1
|
Zein-Eddine R, Le Meur A, Skouloubris S, Jelsbak L, Refrégier G, Myllykallio H. Genome wide analyses reveal the role of mutator phenotypes in Mycobacterium tuberculosis drug resistance emergence. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:35. [PMID: 40301520 PMCID: PMC12041279 DOI: 10.1038/s44259-025-00107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Antimicrobial combination therapy is widely used to combat Mycobacterium tuberculosis (Mtb), yet resistance rates continue to rise. Mutator strains, with defects in DNA repair genes, drive resistance in other bacterial infections, but their role in Mtb remains unclear. Here, we study the contribution of single nucleotide polymorphisms (SNPs) in DNA Repair, Replication, and Recombination (3 R) genes to Mtb resistance. Through large-scale bioinformatics analysis of 53,589 whole-genomes, we identified 18 novel SNPs in lineages 2 and 4 linked to genotypic drug resistance in 3 R genes, covering 12.5% of clinical isolates with available genome sequences. Notably, a number of the detected SNPs were positively selected during Mtb evolution. Experimental tests showed that mutM, fpgg2, xthA, and nucS mutants had increased the mutation frequency compared to the wild type. Our findings highlight the role of 3 R gene mutations in resistance, emphasizing the need for surveillance to improve early detection and control strategies.
Collapse
Affiliation(s)
- R Zein-Eddine
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France.
| | - A Le Meur
- Laboratoire d'Ecologie Systématique et Evolution, CNRS UMR8079, AgroParisTech, Gif-Sur-Yvette, France
| | - S Skouloubris
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - L Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - G Refrégier
- Laboratoire d'Ecologie Systématique et Evolution, CNRS UMR8079, AgroParisTech, Gif-Sur-Yvette, France.
| | - H Myllykallio
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
2
|
Mvubu NE, Govender D, Pillay M. Comparative Transcriptomics Reveal Differential Expression of Coding and Non-Coding RNAs in Clinical Strains of Mycobacterium tuberculosis. Int J Mol Sci 2024; 26:217. [PMID: 39796078 PMCID: PMC11720245 DOI: 10.3390/ijms26010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Coding and non-coding RNAs (ncRNAs) are potential novel markers that can be exploited for TB diagnostics in the fight against Mycobacterium tuberculosis. The current study investigated the mechanisms of transcript regulation and ncRNA signatures through Total RNA Seq and small (smRNA) RNA Seq followed by Bioinformatics analysis in Beijing and F15/LAM4/KZN (KZN) clinical strains compared to the laboratory strain. Total RNA Seq revealed differential regulation of RNA transcripts in Beijing (n = 1095) and KZN (n = 856) strains compared to the laboratory H37Rv strain. The KZN vs. H37Rv coding transcripts uniquely enriched fatty acids, steroid degradation, fructose, and mannose metabolism as well as a bacterial secretion system. In contrast, Tuberculosis and biosynthesis of siderophores KEGG pathways were enriched by the Beijing vs. H37Rv-specific transcripts. Novel sense and antisense ncRNAs, as well as the expression of these transcripts, were observed, and these targeted RNA transcripts are involved in cell wall synthesis and bacterial metabolism in a strain-specific manner. RNA transcripts identified in the current study offer insights into gene regulation of transcripts involved in the growth and metabolism of the clinically relevant KZN and Beijing strains compared to the laboratory H37Rv strain and thus can be exploited in the fight against Tuberculosis.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Divenita Govender
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manormoney Pillay
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
3
|
Malakar B, Barth VC, Puffal J, Woychik NA, Husson RN. Phosphorylation of VapB antitoxins affects intermolecular interactions to regulate VapC toxin activity in Mycobacterium tuberculosis. J Bacteriol 2024; 206:e0023324. [PMID: 39315797 PMCID: PMC11500542 DOI: 10.1128/jb.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the Mycobacterium tuberculosis complex, with 50 modules present in the M. tuberculosis genome. In type IIA modules, the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein. VapB proteins may also bind to promoter region sequences and repress the expression of the vapB-vapC operon. Though VapB-VapC interactions can control the amount of free VapC toxin in the bacterial cell, the mechanisms that affect this interaction are poorly understood. Based on our recent finding of Ser/Thr phosphorylation of VapB proteins in M. tuberculosis, we substituted phosphomimetic or phosphoablative amino acids at the phosphorylation sites of two VapB proteins. We found that phosphomimetic substitution of VapB27 and VapB46 resulted in decreased interaction with their respective cognate VapC proteins, whereas phosphoablative substitution did not alter binding. Similarly, we determined that phosphomimetic substitution interfered with VapB binding to promoter region DNA sequences. Both decreased VapB-VapC interaction and decreased VapB repression of vapB-vapC operon transcription would result in increased free VapC in the M. tuberculosis cell. In growth inhibition experiments, M. tuberculosis strains expressing vapB46-vapC46 constructs containing a phosphoablative vapB mutation resulted in lower toxicity compared to a strain expressing native vapB46, whereas similar or greater toxicity was observed in the strain expressing the phosphomimetic vapB mutation. These results identify a novel mechanism by which VapC toxicity activity can be regulated by VapB phosphorylation.IMPORTANCEIntracellular bacterial toxins are present in many bacterial pathogens and have been linked to bacterial survival in response to stresses encountered during infection. The activity of many toxins is regulated by a co-expressed antitoxin protein that binds to and sequesters the toxin protein. The mechanisms by which an antitoxin may respond to stresses to alter toxin activity are poorly understood. Here, we show that antitoxin interactions with its cognate toxin and with promoter DNA required for antitoxin and toxin expression can be altered by Ser/Thr phosphorylation of the antitoxin and, thus, affect toxin activity. This reversible modification may play an important role in regulating toxin activity within the bacterial cell in response to signals generated during infection.
