1
|
Hunsucker CG, Herzog C, Reeves JT, Wilder SM, McMurry ST. Comparing Nutrient Intake by Wolf Spiders ( Hogna carolinensis) Consuming Frogs ( Acris blanchardi) and Crickets ( Gryllodes sigillatus). Ecol Evol 2025; 15:e71045. [PMID: 40027411 PMCID: PMC11872198 DOI: 10.1002/ece3.71045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
Herbivores and omnivores have been shown to regulate their intake of nutrients to a balance that maximizes fitness. Predators were traditionally believed to have less need for dietary regulation than herbivores, given the higher nutritional quality of animal tissue compared to plants. However, some predators, like spiders, may feed on diverse prey that could vary substantially in nutrient content and, hence, their potential quality as food items. This study compared the nutrient intake of Carolina wolf spiders (Hogna carolinensis ) when they fed on cricket frogs (Acris blanchardi) and crickets (Gryllodes sigillatus ). In diet trials, spiders were fasted prior to being offered a frog or cricket for consumption. Then, prey remains and nonconsumed (control) frog and cricket samples were analyzed for lipid, lean tissue, and elemental content. Results show that frogs and crickets vary substantially in the nutrients that they provide to spiders. Frogs offer less lipids but more lean tissue compared to crickets. Additionally, spiders consumed a greater mass of micronutrients when feeding on frogs compared to crickets. While some evidence suggests that lipids may be limited for some spider species, frogs may still be beneficial to spiders' diets because they offer an abundance of lean tissue. Future research should examine how environmental and physiological factors influence the nutritional quality of prey for predators.
Collapse
Affiliation(s)
| | - Colton Herzog
- Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Jamie T. Reeves
- Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Shawn M. Wilder
- Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Scott T. McMurry
- Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
2
|
Greco G, Misseroni D, Castellucci F, Di Novo NG, Pugno NM. Functionally-Graded Serrated Fangs Allow Spiders to Mechanically Cut Silk, Carbon and Kevlar Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406079. [PMID: 39303205 PMCID: PMC11600254 DOI: 10.1002/advs.202406079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Before humans and allegedly any animal group, spiders developed "functionally graded toothed blades" that cut one of the toughest biological materials: silk. Here, this work reveals the importance of micro-structured serrations in spiders' fangs that allow these animals to cut silk and artificial high-performance fibers, such as carbon or Kevlar. The importance of serrations revolves around the stress concentration at the interface between the fang and the fibers, resulting in a cutting efficiency superior to that of a razor blade. This efficiency is increased by the presence of pretension in the fibers and is high also for fibers with different diameters like silk, because of the serration grading that allows a smart positioning of the fiber in the optimal cutting condition. This work proposes that when the silk fiber is grasped by the fang, it slides along the serrated edge till it gets locked in the serration with a comparable size, where the load to cut is minimal. These results provide a new perspective on cutting mechanisms and set the roots for spider fang-inspired cutting tools.
