1
|
Kaatsch HL, Kubitscheck L, Wagner S, Hantke T, Preiss M, Ostheim P, Nestler T, Piechotka J, Overhoff D, Brockmann MA, Waldeck S, Port M, Ullmann R, Becker BV. Routine CT Diagnostics Cause Dose-Dependent Gene Expression Changes in Peripheral Blood Cells. Int J Mol Sci 2025; 26:3185. [PMID: 40243988 PMCID: PMC11989232 DOI: 10.3390/ijms26073185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The increasing use of computed tomography (CT) has led to a rise in cumulative radiation dose due to medical imaging, raising concerns about potential long-term adverse effects. Large-scale epidemiological studies indicate a higher tumor incidence associated with CT examinations, but the underlying biological mechanisms remain largely unexplained. To gain further insights into the cellular response triggered by routine CT diagnostics, we investigated CT-induced changes of gene expression in peripheral blood cells using whole transcriptome sequencing. RNA was isolated from peripheral blood cells of 40 male patients with asymptomatic microhematuria, sampled before and after multi-phase abdominal CT (CTDIvol: 3.75-26.95 mGy, median: 6.55 mGy). On average, 22.11 million sequence reads (SD 5.71) per sample were generated to identify differentially expressed genes 6 h post-exposure by means of DESeq2. To assess the dose dependency of CT-induced effects, we additionally divided samples into three categories: low exposure (≤6.55 mGy, n = 20), medium exposure (>6.55 mGy and <12 mGy, n = 16), and high exposure (≥12 mGy, n = 4), and repeated gene expression analysis for each subset and their corresponding prae-exposure sample. CT exposure caused consistent and dose-dependent upregulation of six genes (EDA2R, AEN, FDXR, DDB2, PHLDA3, and MIR34AHG; padj < 0.1). These genes share several functional commonalities, including regulation by TP53 and involvement in the DNA damage response. The biological pathways highlighted by Gene Set Enrichment Analysis (GSEA) suggest a dose-dependent increase of cellular damage and metabolic particularities in the low-exposure subset, which may be related to a potential adaptive cellular response to low-dose irradiation. Irrespective of applied dose, AEN emerged as the most robust biomarker for CT exposure among all genes. Routine abdominal CT scans cause dose-dependent gene deregulation in association with DNA damage in peripheral blood cells after in vivo exposure. Regarding risk assessment of CT, our results support the commonly applied "As Low-As -Reasonably Achievable (ALARA)" principle. Evidence of additional gene expression changes associated with metabolic processes indicates a rather complex molecular response beyond DNA damage after CT exposure, and emphasizes the need for further targeted investigations.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Laura Kubitscheck
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Simon Wagner
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Thomas Hantke
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Maximilian Preiss
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Tim Nestler
- Department of Urology, Bundeswehr Central Hospital, 56072 Koblenz, Germany
| | - Joel Piechotka
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
| | - Benjamin V. Becker
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany; (H.L.K.)
- Bundeswehr Institute of Radiobiology affiliated to Ulm University, 80937 Munich, Germany
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
2
|
Wu J, Ji K, Kang G, Zhang M, Wang J, Wang L, Gao M, Jia X, Lu X, Wang Y, Gao X, Guo Y, Zhu Z, Wang Q, Zhao Z, Liu Q, Huang H. Butyrate-engineered yeast activates Nppa and Sgcg genes and reduces radiation-induced heart damage via the gut-heart axis. Pharmacol Res 2025; 213:107642. [PMID: 39909125 DOI: 10.1016/j.phrs.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Radiotherapy is a method of treating cancer through radiation aimed at killing cancer cells or inhibiting their growth. However, radiotherapy has numerous side effects because it kills tumors while causing damage to normal cells or tissues. The literature shows that radiation can cause damage to heart tissue. This study found that engineered yeast that produced butyrate can maintain small intestinal barrier function by recovering GPR109A to reduce intestinal damage caused by abdominal irradiation in mice. We unexpectedly found that engineered yeast could mitigate irradiation-induced heart damage via the gut-heart axis. Mechanistically, engineered yeast enhanced taurine and nicotinamide metabolism by increasing the relative abundance of Akkermansia and Lachnospiraceae_NK4A136; then, yeast modulated cardiac function by activating the Sgcg and Nppa genes to attenuate cardiac damage induced by abdominal irradiation. Finally, we confirmed that engineered yeast mitigated cardiac damage caused by total body irradiation, which protected other vital organs through the intestinal tract. This study has a profound impact on cancer treatment, the emergence of engineered yeast will alleviate radiotherapy side effects and benefit patients.