Collapse
Affiliation(s)
- Basanti Malakar
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Valdir C. Barth
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Puffal
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Nancy A. Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Cheah HL, Citartan M, Lee LP, Ahmed SA, Salleh MZ, Teh LK, Tang TH. Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis. Funct Integr Genomics 2024; 24:160. [PMID: 39264475 DOI: 10.1007/s10142-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Monash University Malaysia Genomics Platform, School of Science, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Li-Pin Lee
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
6
|
Maity U, Aggarwal R, Balasubramanian R, Venkatraman DL, R Hegde S. Devising Isolation Forest-Based Method to Investigate the sRNAome of Mycobacterium tuberculosis Using sRNA-seq Data. Bioinform Biol Insights 2024; 18:11779322241263674. [PMID: 39091283 PMCID: PMC11292719 DOI: 10.1177/11779322241263674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
Small non-coding RNAs (sRNAs) regulate the synthesis of virulence factors and other pathogenic traits, which enables the bacteria to survive and proliferate after host infection. While high-throughput sequencing data have proved useful in identifying sRNAs from the intergenic regions (IGRs) of the genome, it remains a challenge to present a complete genome-wide map of the expression of the sRNAs. Moreover, existing methodologies necessitate multiple dependencies for executing their algorithm and also lack a targeted approach for the de novo sRNA identification. We developed an Isolation Forest algorithm-based method and the tool Prediction Of sRNAs using Isolation Forest for the de novo identification of sRNAs from available bacterial sRNA-seq data (http://posif.ibab.ac.in/). Using this framework, we predicted 1120 sRNAs and 46 small proteins in Mycobacterium tuberculosis. Besides, we highlight the context-dependent expression of novel sRNAs, their probable synthesis, and their potential relevance in stress response mechanisms manifested by M. tuberculosis.
Collapse
Affiliation(s)
- Upasana Maity
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Ritika Aggarwal
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Novartis Pharmaceuticals, Hyderabad, India
| | | | | | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
7
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
8
|
Malakar B, Barth V, Puffal J, Woychik N, Husson RN. Phosphorylation of VapB antitoxins affects intermolecular interactions to regulate VapC toxin activity in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596101. [PMID: 38853858 PMCID: PMC11160731 DOI: 10.1101/2024.05.30.596101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the Mycobacterium tuberculosis complex, with 50 modules present in the M. tuberculosis genome. In type IIA modules the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein. VapB proteins also bind to promoter region sequences and repress expression of the vapB-vapC operon. Though VapB-VapC interactions can control the amount of free VapC toxin in the bacterial cell, the mechanisms that affect this interaction are poorly understood. Based on our recent finding of Ser/Thr phosphorylation of VapB proteins in M. tuberculosis, we substituted phosphomimetic or phosphoablative amino acids at the phosphorylation sites of two VapB proteins. We found that phosphomimetic substitution of VapB27 and VapB46 resulted in decreased interaction with their respective cognate VapC proteins, whereas phosphoablative substitution did not alter binding. Similarly, we determined that phosphomimetic substitution interfered with VapB binding to promoter region DNA sequences. Both decreased VapB-VapC interaction and decreased VapB repression of vapB-vapC operon transcription would result in increased free VapC in the M. tuberculosis cell. M. tuberculosis strains expressing vapB46-vapC46 constructs containing a phosphoablative vapB mutation resulted in lower toxicity compared to a strain expressing native vapB46, whereas similar or greater toxicity was observed in the strain expressing the phosphomimetic vapB mutation. These results identify a novel mechanism by which VapC toxicity activity can be regulated by VapB phosphorylation, potentially in response to extracytoplasmic as well as intracellular signals.