Collapse
Affiliation(s)
- Gabriele Greco
- Department of Animal BiosciencesSwedish University of Agricultural SciencesUppsala750 07Sweden
- Laboratory for Bio‐Inspired, BionicNanoMetaMaterials & MechanicsDepartment of CivilEnvironmental and Mechanical EngineeringUniversity of TrentoVia Mesiano, 77Trento38123Italy
| | - Diego Misseroni
- Laboratory for the Design of Reconfigurable Metamaterials & StructuresDepartment of CivilEnvironmental and Mechanical EngineeringUniversity of TrentoVia Mesiano, 77Trento38123Italy
| | - Filippo Castellucci
- Department of BiologicalGeological and Environmental Sciences—University of Bolognavia Selmi 3Bologna40126Italy
- Zoology SectionNatural History Museum of Denmark—University of CopenhagenUniversitetsparken 15Copenhagen2100Denmark
| | - Nicolò G. Di Novo
- Laboratory for Bio‐Inspired, BionicNanoMetaMaterials & MechanicsDepartment of CivilEnvironmental and Mechanical EngineeringUniversity of TrentoVia Mesiano, 77Trento38123Italy
| | - Nicola M. Pugno
- Laboratory for Bio‐Inspired, BionicNanoMetaMaterials & MechanicsDepartment of CivilEnvironmental and Mechanical EngineeringUniversity of TrentoVia Mesiano, 77Trento38123Italy
- School of Engineering and Materials ScienceQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
3
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
4
|
Yang MH, Cai WZ, Tembrock LR, Zhang MM, Zhang MY, Zhao Y, Yang Z. Transcriptomic analyses reveals a diverse venom composition in Agelena limbata (Araneae: Agelenaidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101303. [PMID: 39096758 DOI: 10.1016/j.cbd.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Spider venom is a natural source of diverse biomolecules, but due to technical limitations, only a small fraction has been studied. With the advancement of omics technologies, research on spider venom has broadened, greatly promoting systematic studies of spider venom. Agelena limbata is a common spider found in vegetation, known for constructing funnel-shaped webs, and feeding on insects such as Diptera and Homoptera. However, due to its small size and the difficulty in obtaining venom, the composition of Agelena limbata venom has never been studied. In this study, a transcriptomics approach was used to analyze the toxin components in the venom of Agelena limbata, resulting in the identification of 28 novel toxin-like sequences and 24 peptidases. Based on sequence similarity and differences in cysteine motifs, the 28-novel toxin-like sequences were classified into 10 superfamilies. According to the results annotated in the database, the 24 peptidases were divided into six distinct families, with the serine protease family being the most common. A phylogenetic tree was constructed using the toxin-like sequences of Agelena limbata along with Psechrus triangulus and Hippasa lycosina. An analysis of the structural domains and motifs of Agelena limbata was also conducted. The results indicated that Agelena limbata is more distantly related to the other two species of funnel-web spiders, and that the toxin superfamily IX has a unique function compared to the other superfamilies. This study reveals the components of the Agelena limbata venom, deepening our understanding of it, and through bioinformatics analysis, has identified unique functions of the toxin superfamilies, providing a scientific basis for the development of bioactive drugs in the future.
Collapse
Affiliation(s)
- Meng-Hui Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Wen-Zheng Cai
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Meng-Meng Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Meng-Ying Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| |
Collapse
|
5
|
Sawyer RT. Biology, morphology and taxonomy of a snail-feeding leech from North Carolina, USA, provisionally identified as Helobdella lineata (Verrill, 1874) (Glossiphoniidae): First evidence for extra-oral digestion in the Hirudinea. Zootaxa 2024; 5453:151-182. [PMID: 39646987 DOI: 10.11646/zootaxa.5453.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 12/10/2024]
Abstract
This is a twelve-year longitudinal study of a common snail-feeding leech indigenous to the Albemarle region of northeastern North Carolina, USA. Based on contents of this paper the species is provisionally identified as Helobdella lineata (Verrill, 1874). For all practical purposes this is the first comprehensive description of this species. Particular attention is focused on variability of its dorsal papillae and variable pigment patterns within the Albemarle population. A total of 404 specimens were collected from 25 collecting stations in disparate parts of the region. Specialised leech traps set in these swamps were monitored regularly yielding unprecedented information on its morphology, ecology and general biology. This study recognises four principal pigment variants within the Albemarle region which, based on dissections, appear to represent a single biological species. Moreover, limited observations suggest that pigment variability is attributable primarily to adaptive camouflage to local surroundings. Methodologically it is emphasized in this paper that variable traits cannot serve as key taxonomic anchors. A proposed alternative diagnosis for identifying H. lineata is based entirely on more rigorous, non-variable characters. A significant finding is that H. lineata is most meaningfully understood in terms of specialist adaptation to feeding on snails. Furthermore, it is proposed that such adaptation required a major evolutionary shift within the foregut of this species. Evidence is presented that H. lineata uses uniquely large salivary cells to dissolves solid snail tissue into a semi-fluid state before ingestion via a specialised proboscis. This is the first example of extra-oral digestion in the Hirudinea.