Collapse
Affiliation(s)
- Jiahao Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lina Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Mengxue Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoxiao Jia
- Department of Anatomy, Shandong Second Medical University, Weifang 261053, China
| | - Xinran Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Xinran Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Yufei Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhixin Zhu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghua Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhenyu Zhao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - He Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
4
|
Mohammed AI, Celentano A, Paolini R, Low JT, McCullough MJ, O' Reilly LA, Cirillo N. Characterization of a novel dual murine model of chemotherapy-induced oral and intestinal mucositis. Sci Rep 2023; 13:1396. [PMID: 36697446 PMCID: PMC9876945 DOI: 10.1038/s41598-023-28486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Oral and intestinal mucositis are debilitating inflammatory diseases observed in cancer patients undergoing chemo-radiotherapy. These are devastating clinical conditions which often lead to treatment disruption affecting underlying malignancy management. Although alimentary tract mucositis involves the entire gastrointestinal tract, oral and intestinal mucositis are often studied independently utilizing distinct organ-specific pre-clinical models. This approach has however hindered the development of potentially effective whole-patient treatment strategies. We now characterize a murine model of alimentary tract mucositis using 5-Fluorouracil (5-FU). Mice were given 5-FU intravenously (50 mg/kg) or saline every 48 h for 2 weeks. Post initial injection, mice were monitored clinically for weight loss and diarrhea. The incidence and extent of oral mucositis was assessed macroscopically. Microscopical and histomorphometric analyses of the tongue and intestinal tissues were conducted at 3 interim time points during the experimental period. Repeated 5-FU treatment caused severe oral and intestinal atrophy, including morphological damage, accompanied by body weight loss and mild to moderate diarrhea in up to 77.8% of mice. Oral mucositis was clinically evident throughout the observation period in 88.98% of mice. Toluidine blue staining of the tongue revealed that the ulcer size peaked at day-14. In summary, we have developed a model reproducing the clinical and histologic features of both oral and intestinal mucositis, which may represent a useful in vivo pre-clinical model for the study of chemotherapy-induced alimentary tract mucositis and the development of preventative therapies.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
5
|
Pan X, Cai J, Wang Y, Xu D, Jiang Y, Gong W, Tian Y, Shen Q, Zhang Z, Yuan X, Li J. Expression Profile of Housekeeping Genes and Tissue-Specific Genes in Multiple Tissues of Pigs. Animals (Basel) 2022; 12:3539. [PMID: 36552460 PMCID: PMC9774903 DOI: 10.3390/ani12243539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Pigs have become an ideal model system for human disease research and development and an important farm animal that provides a valuable source of nutrition. To profile the all-sided gene expression and their biological functions across multiple tissues, we conducted a comprehensive analysis of gene expression on a large scale around the side of housekeeping genes (HKGs), tissue specific genes (TSGs), and the co-expressed genes in 14 various tissues. In this study, we identified 2351 HKGs and 3018 TSGs across tissues, among which 4 HKGs (COX1, UBB, OAZ1/NPFF) exhibited low variation and high expression levels, and 31 particular TSGs (e.g., PDC, FKBP6, STAT2, and COL1A1) were exclusively expressed in several tissues, including endocrine brain, ovaries, livers, backfat, jejunum, kidneys, lungs, and longissimus dorsi muscles. We also obtained 17 modules with 230 hub genes (HUBGs) by weighted gene co-expression network analysis. On the other hand, HKGs functions were enriched in the signaling pathways of the ribosome, spliceosome, thermogenesis, oxidative phosphorylation, and nucleocytoplasmic transport, which have been highly suggested to involve in the basic biological tissue activities. While TSGs were highly enriched in the signaling pathways that were involved in specific physiological processes, such as the ovarian steroidogenesis pathway in ovaries and the renin-angiotensin system pathway in kidneys. Collectively, these stable, specifical, and co-expressed genes provided useful information for the investigation of the molecular mechanism for an understanding of the genetic and biological processes of complex traits in pigs.