Collapse
Affiliation(s)
- Basanti Malakar
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Valdir Barth
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Julia Puffal
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nancy Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
10
|
Sao Emani C, Reiling N. Spermine enhances the activity of anti-tuberculosis drugs. Microbiol Spectr 2024; 12:e0356823. [PMID: 38095461 PMCID: PMC10782994 DOI: 10.1128/spectrum.03568-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/11/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE This is the first study that attempted to demonstrate the mechanisms of reactive oxygen species (ROS) generation by spermine (Spm) in Mycobacterium tuberculosis (M.tb). Furthermore, this is the first study to demonstrate that it is able to enhance the activity of currently available and World Health Organization (WHO)-approved tuberculosis (TB) drugs. Spermine can easily be obtained since it is already found in our diet. Moreover, as opposed to conventional antibiotics, it is less toxic to humans since it is found in millimolar concentrations in the body. Finally, with the difficulty of curing TB with conventional antibiotics, this study suggests that less toxic molecules, such as Spm, could in a long-term perspective be incorporated in a TB regimen to boost the treatment.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
11
|
Granados-Tristán AL, Hernández-Luna CE, González-Escalante LA, Camacho-Moll ME, Silva-Ramírez B, Bermúdez de León M, Peñuelas-Urquides K. ESX-3 secretion system in Mycobacterium: An overview. Biochimie 2024; 216:46-55. [PMID: 37879428 DOI: 10.1016/j.biochi.2023.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico; Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Carlos Eduardo Hernández-Luna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| |
Collapse
|
12
|
Gangola S, Bhatt P, Kumar AJ, Bhandari G, Joshi S, Punetha A, Bhatt K, Rene ER. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. CHEMOSPHERE 2022; 296:133916. [PMID: 35149016 DOI: 10.1016/j.chemosphere.2022.133916] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are widely used in agriculture, households, and industries; however, they have caused severe negative effects on the environment and human health. To clean up pesticide contaminated sites, various technological strategies, i.e. physicochemical and biological, are currently being used throughout the world. Biological approaches have proven to be a viable method for decontaminating pesticide-contaminated soils and water environments. The biological process eliminates contaminants by utilizing microorganisms' catabolic ability. Pesticide degradation rates are influenced by a variety of factors, including the pesticide's structure, concentration, solubility in water, soil type, land use pattern, and microbial activity in the soil. There is currently a knowledge gap in this field of study because researchers are unable to gather collective information on the factors affecting microbial growth, metabolic pathways, optimal conditions for degradation, and genomic, transcriptomic, and proteomic changes caused by pesticide stress on the microbial communities. The use of advanced tools and omics technology in research can bridge the existing gap in our knowledge regarding the bioremediation of pesticides. This review provides new insights on the research gaps and offers potential solutions for pesticide removal from the environment through the use of various microbe-mediated technologies.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Pankaj Bhatt
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China.
| | | | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Arjita Punetha
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, 249404, Uttarakhand, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| |
Collapse
|
13
|
Zaychikova MV, Bespiatykh DA, Malakhova MV, Bodoev IN, Vedekhina TS, Veselovsky VA, Klimina KM, Varizhuk AM, Shitikov EA. Transcriptional profiling of Mycobacterium smegmatis exposed to subinhibitory concentrations of G4-stabilizing ligands. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spread of Mycobacterium tuberculosis drug resistance accentuates the demand for anti-tuberculosis drugs with a fundamentally new mechanism of action without conferring cross-resistance. G-quadruplexes (G4, non-canonical DNA structures) are plausible new drug targets. Although G4-stabilizing ligands have been shown to inhibit mycobacterial growth, the exact mechanism of their action is uncertain. The aim of this study was to assess a possible correlation between putative G4 elements in a model mycobacterial strain M. smegmatis MC2155 and transcriptomic changes under the action of subinhibitory concentrations of G4 ligands BRACO-19 and TMPyP4. We also planned to compare the results with corresponding data previously obtained by us using higher, inhibitory concentrations of these ligands. For BRACO-19, we identified 589 (316↑; 273↓) and 865 (555↑; 310↓) differentially expressed genes at 5 µМ and 10 µМ, respectively. For TMPyP4, we observed the opposite trend, the number of differentially expressed genes decreased at higher concentration of the ligand: 754 (337↑; 417↓) and 702 (359↑; 343↓) for 2 µМ and 4 µМ, respectively. Statistical analysis revealed no correlation between ligand-induced transcriptomic changes and genomic localization of the putative quadruplex-forming sequences. At the same time, the data indicate certain functional specificity of the ligand-mediated transcriptomic effects, with TMPyP4 significantly affecting expression levels of transcription factors and arginine biosynthesis genes and BRACO-19 significantly affecting expression levels of iron metabolism and replication and reparation system genes.