Collapse
Affiliation(s)
- Roy T Sawyer
- Medical Leech Museum; 2 Bryngwili Road; Hendy; Pontarddulais; Swansea SA4 0XT; UK.
| |
Collapse
|
6
|
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2023; 29:35. [PMID: 38202621 PMCID: PMC10779620 DOI: 10.3390/molecules29010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.
Collapse
Affiliation(s)
- Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gang Guo
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming-Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| |
Collapse
|
7
|
Herzog C, Reeves JT, Ipek Y, Jilling A, Hawlena D, Wilder SM. Multi-elemental consumer-driven nutrient cycling when predators feed on different prey. Oecologia 2023; 202:729-742. [PMID: 37552361 DOI: 10.1007/s00442-023-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.
Collapse
Affiliation(s)
- Colton Herzog
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA.
| | - Jacob T Reeves
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Yetkin Ipek
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, USA
| | - Dror Hawlena
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
8
|
Czerwonka AE, Sawadro MK, Brożek J, Babczyńska AI. Immunostimulation of Parasteatoda tepidariorum (Araneae: Theridiidae) in juvenile and adult stages. Immunity reactions to injury with foreign body and Bacillus subtilis infection. PeerJ 2023; 11:e15337. [PMID: 37483985 PMCID: PMC10358339 DOI: 10.7717/peerj.15337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 07/25/2023] Open
Abstract
To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.
Collapse
|
9
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Digestive enzymes and sphingomyelinase D in spiders without venom (Uloboridae). Sci Rep 2023; 13:2661. [PMID: 36792649 PMCID: PMC9932164 DOI: 10.1038/s41598-023-29828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Spiders have distinct predatory behaviours selected along Araneae's evolutionary history but are mainly based on the use of venom for prey paralysis. Uloboridae spiders have lost their venom glands secondarily during evolution. Because of this, they immobilise their prey by extensively wrapping, and digestion starts with the addition of digestive fluid. During the extra-oral digestion, the digestive fluid liquefies both the prey and the AcSp2 spidroins from the web fibres. Despite the efficiency of this process, the cocktail of enzymes involved in digestion in Uloboridae spiders remains unknown. In this study, the protein content in the midgut of Uloborus sp. was evaluated through enzymatic, proteomic, and phylogenetic analysis. Hydrolases such as peptidases (endo and exopeptidases: cysteine, serine, and metallopeptidases), carbohydrases (alpha-amylase, chitinase, and alpha-mannosidase), and lipases were biochemically assayed, and 50 proteins (annotated as enzymes, structural proteins, and toxins) were identified, evidencing the identity between the digestive enzymes present in venomous and non-venomous spiders. Even enzymes thought to be unique to venom, including enzymes such as sphingomyelinase D, were found in the digestive system of non-venomous spiders, suggesting a common origin between digestive enzymes and enzymes present in venoms. This is the first characterization of the molecules involved in the digestive process and the midgut protein content of a non-venomous spider.
Collapse
|
11
|
Neto OBS, Valladão R, Coelho GR, Dias R, Pimenta DC, Lopes AR. Spiders' digestive system as a source of trypsin inhibitors: functional activity of a member of atracotoxin structural family. Sci Rep 2023; 13:2389. [PMID: 36765114 PMCID: PMC9918498 DOI: 10.1038/s41598-023-29576-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Spiders are important predators of insects and their venoms play an essential role in prey capture. Spider venoms have several potential applications as pharmaceutical compounds and insecticides. However, transcriptomic and proteomic analyses of the digestive system (DS) of spiders show that DS is also a rich source of new peptidase inhibitor molecules. Biochemical, transcriptomic and proteomic data of crude DS extracts show the presence of molecules with peptidase inhibitor potential in the spider Nephilingis cruentata. Therefore, the aims of this work were to isolate and characterize molecules with trypsin inhibitory activity. The DS of fasting adult females was homogenized under acidic conditions and subjected to heat treatment. After that, samples were submitted to ion exchange batch and high-performance reverse-phase chromatography. The fractions with trypsin inhibitory activity were confirmed by mass spectrometry, identifying six molecules with inhibitory potential. The inhibitor NcTI (Nephilingis cruentata trypsin inhibitor) was kinetically characterized, showing a KD value of 30.25 nM ± 8.13. Analysis of the tertiary structure by molecular modeling using Alpha-Fold2 indicates that the inhibitor NcTI structurally belongs to the MIT1-like atracotoxin family. This is the first time that a serine peptidase inhibitory function is attributed to this structural family and the inhibitor reactive site residue is identified. Sequence analysis indicates that these molecules may be present in the DS of other spiders and could be associated to the inactivation of prey trypsin (serine peptidase) ingested by the spiders.