Collapse
Affiliation(s)
- Xiangchun Pan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Cai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yifei Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dantong Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518120, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150, Australia
| | - Wentao Gong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhan Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingpeng Shen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Vellichirammal NN, Sethi S, Pandey S, Singh J, Wise SY, Carpenter AD, Fatanmi OO, Guda C, Singh VK. Lung transcriptome of nonhuman primates exposed to total- and partial-body irradiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:584-598. [PMID: 36090752 PMCID: PMC9418744 DOI: 10.1016/j.omtn.2022.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
The focus of radiation biodosimetry has changed recently, and a paradigm shift for using molecular technologies of omic platforms in addition to cytogenetic techniques has been observed. In our study, we have used a nonhuman primate model to investigate the impact of a supralethal dose of 12 Gy radiation on alterations in the lung transcriptome. We used 6 healthy and 32 irradiated animal samples to delineate radiation-induced changes. We also used a medical countermeasure, γ-tocotrienol (GT3), to observe any changes. We demonstrate significant radiation-induced changes in the lung transcriptome for total-body irradiation (TBI) and partial-body irradiation (PBI). However, no major influence of GT3 on radiation was noted in either comparison. Several common signaling pathways, including PI3K/AKT, GADD45, and p53, were upregulated in both exposures. TBI activated DNA-damage-related pathways in the lungs, whereas PTEN signaling was activated after PBI. Our study highlights the various transcriptional profiles associated with γ- and X-ray exposures, and the associated pathways include LXR/RXR activation in TBI, whereas pulmonary wound-healing and pulmonary fibrosis signaling was repressed in PBI. Our study provides important insights into the molecular pathways associated with irradiation that can be further investigated for biomarker discovery.
Collapse
Affiliation(s)
| | - Sahil Sethi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
7
|
Crovella S, Revelant A, Muraro E, Moura RR, Brandão L, Trovò M, Steffan A, Zacchi P, Zabucchi G, Minatel E, Borelli V. Biological Pathways Associated With the Development of Pulmonary Toxicities in Mesothelioma Patients Treated With Radical Hemithoracic Radiation Therapy: A Preliminary Study. Front Oncol 2021; 11:784081. [PMID: 35004305 PMCID: PMC8728021 DOI: 10.3389/fonc.2021.784081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Radical hemithoracic radiotherapy (RHR), after lung-sparing surgery, has recently become a concrete therapeutic option for malignant pleural mesothelioma (MPM), an asbestos-related, highly aggressive tumor with increasing incidence and poor prognosis. Although the toxicity associated to this treatment has been reduced, it is still not negligible and must be considered when treating patients. Genetic factors appear to play a role determining radiotherapy toxicity. The aim of this study is the identification of biological pathways, retrieved through whole exome sequencing (WES), possibly associated to the development of lung adverse effects in MPM patients treated with RHR. The study included individuals with MPM, treated with lung-sparing surgery and chemotherapy, followed by RHR with curative intent, and followed up prospectively for development of pulmonary toxicity. Due to the strong impact of grade 3 pulmonary toxicities on the quality of life, compared with less serious adverse events, for genetic analyses, patients were divided into a none or tolerable pulmonary toxicity (NoSTox) group (grade ≤2) and a severe pulmonary toxicity (STox) group (grade = 3). Variant enrichment analysis allowed us to identify different pathway signatures characterizing NoSTox and Stox patients, allowing to formulate hypotheses on the protection from side effects derived from radiotherapy as well as factors predisposing to a worst response to the treatment. Our findings, being aware of the small number of patients analyzed, could be considered a starting point for the definition of a panel of pathways, possibly helpful in the management of MPM patients.
