.est.9b02182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing CO2 levels are speculated to change the effects of engineered nanomaterials in soil and on plant growth. How plants will respond to a combination of elevated CO2 and nanomaterials stress has rarely been investigated, and the underlying mechanism remains largely unknown. Here, we conducted a field experiment to investigate the rice (Oryza sativa L. cv. IIyou) response to TiO2 nanoparticles (nano-TiO2, 0 and 200 mg kg-1) using a free-air CO2 enrichment system with different CO2 levels (ambient ∼370 μmol mol-1 and elevated ∼570 μmol mol-1). The results showed that elevated CO2 or nano-TiO2 alone did not significantly affect rice chlorophyll content and antioxidant enzyme activities. However, in the presence of nano-TiO2, elevated CO2 significantly enhanced the rice height, shoot biomass, and panicle biomass (by 9.4%, 12.8%, and 15.8%, respectively). Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes involved in photosynthesis were up-regulated while most genes associated with secondary metabolite biosynthesis were down-regulated in combination-treated rice. This indicated that elevated CO2 and nano-TiO2 might stimulate rice growth by adjusting resource allocation between photosynthesis and metabolism. This study provides novel insights into rice responses to increasing contamination under climate change.
Collapse
Affiliation(s)
- Mei-Ling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Science , Xiamen 361021 , China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Kai-Hua Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jian-Guo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Science , Nanjing 210008 , China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Wen-Chao Du
- School of Environment , Nanjing Normal University , Nanjing 210023 , China
| | - Hong-Yan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
10
|
Xiong Q, Zhong L, Shen T, Cao C, He H, Chen X. iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice. BMC Genomics 2019; 20:681. [PMID: 31462233 PMCID: PMC6714431 DOI: 10.1186/s12864-019-6031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/13/2019] [Indexed: 01/21/2023] Open
Abstract
Background The crop growth compensation effect is a naturally biological phenomenon, and nitrogen (N) is essential for crop growth and development, especially for yield formation. Little is known about the molecular mechanism of N deficiency and N compensation in rice. Thus, the N-sensitive stage of rice was selected to study N deficiency at the tillering stage and N compensation at the young panicle differentiation stage. In this study, a proteome analysis was performed to analyze leaf differentially expressed proteins (DEPs), and to investigate the leaf physiological characteristics and yield under N deficiency and after N compensation. Results The yield per plant presented an equivalent compensatory effect. The net photosynthetic rate, optimal/maximal quantum yield of photosystem II (Fv/Fm), soil and plant analyzer development (SPAD) value, and glutamic pyruvic transaminase (GPT) activity of T1 (N deficiency at the tillering stage, and N compensation at the young panicle differentiation stage) were lower than those of CK (N at different stages of growth by constant distribution) under N deficiency. However, after N compensation, the net photosynthetic rate, Fv/Fm, SPAD value and GPT activity were increased. Using an iTRAQ-based quantitative approach, a total of 1665 credible proteins were identified in the three 4-plex iTRAQ experiments. Bioinformatics analysis indicated that DEPs were enriched in photosynthesis, photosynthesis-antenna proteins, carbon metabolism and carbon fixation in the photosynthetic organism pathways. Moreover, the photosynthesis-responsive proteins of chlorophyll a-b binding protein, ribulose bisphosphate carboxylase small chain and phosphoglycerate kinase were significantly downregulated under N deficiency. After N compensation, chlorophyll a-b binding protein, NADH dehydrogenase subunit 5, NADH dehydrogenase subunit 7, and peroxidase proteins were significantly upregulated in rice leaves. Conclusion Through physiological and quantitative proteomic analysis, we concluded that a variety of metabolic pathway changes was induced by N deficiency and N compensation. GO and KEGG enrichment analysis revealed that DEPs were significantly associated with photosynthesis pathway-, energy metabolism pathway- and stress resistance-related proteins. The DEPs play an important role in the regulation of N deficiency and the compensation effect in rice. Electronic supplementary material The online version of this article (10.1186/s12864-019-6031-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiangqiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tianhua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaohao Cao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China. .,College of Agronomy, Jiangxi Agricultural University, Nanchang, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China. .,College of Agronomy, Jiangxi Agricultural University, Nanchang, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China.