Collapse
Affiliation(s)
- MV Zaychikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - DA Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - MV Malakhova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - IN Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - TS Vedekhina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - VA Veselovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - KM Klimina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - AM Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - EA Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
14
|
Shitikov E, Bespiatykh D, Malakhova M, Bespyatykh J, Bodoev I, Vedekhina T, Zaychikova M, Veselovsky V, Klimina K, Ilina E, Varizhuk A. Genome-Wide Transcriptional Response of Mycobacterium smegmatis MC2155 to G-Quadruplex Ligands BRACO-19 and TMPyP4. Front Microbiol 2022; 13:817024. [PMID: 35308348 PMCID: PMC8931766 DOI: 10.3389/fmicb.2022.817024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that could be considered as potential therapeutic targets for antimicrobial compounds, also known as G4-stabilizing ligands. While some of these ligands are shown in vitro to have a stabilizing effect, the precise mechanism of antibacterial action has not been fully investigated. Here, we employed genome-wide RNA-sequencing to analyze the response of Mycobacterium smegmatis to inhibitory concentrations of BRACO-19 and TMPyP4 G4 ligands. The expression profile changed (FDR < 0.05, log2FC > |1|) for 822 (515↑; 307↓) genes in M. smegmatis in response to BRACO-19 and for 680 (339↑; 341↓) genes in response to TMPyP4. However, the analysis revealed no significant ligand-induced changes in the expression levels of G4-harboring genes, genes under G4-harboring promoters, or intergenic regions located on mRNA-like or template strands. Meanwhile, for the BRACO-19 ligand, we found significant changes in the replication and repair system genes, as well as in iron metabolism genes which is, undoubtedly, evidence of the induced stress. For the TMPyP4 compound, substantial changes were found in transcription factors and the arginine biosynthesis system, which may indicate multiple biological targets for this compound.
Collapse
|
15
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
16
|
Vilchèze C, Yan B, Casey R, Hingley-Wilson S, Ettwiller L, Jacobs WR. Commonalities of Mycobacterium tuberculosis Transcriptomes in Response to Defined Persisting Macrophage Stresses. Front Immunol 2022; 13:909904. [PMID: 35844560 PMCID: PMC9283954 DOI: 10.3389/fimmu.2022.909904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
As the goal of a bacterium is to become bacteria, evolution has imposed continued selections for gene expression. The intracellular pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis, has adopted a fine-tuned response to survive its host's methods to aggressively eradicate invaders. The development of microarrays and later RNA sequencing has led to a better understanding of biological processes controlling the relationship between host and pathogens. In this study, RNA-seq was performed to detail the transcriptomes of M. tuberculosis grown in various conditions related to stresses endured by M. tuberculosis during host infection and to delineate a general stress response incurring during persisting macrophage stresses. M. tuberculosis was subjected to long-term growth, nutrient starvation, hypoxic and acidic environments. The commonalities between these stresses point to M. tuberculosis maneuvering to exploit propionate metabolism for lipid synthesis or to withstand propionate toxicity whilst in the intracellular environment. While nearly all stresses led to a general shutdown of most biological processes, up-regulation of pathways involved in the synthesis of amino acids, cofactors, and lipids were observed only in hypoxic M. tuberculosis. This data reveals genes and gene cohorts that are specifically or exclusively induced during all of these persisting stresses. Such knowledge could be used to design novel drug targets or to define possible M. tuberculosis vulnerabilities for vaccine development. Furthermore, the disruption of specific functions from this gene set will enhance our understanding of the evolutionary forces that have caused the tubercle bacillus to be a highly successful pathogen.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bo Yan
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - Rosalyn Casey
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzie Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Laurence Ettwiller
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: William R. Jacobs Jr,
| |
Collapse
|
17
|