Collapse
Affiliation(s)
- Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| | - Alberto Revelant
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena Muraro
- Immunopathology and Biomarker Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Ronald Rodrigues Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health – Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Burlo Garofolo”, Trieste, Italy
| | - Lucas Brandão
- Department of Advanced Diagnostics, Institute for Maternal and Child Health – Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Burlo Garofolo”, Trieste, Italy
| | - Marco Trovò
- Radiation Oncology Department, Udine Academic Hospital, Udine, Italy
| | - Agostino Steffan
- Immunopathology and Biomarker Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Emilio Minatel
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- *Correspondence: Violetta Borelli ,
| |
Collapse
|
8
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Huang J, Li W, Liao W, Hao Q, Tang D, Wang D, Wang Y, Ge G. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet. Food Funct 2021; 11:9924-9935. [PMID: 33095225 DOI: 10.1039/d0fo02152k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green tea polyphenol epigallocatechin-3-gallate (EGCG) may help prevent metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its protective effects are complicated and remain unclear. With the gut-liver axis theory as a foundation, the present study investigated the effects of EGCG on intestinal mucosal immunity in male C57BL/6 mice fed a high-fat Western diet or the diet supplemented with 0.4% dietary EGCG (w/w) for 14 weeks. Dietary EGCG supplementation effectively prevented changes-including excessive accumulation of visceral and hepatic fat, abnormal liver function, and elevated concentrations of serum and liver inflammatory cytokines-known to be caused by high-fat diets. In addition, serum lipopolysaccharide concentrations decreased by 94.3%. RNA sequencing data of differentially expressed genes in ileal samples among three groups indicated that most of the pathways in the Kyoto Encyclopedia of Genes and Genomes in the first 20 enrichment levels were related to immunity and inflammatory reactions. Real-time reverse transcription quantitative polymerase chain reaction was used to determine alterations in expression levels of key genes related to intestinal immune function and inflammatory responses from ileal and colonic samples. Changes in secretory immunoglobulin A in the small intestine, serum, and feces further demonstrated improved intestinal mucosal immunity in the EGCG-treated mice. In conclusion, dietary EGCG effectively prevented the development of NAFLD and significantly improved intestinal mucosal immunity in mice with obesity induced by a high-fat diet. However, whether improved intestinal immune function is the key mechanism underlying the health benefits of dietary EGCG warrants further research.
Collapse
Affiliation(s)
- Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaatsch HL, Becker BV, Schüle S, Ostheim P, Nestler K, Jakobi J, Schäfer B, Hantke T, Brockmann MA, Abend M, Waldeck S, Port M, Scherthan H, Ullmann R. Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra. Sci Rep 2021; 11:12060. [PMID: 34103547 PMCID: PMC8187728 DOI: 10.1038/s41598-021-91023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Dual-energy CT provides enhanced diagnostic power with similar or even reduced radiation dose as compared to single-energy CT. Its principle is based on the distinct physical properties of low and high energetic photons, which, however, may also affect the biological effectiveness and hence the extent of CT-induced cellular damage. Therefore, a comparative analysis of biological effectiveness of dual- and single-energy CT scans with focus on early gene regulation and frequency of radiation-induced DNA double strand breaks (DSBs) was performed. Blood samples from three healthy individuals were irradiated ex vivo with single-energy (80 kV and 150 kV) and dual-energy tube voltages (80 kV/Sn150kV) employing a modern dual source CT scanner resulting in Volume Computed Tomography Dose Index (CTDIvol) of 15.79-18.26 mGy and dose length product (DLP) of 606.7-613.8 mGy*cm. Non-irradiated samples served as a control. Differential gene expression in peripheral blood mononuclear cells was analyzed 6 h after irradiation using whole transcriptome sequencing. DSB frequency was studied by 53BP1 + γH2AX co-immunostaining and microscopic evaluation of their focal accumulation at DSBs. Neither the analysis of gene expression nor DSB frequency provided any evidence for significantly increased biological effectiveness of dual-energy CT in comparison to samples irradiated with particular single-energy CT spectra. Relative to control, irradiated samples were characterized by a significantly higher rate of DSBs (p < 0.001) and the shared upregulation of five genes, AEN, BAX, DDB2, FDXR and EDA2R, which have already been suggested as radiation-induced biomarkers in previous studies. Despite steadily decreasing doses, CT diagnostics remain a genotoxic stressor with impact on gene regulation and DNA integrity. However, no evidence was found that varying X-ray spectra of CT impact the extent of cellular damage.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Benjamin Valentin Becker
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany.