| |
Collapse
|
11
|
Transcriptomic and Metabolomic Analysis of the Heat-Stress Response of Populus tomentosa Carr. FORESTS 2019. [DOI: 10.3390/f10050383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants have evolved mechanisms of stress tolerance responses to heat stress. However, little is known about metabolic responses to heat stress in trees. In this study, we exposed Populus tomentosa Carr. to control (25 °C) and heat stress (45 °C) treatments and analyzed the metabolic and transcriptomic effects. Heat stress increased the cellular concentration of H2O2 and the activities of antioxidant enzymes. The levels of proline, raffinose, and melibiose were increased by heat stress, whereas those of pyruvate, fumarate, and myo-inositol were decreased. The expression levels of most genes (PSB27, PSB28, LHCA5, PETB, and PETC) related to the light-harvesting complexes and photosynthetic electron transport system were downregulated by heat stress. Association analysis between key genes and altered metabolites indicated that glycolysis was enhanced, whereas the tricarboxylic acid (TCA) cycle was suppressed. The inositol phosphate; galactose; valine, leucine, and isoleucine; and arginine and proline metabolic pathways were significantly affected by heat stress. In addition, several transcription factors, including HSFA2, HSFA3, HSFA9, HSF4, MYB27, MYB4R1, and bZIP60 were upregulated, whereas WRKY13 and WRKY50 were downregulated by heat stress. Interestingly, under heat stress, the expression of DREB1, DREB2, DREB2E, and DREB5 was dramatically upregulated at 12 h. Our results suggest that proline, raffinose, melibiose, and several genes (e.g., PSB27, LHCA5, and PETB) and transcription factors (e.g., HSFAs and DREBs) are involved in the response to heat stress in P. tomentosa.
Collapse
|
12
|
Wu L, Liu T, Xu Y, Chen W, Liu B, Zhang L, Liu D, Zhang H, Zhang B. Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genet 2019; 20:9. [PMID: 30642243 PMCID: PMC6332533 DOI: 10.1186/s12863-018-0700-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Selenium (Se), an essential micronutrient in both animals and humans, has various biological functions, and its deficiency can lead to various diseases. The most common method for increasing Se uptake is the consumption of Se-rich plants, which transform inorganic Se into organic forms. Wheat is eaten daily by many people. The Se content of Aegilops tauschii (Ae. tauschii), one of the ancestors of hexaploid common wheat, is generally higher than that of wheat. In this study, two genotypes of Ae. tauschii with contrasting Se-accumulating abilities were subjected to different Se treatments followed by high-throughput transcriptome sequencing. Results Sequencing of 12 transcriptome libraries of Ae. tauschii grown under different Se treatments produced about a total of 47.72 GB of clean reads. After filtering out rRNA sequences, approximately 19.3 million high-quality clean reads were mapped to the reference genome (ta IWGSC_MIPSv2.1 genome DA). The total number of reference genome gene is 32,920 and about 26,407 known genes were detected in four groups. Functional annotation of these mapped genes revealed a large number of genes and some pivotal pathways that may participate in Se metabolism. The expressions of several genes potentially involved in Se metabolism were confirmed by quantitative real-time PCR. Conclusions Our study, the first to examine Se metabolism in Ae. tauschii, has provided a theoretical foundation for future elucidation of the mechanism of Se metabolism in this species. Electronic supplementary material The online version of this article (10.1186/s12863-018-0700-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Xu
- Xining Administration Center of Parks, Xining, 810001, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China. .,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China. .,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.