Warren GM, Meir A, Wang J, Patel DJ, Greene EC, Shuman S. Structure-activity relationships at a nucleobase-stacking tryptophan required for chemomechanical coupling in the DNA resecting motor-nuclease AdnAB. Nucleic Acids Res 2021; 50:952-961. [PMID: 34967418 PMCID: PMC8789073 DOI: 10.1093/nar/gkab1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks. The AdnB subunit hydrolyzes ATP to drive single-nucleotide steps of 3′-to-5′ translocation of AdnAB on the tracking DNA strand via a ratchet-like mechanism. Trp325 in AdnB motif III, which intercalates into the tracking strand and makes a π stack on a nucleobase 5′ of a flipped-out nucleoside, is the putative ratchet pawl without which ATP hydrolysis is mechanically futile. Here, we report that AdnAB mutants wherein Trp325 was replaced with phenylalanine, tyrosine, histidine, leucine, or alanine retained activity in ssDNA-dependent ATP hydrolysis but displayed a gradient of effects on DSB resection. The resection velocities of Phe325 and Tyr325 mutants were 90% and 85% of the wild-type AdnAB velocity. His325 slowed resection rate to 3% of wild-type and Leu325 and Ala325 abolished DNA resection. A cryo-EM structure of the DNA-bound Ala325 mutant revealed that the AdnB motif III peptide was disordered and the erstwhile flipped out tracking strand nucleobase reverted to a continuous base-stacked arrangement with its neighbors. We conclude that π stacking of Trp325 on a DNA nucleobase triggers and stabilizes the flipped-out conformation of the neighboring nucleoside that underlies formation of a ratchet pawl.
Collapse
Affiliation(s)
- Garrett M Warren
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Aviv Meir
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Juncheng Wang
- Structural Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
18
|
Clutch mechanism of chemomechanical coupling in a DNA resecting motor nuclease. Proc Natl Acad Sci U S A 2021; 118:2023955118. [PMID: 33836607 DOI: 10.1073/pnas.2023955118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The N-terminal motor domain of the AdnB subunit hydrolyzes ATP to drive rapid and processive 3' to 5' translocation of AdnAB on the tracking DNA strand. ATP hydrolysis is mechanically productive when oscillating protein domain motions synchronized with the ATPase cycle propel the DNA tracking strand forward by a single-nucleotide step, in what is thought to entail a pawl-and-ratchet-like fashion. By gauging the effects of alanine mutations of the 16 amino acids at the AdnB-DNA interface on DNA-dependent ATP hydrolysis, DNA translocation, and DSB resection in ensemble and single-molecule assays, we gained key insights into which DNA contacts couple ATP hydrolysis to motor activity. The results implicate AdnB Trp325, which intercalates into the tracking strand and stacks on a nucleobase, as the singular essential constituent of the ratchet pawl, without which ATP hydrolysis on ssDNA is mechanically futile. Loss of Thr663 and Thr118 contacts with tracking strand phosphates and of His665 with a nucleobase drastically slows the AdnAB motor during DSB resection. Our findings for AdnAB prompt us to analogize its mechanism to that of an automobile clutch.
Collapse
|
19
|
Sawyer EB, Phelan JE, Clark TG, Cortes T. A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Rep 2021; 34:108695. [PMID: 33535039 PMCID: PMC7856553 DOI: 10.1016/j.celrep.2021.108695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, can undergo prolonged periods of non-replicating persistence in the host. The mechanisms underlying this are not fully understood, but translational regulation is thought to play a role. A large proportion of mRNA transcripts expressed in M. tuberculosis lack canonical bacterial translation initiation signals, but little is known about the implications of this for fine-tuning of translation. Here, we perform ribosome profiling to characterize the translational landscape of M. tuberculosis under conditions of exponential growth and nutrient starvation. Our data reveal robust, widespread translation of non-canonical transcripts and point toward different translation initiation mechanisms compared to canonical Shine-Dalgarno transcripts. During nutrient starvation, patterns of ribosome recruitment vary, suggesting that regulation of translation in this pathogen is more complex than originally thought. Our data represent a rich resource for others seeking to understand translational regulation in bacterial pathogens.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jody E Phelan
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G Clark
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
20
|
Li X, Chen L, Liao J, Hui J, Li W, He ZG. A novel stress-inducible CmtR-ESX3-Zn 2+ regulatory pathway essential for survival of Mycobacterium bovis under oxidative stress. J Biol Chem 2020; 295:17083-17099. [PMID: 33033071 PMCID: PMC7863910 DOI: 10.1074/jbc.ra120.013017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/28/2020] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are an unavoidable host environmental cue for intracellular pathogens such as Mycobacterium tuberculosis and Mycobacterium bovis; however, the signaling pathway in mycobacteria for sensing and responding to environmental stress remains largely unclear. Here, we characterize a novel CmtR-Zur-ESX3-Zn2+ regulatory pathway in M. bovis that aids mycobacterial survival under oxidative stress. We demonstrate that CmtR functions as a novel redox sensor and that its expression can be significantly induced under H2O2 stress. CmtR can physically interact with the negative regulator Zur and de-represses the expression of the esx-3 operon, which leads to Zn2+ accumulation and promotion of reactive oxygen species detoxication in mycobacterial cells. Zn2+ can also act as an effector molecule of the CmtR regulator, using which the latter can de-repress its own expression for further inducing bacterial antioxidant adaptation. Consistently, CmtR can induce the expression of EsxH, a component of esx-3 operon involved in Zn2+ transportation that has been reported earlier, and inhibit phagosome maturation in macrophages. Lastly, CmtR significantly contributes to bacterial survival in macrophages and in the lungs of infected mice. Our findings reveal the existence of an antioxidant regulatory pathway in mycobacteria and provide novel information on stress-triggered gene regulation and its association with host-pathogen interaction.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Liao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiechen Hui