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Kai Nestler
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Julia Jakobi
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Barbara Schäfer
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Thomas Hantke
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Stephan Waldeck
- Department of Radiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to Ulm University, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
11
|
Zhang T, Shi L, Li Y, Mu W, Zhang H, Li Y, Wang X, Zhao W, Qi Y, Liu L. Polysaccharides extracted from Rheum tanguticum ameliorate radiation-induced enteritis via activation of Nrf2/HO-1. JOURNAL OF RADIATION RESEARCH 2021; 62:46-57. [PMID: 33140083 PMCID: PMC7779360 DOI: 10.1093/jrr/rraa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Indexed: 05/21/2023]
Abstract
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. The Nrf2/HO-1 pathway is a critical endogenous antioxidant stress pathway, but its precise role in radiation-induced enteritis remains to be clarified. Polysaccharides extracted from Rheum tanguticum (RTP) can protect the intestinal cells from radiation-induced damage, but the underlying mechanism is unknown. SD rats and IEC-6 cells were exposed to 12 or 10 Gy X-ray radiation. Rat survival, and histopathological and immunohistochemical profiles were analyzed at different time points. Indicators of oxidative stress and inflammatory response were also assessed. Cell viability, apoptosis and Nrf2/HO-1 expression were evaluated at multiple time points. Significant changes were observed in the physiological and biochemical indexes of rats after radiation, accompanied by significant oxidative stress response. The mRNA and protein expression of Nrf2 peaked at 12 h after irradiation, and HO-1 expression peaked at 48 h after irradiation. RTP administration reduced radiation-induced intestinal damage, upregulated Nrf2/HO-1, improved physiological indexes, significantly decreased apoptosis and inflammatory factors, and upregulated HO-1, particularly at 48 h after irradiation. In conclusion, Nrf2 is activated in the early stage of radiation-induced intestinal injury and plays a protective role. RTP significantly ameliorates radiation-induced intestinal injury via the regulation of Nrf2 and its downstream protein HO-1.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Yan Li
- Xi'an beilin Pharmaceutical Co., LTD, 710038,China
| | - Wei Mu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - HaoMeng Zhang
- Department of Thyroid & Breast, The Affiliated Hospital of Northwest University ·XI'AN NO.3 Hospital, 710038, China
| | - Yang Li
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - XiaoYan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, 150001, China
| | - WeiHe Zhao
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - YuHong Qi
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| |
Collapse
|
12
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020. [PMID: 32787930 DOI: 10.1186/s13287‐020‐01857‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
13
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020; 11:349. [PMID: 32787930 PMCID: PMC7425583 DOI: 10.1186/s13287-020-01857-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
14
|
Devaux CA, Million M, Raoult D. The Butyrogenic and Lactic Bacteria of the Gut Microbiota Determine the Outcome of Allogenic Hematopoietic Cell Transplant. Front Microbiol 2020; 11:1642. [PMID: 32793150 PMCID: PMC7387665 DOI: 10.3389/fmicb.2020.01642] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Graft versus host disease (GVHD) is a post-transplant pathology in which donor-derived T cells present in the Peyer's patches target the cell-surface alloantigens of the recipient, causing host tissue damages. Therefore, the GVHD has long been considered only a purely immunological process whose prevention requires an immunosuppressive treatment. However, since the early 2010s, the impact of gut microbiota on GVHD has received increased attention. Both a surprising fall in gut microbiota diversity and a shift toward Enterobacteriaceae were described in this disease. Recently, unexpected results were reported that further link GVHD with changes in bacterial composition in the gut and disruption of intestinal epithelial tight junctions leading to abnormal intestinal barrier permeability. Patients receiving allogenic hematopoietic stem cell transplant (allo-HCT) as treatment of hematologic malignancies showed a decrease of the overall diversity of the gut microbiota that affects Clostridia and Blautia spp. and a predominance of lactic acid bacteria (LAB) of the Enterococcus genus, in particular the lactose auxotroph Enterococcus faecium. The reduced microbiota diversity (likely including Actinobacteria, such as Bifidobacterium adolescentis that cross feed