| |
Collapse
|
13
|
Rahmati Ishka M, Brown E, Weigand C, Tillett RL, Schlauch KA, Miller G, Harper JF. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics 2018; 19:549. [PMID: 30041596 PMCID: PMC6057101 DOI: 10.1186/s12864-018-4930-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Background In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific CyclicNucleotide-Gated cationChannel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. Results Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. Conclusions Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16. Electronic supplementary material The online version of this article (10.1186/s12864-018-4930-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Richard L Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.,Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University, 52900, Ramat-Gan, Israel
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling. Genetics 2018; 209:143-156. [PMID: 29545468 DOI: 10.1534/genetics.118.300478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/07/2018] [Indexed: 11/18/2022] Open
Abstract
Postharvest aflatoxin contamination is a challenging issue that affects peanut quality. Aflatoxin is produced by fungi belonging to the Aspergilli group, and is known as an acutely toxic, carcinogenic, and immune-suppressing class of mycotoxins. Evidence for several host genetic factors that may impact aflatoxin contamination has been reported, e.g., genes for lipoxygenase (PnLOX1 and PnLOX2/PnLOX3 that showed either positive or negative regulation with Aspergillus infection), reactive oxygen species, and WRKY (highly associated with or differentially expressed upon infection of maize with Aspergillus flavus); however, their roles remain unclear. Therefore, we conducted an RNA-sequencing experiment to differentiate gene response to the infection by A. flavus between resistant (ICG 1471) and susceptible (Florida-07) cultivated peanut genotypes. The gene expression profiling analysis was designed to reveal differentially expressed genes in response to the infection (infected vs. mock-treated seeds). In addition, the differential expression of the fungal genes was profiled. The study revealed the complexity of the interaction between the fungus and peanut seeds as the expression of a large number of genes was altered, including some in the process of plant defense to aflatoxin accumulation. Analysis of the experimental data with "keggseq," a novel designed tool for Kyoto Encyclopedia of Genes and Genomes enrichment analysis, showed the importance of α-linolenic acid metabolism, protein processing in the endoplasmic reticulum, spliceosome, and carbon fixation and metabolism pathways in conditioning resistance to aflatoxin accumulation. In addition, coexpression network analysis was carried out to reveal the correlation of gene expression among peanut and fungal genes. The results showed the importance of WRKY, toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR), ethylene, and heat shock proteins in the resistance mechanism.
Collapse
|
15
|
Chae S, Kim JS, Jun KM, Lee SB, Kim MS, Nahm BH, Kim YK. Analysis of Genes with Alternatively Spliced Transcripts in the Leaf, Root, Panicle and Seed of Rice Using a Long Oligomer Microarray and RNA-Seq. Mol Cells 2017; 40:714-730. [PMID: 29047256 PMCID: PMC5682249 DOI: 10.14348/molcells.2017.2297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022] Open
Abstract
Pre-mRNA splicing further increases protein diversity acquired through evolution. The underlying driving forces for this phenomenon are unknown, especially in terms of gene expression. A rice alternatively spliced transcript detection microarray (ASDM) and RNA sequencing (RNA-Seq) were applied to differentiate the transcriptome of 4 representative organs of Oryza sativa L. cv. Ilmi: leaves, roots, 1-cm-stage panicles and young seeds at 21 days after pollination. Comparison of data obtained by microarray and RNA-Seq showed a bell-shaped distribution and a co-lineation for highly expressed genes. Transcripts were classified according to the degree of organ enrichment using a coefficient value (CV, the ratio of the standard deviation to the mean values): highly variable (CVI), variable (CVII), and constitutive (CVIII) groups. A higher index of the portion of loci with alternatively spliced transcripts in a group (IAST) value was observed for the constitutive group. Genes of the highly variable group showed the characteristics of the examined organs, and alternatively spliced transcripts tended to exhibit the same organ specificity or less organ preferences, with avoidance of 'organ distinctness'. In addition, within a locus, a tendency of higher expression was found for transcripts with a longer coding sequence (CDS), and a spliced intron was the most commonly found type of alternative splicing for an extended CDS. Thus, pre-mRNA splicing might have evolved to retain maximum functionality in terms of organ preference and multiplicity.
Collapse
Affiliation(s)
- Songhwa Chae
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Kyong Mi Jun
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Sang-Bok Lee
- Central Area Crop Breeding Research Division, National Institute of Crop Science, Chuncheon 24219,
Korea
| | | | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Yeon-Ki Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| |
Collapse
|
16
|
Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep 2017; 7:1176. [PMID: 28446759 PMCID: PMC5430780 DOI: 10.1038/s41598-017-01377-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.