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zheng-Guo He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
21
|
The PafBC-mediated response sensitizes a bistable DNA damage response in Mycobacteria. J Theor Biol 2020; 508:110462. [PMID: 32890555 DOI: 10.1016/j.jtbi.2020.110462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Due to the genotoxically challenging environments in which they live in, Mycobacteria have a complex DNA damage repair system that is governed by two major DNA damage responses, namely, the LexA/RecA-dependent response and the newly characterized PafBC-mediated response (Müller et al., 2018). The LexA/RecA-dependent response is a well-known bistable response found in different types of bacteria, and the Mycobacteria-specific PafBC-mediated response interacts with and modifies the LexA/RecA-dependent response (Müller et al., 2018). The interaction between the LexA/RecA-dependent response and the PafBC-mediated response has not been characterized mathematically. Our analysis shows that the addition of the PafBC-mediated response sensitizes the overall DNA damage response, effectively lowering the DNA damage rate threshold for activation.
Collapse
|
22
|
Ostrik AA, Salina EG, Skvortsova YV, Grigorov AS, Bychenko OS, Kaprelyants AS, Azhikina TL. Small RNAs of Mycobacterium tuberculosis in Adaptation to Host-Like Stress Conditions in vitro. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Omics Approaches to Pesticide Biodegradation. Curr Microbiol 2020; 77:545-563. [DOI: 10.1007/s00284-020-01916-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
24
|
Goig GA, Torres-Puente M, Mariner-Llicer C, Villamayor LM, Chiner-Oms Á, Gil-Brusola A, Borrás R, Comas Espadas I. Towards next-generation diagnostics for tuberculosis: identification of novel molecular targets by large-scale comparative genomics. Bioinformatics 2020; 36:985-989. [PMID: 31580405 PMCID: PMC7703747 DOI: 10.1093/bioinformatics/btz729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Tuberculosis (TB) remains one of the main causes of death worldwide. The long and cumbersome process of culturing Mycobacterium tuberculosis complex (MTBC) bacteria has encouraged the development of specific molecular tools for detecting the pathogen. Most of these tools aim to become novel TB diagnostics, and big efforts and resources are invested in their development, looking for the endorsement of the main public health agencies. Surprisingly, no study has been conducted where the vast amount of genomic data available is used to identify the best MTBC diagnostic markers. RESULTS In this work, we used large-scale comparative genomics to identify 40 MTBC-specific loci. We assessed their genetic diversity and physiological features to select 30 that are good targets for diagnostic purposes. Some of these markers could be used to assess the physiological status of the bacilli. Remarkably, none of the most used MTBC markers is in our catalog. Illustrating the translational potential of our work, we develop a specific qPCR assay for quantification and identification of MTBC DNA. Our rational design of targeted molecular assays for TB could be used in many other fields of clinical and basic research. AVAILABILITY AND IMPLEMENTATION The database of non-tuberculous mycobacteria assemblies can be accessed at: 10.5281/zenodo.3374377. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Galo A Goig
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (CSIC), Valencia 46010, Spain
| | - Manuela Torres-Puente
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (CSIC), Valencia 46010, Spain
| | - Carla Mariner-Llicer
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (CSIC), Valencia 46010, Spain
| | - Luis M Villamayor
- Genomics and Health Unit, FISABIO Public Health (CSISP), Valencia 46035, Spain
| | - Álvaro Chiner-Oms
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (CSIC), Valencia 46010, Spain
| | - Ana Gil-Brusola
- Microbiology Service, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Rafael Borrás
- Microbiology Service, University Clinic Hospital, Valencia 46010, Spain
- Microbiology Department, School of Medicine, University of Valencia, Valencia 46010, Spain
| | - Iñaki Comas Espadas
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (CSIC), Valencia 46010, Spain
- CIBER in Epidemiology and Public Health, Madrid 28029, Spain
| |
Collapse
|
25
|
Girardin RC, McDonough KA. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of Mycobacterium tuberculosis. Mol Microbiol 2020; 113:504-520. [PMID: 31782837 PMCID: PMC7064933 DOI: 10.1111/mmi.14436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.