butyrogenic bacteria) deprives the butyrogenic bacteria (such as Roseburia intestinalis or Eubacterium) of their capacity to metabolize acetate to butyrate. Indeed, administration of butyrate protects against the GVHD. Here, we review the data highlighting the possible link between GVHD and lactase defect, accumulation of lactose in the gut lumen, reduction of Reg3 antimicrobial peptides, narrower enzyme equipment of bacteria that predominate post-transplant, proliferation of En. faecium that use lactose as metabolic fuels, induction of innate and adaptive immune response against these bacteria which maintains an inflammatory process, elevated expression of myosin light chain kinase 210 (MLCK210) and subsequent disruption of intestinal barrier, and translocation of microbial products (lactate) or transmigration of LAB within the liver. The analysis of data from the literature confirms that the gut microbiota plays a major role in the GVHD. Moreover, the most recent publications uncover that the LAB, butyrogenic bacteria and bacterial cross feeding were the missing pieces in the puzzle. This opens new bacteria-based strategies in the treatment of GVHD.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
15
|
Chiba M, Uehara H, Niiyama I, Kuwata H, Monzen S. Changes in miRNA expressions in the injured small intestine of mice following high‑dose radiation exposure. Mol Med Rep 2020; 21:2452-2458. [PMID: 32323814 PMCID: PMC7185298 DOI: 10.3892/mmr.2020.11054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/20/2020] [Indexed: 12/02/2022] Open
Abstract
The small intestine is one of the most highly regenerative and radiosensitive tissues in mammals, including humans. Exposure to high doses of ionizing radiation causes serious intestinal damage. Recently, several investigations have been conducted using radioprotective agents to determine ways for reducing intestinal damage caused by radiation exposure. However, a thorough understanding of functional changes occurring in the small intestine of mice exposed to high-dose radiation is necessary for developing novel and more potent radioprotective agents. In this study, we examined changes in microRNA (miRNA/miR) expressions in the small intestine of mice at 72 h after X-ray exposure (10 Gy). We identified seven upregulated miRNAs and six downregulated miRNAs in the small intestine of mice following radiation exposure using miRNA microarray analysis. Particularly, miR-34a-5p was highly expressed, which was confirmed by reverse transcription-quantitative PCR. Forkhead box P1 (Foxp1) was predicted to be a target of the mRNA of miR-34a-5p using OmicsNet. Decreased Foxp1 expression in the small intestine following radiation exposure was confirmed, suggesting that Foxp1 expression recovery may induce the suppression of radiation-induced enteritis. Therefore, miR-34a-5p is a potential target molecule for developing novel radioprotective agents.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Haruka Uehara
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Ikumi Niiyama
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Haruka Kuwata
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036‑8564, Japan
| |
Collapse
|
16
|
Ewing LE, Miousse IR, Pathak R, Skinner CM, Boerma M, Hauer-Jensen M, Koturbash I. NZO/HlLtJ as a novel model for the studies on the role of metabolic syndrome in acute radiation toxicity. Int J Radiat Biol 2020; 96:93-99. [PMID: 30561233 PMCID: PMC6581619 DOI: 10.1080/09553002.2018.1547437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Growing rates of metabolic syndrome and associated obesity warrant the development of appropriate animal models for better understanding of how those conditions may affect sensitivity to IR exposure.Materials and methods: We subjected male NZO/HlLtJ mice, a strain prone to spontaneous obesity and diabetes, to 0, 5.5, 6.37, 7.4 or 8.5 Gy (137Cs) of total body irradiation (TBI). Mice were monitored for 30 days, after which proximal jejunum and colon tissues were collected for further histological and molecular analysis.Results: Obese NZO/HlLtJ male mice are characterized by their lower sensitivity to IR at doses of 6.37 Gy and under, compared to other strains. Further escalation of the dose, however, results in a steep survival curve, reaching LD100/30 values at a dose of 8.5 Gy. Alterations in the expression of various tight junction-related proteins coupled with activation of inflammatory responses and cell death were the main contributors to the gastrointestinal syndrome.Conclusions: We demonstrate that metabolic syndrome with exhibited hyperglycemia but without alterations to the microvasculature is not a pre-requisite of the increased sensitivity to TBI at high doses. Our studies indicate the potential of NZO/HlLtJ mice for the studies on the role of metabolic syndrome in acute radiation toxicity.