Collapse
|
17
|
da Maia LC, Cadore PRB, Benitez LC, Danielowski R, Braga EJB, Fagundes PRR, Magalhães AM, Costa de Oliveira A. Transcriptome profiling of rice seedlings under cold stress. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:419-429. [PMID: 32480575 DOI: 10.1071/fp16239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/11/2016] [Indexed: 05/27/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important species for food production worldwide, besides being an excellent genetic model among the grasses. Cold is one of the major abiotic factors reducing rice yield, primarily affecting germination and reproduction phases. Currently, the RNAseq technique allows the identification of differential expressed genes in response to a given treatment, such as cold stress. In the present work, a transcriptome (RNAseq) analysis was performed in the V3 phase for contrasting genotypes Oro (tolerant) and Tio Taka (sensitive), in response to cold (13°C). A total of 241 and 244M readings were obtained, resulting in the alignment of 25.703 and 26.963 genes in genotypes Oro and Tio Taka respectively. The analyses revealed 259 and 5579 differential expressed genes in response to cold in the genotypes Oro and Tio Taka respectively. Ontology classes with larger changes were metabolic process ~27%, cellular process ~21%, binding ~30% and catalytic activity ~22%. In the genotype Oro, 141 unique genes were identified, 118 were common between Oro and Tio Taka and 5461 were unique to Tio Taka. Genes involved in metabolic routes of signal transduction, phytohormones, antioxidant system and biotic stress were identified. These results provide an understanding that breeding for a quantitative trait, such as cold tolerance at germination, several gene loci must be simultaneously selected. In general, few genes were identified, but it was not possible to associate only one gene function as responsible for the cultivar tolerance; since different genes from different metabolic routes were identified. The genes described in the present work will be useful for future investigations and for the detailed validation in marker assisted selection projects for cold tolerance in the germination of rice.
Collapse
Affiliation(s)
- Luciano C da Maia
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Pablo R B Cadore
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Leticia C Benitez
- Universidade Federal de Pelotas, Department of Botany, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Rodrigo Danielowski
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Eugenia J B Braga
- Universidade Federal de Pelotas, Department of Botany, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| | - Paulo R R Fagundes
- EMBRAPA - Brazilian Agricultural Research Corporation, BR-392 Road, Km 78, 9° Distrito, Monte Bonito, Pelotas/RS - Brazil
| | - Ariano M Magalhães
- EMBRAPA - Brazilian Agricultural Research Corporation, BR-392 Road, Km 78, 9° Distrito, Monte Bonito, Pelotas/RS - Brazil
| | - Antonio Costa de Oliveira
- Universidade Federal de Pelotas, Department of Plant Sciences, Campus Universitário, S/N - CEP 96160-000 - Capão do Leão, RS - Brazil
| |
Collapse
|
18
|
Glaubitz U, Li X, Schaedel S, Erban A, Sulpice R, Kopka J, Hincha DK, Zuther E. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. PLANT, CELL & ENVIRONMENT 2017; 40:121-137. [PMID: 27761892 DOI: 10.1111/pce.12850] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 05/05/2023]
Abstract
Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars.
Collapse
Affiliation(s)
- Ulrike Glaubitz
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Xia Li
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Sandra Schaedel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- ICRC Weyer GmbH, Bölschestraße 35, D-12587, Berlin, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ronan Sulpice
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- Plant Systems Biology Research Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, National University of Galway, Galway, Ireland
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| |
Collapse
|
19
|
Liu X, Luo Q, Cao Y, Goulette T, Liu X, Xiao H. Mechanism of Different Stereoisomeric Astaxanthin in Resistance to Oxidative Stress inCaenorhabditis elegans. J Food Sci 2016; 81:H2280-7. [DOI: 10.1111/1750-3841.13417] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaojuan Liu
- Dept. of Food Science; South China Agricultural Univ; Guangzhou 510642 China
| | - Qingxin Luo
- Dept. of Food Science; South China Agricultural Univ; Guangzhou 510642 China
| | - Yong Cao
- Dept. of Food Science; South China Agricultural Univ; Guangzhou 510642 China
| | - Timothy Goulette
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass. 01003 U.S.A
| | - Xin Liu
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass. 01003 U.S.A
| | - Hang Xiao
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass. 01003 U.S.A
| |
Collapse
|