Collapse
Affiliation(s)
- Roxie C. Girardin
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
| | - Kathleen A. McDonough
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
- Wadsworth Center, New York State Department of HealthAlbanyNY
| |
Collapse
|
26
|
Mittal P, Sinha R, Kumar A, Singh P, Ngasainao MR, Singh A, Singh IK. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme. Curr Top Med Chem 2020; 20:390-408. [PMID: 31924156 DOI: 10.2174/1568026620666200110114322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is one such disease that has become a nuisance in the world scenario and one of the most deadly diseases of the current times. The etiological agent of tuberculosis, Mycobacterium tuberculosis (M. tb) kills millions of people each year. Not only 1.7 million people worldwide are estimated to harbor M. tb in the latent form but also 5 to 15 percent of which are expected to acquire an infection during a lifetime. Though curable, a long duration of drug regimen and expense leads to low patient adherence. The emergence of multi-, extensive- and total- drug-resistant strains of M. tb further complicates the situation. Owing to high TB burden, scientists worldwide are trying to design novel therapeutics to combat this disease. Therefore, to identify new drug targets, there is a growing interest in targeting DNA repair pathways to fight this infection. Thus, this review aims to explore DNA repair and damage tolerance as an efficient target for drug development by understanding M. tb DNA repair and tolerance machinery and its regulation, its role in pathogenesis and survival, mutagenesis, and consequently, in the development of drug resistance.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Rajesh Sinha
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Pooja Singh
- Public Health Research Institute, NJMS-Rutgers University, New Jersey, United States
| | - Moses Rinchui Ngasainao
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
27
|
Müller AU, Imkamp F, Weber-Ban E. The Mycobacterial LexA/RecA-Independent DNA Damage Response Is Controlled by PafBC and the Pup-Proteasome System. Cell Rep 2019; 23:3551-3564. [PMID: 29924998 DOI: 10.1016/j.celrep.2018.05.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Mycobacteria exhibit two DNA damage response pathways: the LexA/RecA-dependent SOS response and a LexA/RecA-independent pathway. Using a combination of transcriptomics and genome-wide binding site analysis, we demonstrate that PafBC (proteasome accessory factor B and C), encoded in the Pup-proteasome system (PPS) gene locus, is the transcriptional regulator of the predominant LexA/RecA-independent pathway. Comparison of the resulting PafBC regulon with the DNA damage response of Mycobacterium smegmatis reveals that the majority of induced DNA repair genes are upregulated by PafBC. We further demonstrate that RecA, a member of the PafBC regulon and principal regulator of the SOS response, is degraded by the PPS when DNA damage stress has been overcome. Our results suggest a model for the regulation of the mycobacterial DNA damage response that employs the concerted action of PafBC as master transcriptional activator and the PPS for removal of DNA repair proteins to maintain a temporally controlled stress response.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| | - Frank Imkamp
- University of Zurich, Institute of Medical Microbiology, 8006 Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
29
|
Castrejón-Godínez ML, Ortiz-Hernández ML, Salazar E, Encarnación S, Mussali-Galante P, Tovar-Sánchez E, Sánchez-Salinas E, Rodríguez A. Transcriptional analysis reveals the metabolic state of Burkholderia zhejiangensis CEIB S4-3 during methyl parathion degradation. PeerJ 2019; 7:e6822. [PMID: 31086743 PMCID: PMC6486813 DOI: 10.7717/peerj.6822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia zhejiangensis CEIB S4-3 has the ability to degrade methyl parathion (MP) and its main hydrolysis byproduct p-nitrophenol (PNP). According to genomic data, several genes related with metabolism of MP and PNP were identified in this strain. However, the metabolic state of the strain during the MP degradation has not been evaluated. In the present study, we analyzed gene expression changes during MP hydrolysis and PNP degradation through a transcriptomic approach. The transcriptional analysis revealed differential changes in the expression of genes involved in important cellular processes, such as energy production and conversion, transcription, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, among others. Transcriptomic data also exhibited the overexpression of both PNP-catabolic gene clusters (pnpABA′E1E2FDC and pnpE1E2FDC) present in the strain. We found and validated by quantitative reverse transcription polymerase chain reaction the expression of the methyl parathion degrading gene, as well as the genes responsible for PNP degradation contained in two clusters. This proves the MP degradation pathway by the strain tested in this work. The exposure to PNP activates, in the first instance, the expression of the transcriptional regulators multiple antibiotic resistance regulator and Isocitrate Lyase Regulator (IclR), which are important in the regulation of genes from aromatic compound catabolism, as well as the expression of genes that encode transporters, permeases, efflux pumps, and porins related to the resistance to multidrugs and other xenobiotics. In the presence of the pesticide, 997 differentially expressed genes grouped in 104 metabolic pathways were observed. This report is the first to describe the transcriptomic analysis of a strain of B. zhejiangensis during the biodegradation of PNP.