Collapse
Affiliation(s)
- Laura E. Ewing
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Rupak Pathak
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Charles M. Skinner
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
| |
Collapse
|
17
|
Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins (Basel) 2019; 11:toxins11090482. [PMID: 31438657 PMCID: PMC6783826 DOI: 10.3390/toxins11090482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing cyanobacterial blooms have recently been considered a severe environmental problem. Microcystin-leucine arginine (MC-LR) is one of the secondary products of cyanobacteria metabolism and most harmful cyanotoxins found in water bodies. Studies show MC-LR negatively affects various human organs when exposed to it. The phenotype of the jejunal chronic toxicity induced by MC-LR has not been well described. The aim of this paper was to investigate the effects of MC-LR on the jejunal microstructure and expression level of inflammatory-related factors in jejunum. Mice were treated with different doses (1, 30, 60, 90 and 120 μg/L) of MC-LR for six months. The microstructure and mRNA expression levels of inflammation-related factors in jejunum were analyzed. Results showed that the microstructure of the jejunum was destroyed and expression levels of inflammation-related factors interleukin (IL)-1β, interleukin (IL)-8, tumor necrosis factor alpha, transforming growth factor-β1 and interleukin (IL)-10 were altered at different MC-LR concentrations. To the best of our knowledge, this is the first study that mice were exposed to a high dose of MC-LR for six months. Our data demonstrated MC-LR had the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and inducing an inflammatory response in mice, which provided new insight into understanding the prevention and diagnosis of the intestinal diseases caused by MC-LR.
Collapse
|
18
|
Zhao Y, Zhang J, Han X, Fan S. Total body irradiation induced mouse small intestine senescence as a late effect. JOURNAL OF RADIATION RESEARCH 2019; 60:442-450. [PMID: 31165161 PMCID: PMC6641339 DOI: 10.1093/jrr/rrz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/08/2019] [Indexed: 05/10/2023]
Abstract
Radiation can induce senescence in many organs and tissues; however, it is still unclear how radiation stimulates senescence in mouse small intestine. In this study, we use the bone marrow transplantation mouse model to explore the late effects of total body irradiation on small intestine. Our results showed that almost all of the body hairs of the irradiated mice were white (which is an indication of aging) 10 months after the exposure to radiation. Furthermore, compared with the age-matched control mice, there were more SA-β-galactosidase (SA-β-gal)-positive cells and an upregulation of p16 and p21 in 8 Gy-irradiated mice intestinal crypts, indicating that radiation induced senescence in the small intestine. Intestinal bacterial flora profile analysis showed that the diversity of the intestinal bacterial flora decreased in irradiated mice; in addition it showed that the principal components of the irradiated and control mice differed: there was increased abundance of Bacteroidia and a decreased abundance of Clostridia in irradiated mice. To explore the underlying mechanism, an RNA-sequence was executed; the results suggested that pancreatic secretion, and the digestion and absorption of proteins, carbohydrates, fats and vitamins were damaged in irradiated mice, which may be responsible for the body weight loss observed in irradiated mice. In summary, our study suggested that total body irradiation may induce senescence in the small intestine and damage the health status of the irradiated mice.
Collapse
Affiliation(s)
- Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
- Corresponding author. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China. Tel: +8622-85682291; Fax: +8622-85683033; (J. Zhang)
| | - Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| |
Collapse
|
19
|
Predicting mucositis risk associated with cytotoxic cancer treatment regimens: rationale, complexity, and challenges. Curr Opin Support Palliat Care 2019; 12:198-210. [PMID: 29547492 DOI: 10.1097/spc.0000000000000339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to describe the complexity of factors influencing the risk of cancer regimen-related mucosal injury (CRRMI), to evaluate the contribution of the innate immune response to CRRMI risk, to compare the concordance of genome analytics in describing mechanism and risk, and to determine if common biological pathways are noted when CRRMI is compared to a disease with a similar phenotype. RECENT FINDINGS The pathogenesis of and risk for CRRMI are complex and influenced by multiple intrinsic and extrinsic factors. It is incumbent on analyses to recognize the likelihood that the interplay and cross-talk of synergistically expressed factors is critical and that the contributing weights of these factors is not uniform from patient to patient. Genomically derived analyses imply final common pathways are implicit in phenotype expression. SUMMARY The identification of specific factors (both genomic and otherwise) which contribute to CRRMI risk represents an important opportunity to apply principles of precision medicine to the management of regimen-related toxicities.
Collapse
|
20
|
Wang Z, Wang Q, Wang X, Zhu L, Chen J, Zhang B, Chen Y, Yuan Z. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J Cell Mol Med 2019; 23:3747-3756. [PMID: 30908851 PMCID: PMC6484301 DOI: 10.1111/jcmm.14289] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Radiation enteritis (RE) is the most common complication of radiotherapy for pelvic irradiation receivers. Herein we investigated the alterations in gut microbial profiles and their association with enteritis in patients undergoing pelvic radiotherapy. Faecal samples were collected from 18 cervical cancer patients during radiotherapy. Microbiota profiles were characterized based on 16S rRNA sequencing using the Illumina HiSeq platform. Epithelial inflammatory response was evaluated using bacterial‐epithelial co‐cultures. Dysbiosis was observed among patients with RE, which was characterized by significantly reduced α‐diversity but increased β‐diversity, relative higher abundance of Proteobacteria and Gammaproteobacteria and lower abundance of Bacteroides.Coprococcus was clearly enriched prior to radiotherapy in patients who later developed RE. Metastat analysis further revealed unique grade‐related microbial features, such as more abundant Virgibacillus and Alcanivorax in patients with mild enteritis. Additionally, using bacterial‐epithelial co‐cultures, RE patient‐derived microbiota induced epithelial inflammation and barrier dysfunction, enhanced TNF‐α and IL‐1β expression compared with control microbiota. Taken together, we define the overall picture of gut microbiota in patients with RE. Our results suggest that dysbiosis of gut microbiota may contribute to development and progression of RE. Gut microbiota can offer a set of biomarkers for prediction, disease activity evaluation and treatment selection in RE.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qingxin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Xia Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Li Zhu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bailin Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ye Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
21
|
Abstract
Normal tissue injury from irradiation is an unfortunate consequence of radiotherapy. Technologic improvements have reduced the risk of normal tissue injury; however, toxicity causing treatment breaks or long-term side effects continues to occur in a subset of patients. The molecular events that lead to normal tissue injury are complex and span a variety of biologic processes, including oxidative stress, inflammation, depletion of injured cells, senescence, and elaboration of proinflammatory and profibrogenic cytokines. This article describes selected recent advances in normal tissue radiobiology.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Measey TJ, Pouliot M, Wierzbicki W, Swanson C, Brown D, Authier S, Donini O. Pilot Study of Radiation-induced Gastrointestinal Injury in a Hemi-body Shielded Göttingen Minipig Model. HEALTH PHYSICS 2018; 114:43-57. [PMID: 30085969 DOI: 10.1097/hp.0000000000000751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of medical countermeasures (MCMs) for gastrointestinal (GI) injury following acute radiation exposure requires well-characterized models that can assess not only survival but also secondary endpoints, including structural and functional characteristics of GI damage and recovery that ultimately contribute to long-term survival. The authors conducted a pilot study in a hemi-body shielded Göttingen minipig model of radiation-induced GI injury that enables radiation damage to the GI tract to be evaluated and reduces the potential for hemorrhage and/or damage in other more sensitive organ systems. With shielding of the head, chest, and front legs, radiation dose levels of 14 Gy were required to see significant GI-related morbidity, while dose levels of 16 Gy resulted in significant mortality by day 45 post-irradiation. Periodic scheduled necropsies showed significant reduction in and slow recovery of intestinal crypt count at 14 and 16 Gy. Intestinal proliferative activity was initially increased and then gradually decreased over the course of the study. Histological evidence of marked inflammatory infiltrates was noted in the GI tract at day 5, while collagen deposition, indicative of fibrosis, was observed as early as day 15, peaking at day 30. The radiation dose-responsive indicators of GI damage identified in this model (i.e., intestinal crypt count and proliferative activity) may serve as useful endpoints for evaluation of the efficacy of potential MCMs.
Collapse
|
23
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|