Collapse
Affiliation(s)
| | - Ma Laura Ortiz-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Emmanuel Salazar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
30
|
Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol 2019; 103:3597-3614. [PMID: 30810776 PMCID: PMC6469627 DOI: 10.1007/s00253-019-09697-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/26/2022]
Abstract
This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, AIMMS, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Briffotaux J, Liu S, Gicquel B. Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol 2019; 10:249. [PMID: 30842759 PMCID: PMC6391361 DOI: 10.3389/fmicb.2019.00249] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics can stimulate or depress gene expression in bacteria. The analysis of transcriptional responses of Mycobacterium to antimycobacterial compounds has improved our understanding of the mode of action of various drug classes and the efficacy and effect of such compounds on the global metabolism of Mycobacterium. This approach can provide new insights for known antibiotics, for example those currently used for tuberculosis treatment, as well as help to identify the mode of action and predict the targets of new compounds identified by whole-cell screening assays. In addition, changes in gene expression profiles after antimycobacterial treatment can provide information about the adaptive ability of bacteria to escape the effects of antibiotics and allow monitoring of the physiology of the bacteria during treatment. Genome-wide expression profiling also makes it possible to pinpoint genes differentially expressed between drug sensitive Mycobacterium and multidrug-resistant clinical isolates. Finally, genes involved in adaptive responses and drug tolerance could become new targets for improving the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shengyuan Liu
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Brigitte Gicquel
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
33
|
Singh A, Vijayan M, Varshney U. Distinct properties of a hypoxia specific paralog of single stranded DNA binding (SSB) protein in mycobacteria. Tuberculosis (Edinb) 2018. [PMID: 29523318 DOI: 10.1016/j.tube.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to the canonical Single Stranded DNA Binding (SSBa) protein, many bacterial species, including mycobacteria, have a paralogous SSBb. The SSBb proteins have not been well characterized. While in B. subtilis, SSBb has been shown to be involved in genetic recombination; in S. coelicolor it mediates chromosomal segregation during sporulation. Sequence analysis of SSBs from mycobacterial species suggests low conservation of SSBb proteins, as compared to the conservation of SSBa proteins. Like most bacterial SSB proteins, M. smegmatis SSBb (MsSSBb) forms a stable tetramer. However, solution studies indicate that MsSSBb is less stable to thermal and chemical denaturation than MsSSBa. Also, in contrast to the 5-20 fold differences in DNA binding affinity between paralogous SSBs in other organisms, MsSSBb is only about two-fold poorer in its DNA binding affinity than MsSSBa. The expression levels of ssbB gene increased during UV and hypoxic stresses, while the levels of ssbA expression declined. A direct physical interaction of MsSSBb and RecA, mediated by the C-terminal tail of MsSSBb, was also established. The results obtained in this study indicate a role of MsSSBb in recombination repair during stress.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advamced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
34
|
Perrone F, De Siena B, Muscariello L, Kendall SL, Waddell SJ, Sacco M. A Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria. Front Microbiol 2017; 8:2039. [PMID: 29109706 PMCID: PMC5660060 DOI: 10.3389/fmicb.2017.02039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c), was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress.
Collapse
Affiliation(s)
- Filomena Perrone
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Sharon L Kendall
- Department of Pathobiology and Population Science, Royal Veterinary College, London, United Kingdom
| | - Simon J Waddell
- Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|