Collapse
Affiliation(s)
- Oscar Bento Silva Neto
- Laboratory of Biochemistry, Instituto Butantan, São Paulo, 05503900, Brazil.,Programa Interunidades (USP, Instituto Butantan, IPT) de pós-graduação em Biotecnologia, Universidade de São Paulo, São Paulo, 05508000, Brazil
| | - Rodrigo Valladão
- Laboratory of Biochemistry, Instituto Butantan, São Paulo, 05503900, Brazil.,Programa Interunidades (USP, Instituto Butantan, IPT) de pós-graduação em Biotecnologia, Universidade de São Paulo, São Paulo, 05508000, Brazil
| | | | - Renata Dias
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiás, Brazil
| | | | - Adriana Rios Lopes
- Laboratory of Biochemistry, Instituto Butantan, São Paulo, 05503900, Brazil. .,Programa Interunidades (USP, Instituto Butantan, IPT) de pós-graduação em Biotecnologia, Universidade de São Paulo, São Paulo, 05508000, Brazil.
| |
Collapse
|
12
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
13
|
Perrotta BG, Kidd KA, Walters DM. PCB exposure is associated with reduction of endosymbionts in riparian spider microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156726. [PMID: 35716742 DOI: 10.1016/j.scitotenv.2022.156726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities, including endosymbionts, play diverse and critical roles in host biology and reproduction, but contaminant exposure may cause an imbalance in the microbiome composition with subsequent impacts on host health. Here, we examined whether there was a significant alteration of the microbiome community within two taxa of riparian spiders (Tetragnathidae and Araneidae) from a site with historical polychlorinated biphenyl (PCB) contamination in southern Ontario, Canada. Riparian spiders specialize in the predation of adult aquatic insects and, as such, their contaminant levels closely track those of nearby aquatic ecosystems. DNA from whole spiders from sites with either low or high PCB contamination was extracted, and spider microbiota profiled by partial 16S rRNA gene amplicon sequencing. The most prevalent shift in microbial communities we observed was a large reduction in endosymbionts in spiders at the high PCB site. The abundance of endosymbionts at the high PCB site was 63 % and 98 % lower for tetragnathids and araneids, respectively, than at the low PCB site. Overall, this has potential implications for spider reproductive success and food webs, as riparian spiders are critical gatekeepers of energy and material fluxes at the land-water interface.
Collapse
Affiliation(s)
- Brittany G Perrotta
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Contractor, U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada.
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| |
Collapse
|
14
|
Trabuco Amaral D, Mitani Y, Aparecida Silva Bonatelli I, Cerri R, Ohmiya Y, Viviani V. Genome analysis of Phrixothrix hirtus (Phengodidae) railroad worm shows the expansion of odorant-binding gene families and positive selection on morphogenesis and sex determination genes. Gene X 2022; 850:146917. [PMID: 36174905 DOI: 10.1016/j.gene.2022.146917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022] Open
Abstract
Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growths and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Programa de Pós-Graduação em Biotecnociência, Centro de Ciências Naturais e Humanas. Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | - Ricardo Cerri
- Department of Computational Science, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Ikeda-Osaka, Japan; Osaka Institute of Technology, OIT, Osaka, Japan
| | - Vadim Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil.
| |
Collapse
|
15
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
16
|
do Nascimento SM, de Oliveira UC, Nishiyama-Jr MY, Tashima AK, Silva Junior PID. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1878226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Soraia Maria do Nascimento
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| | - Ursula Castro de Oliveira
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| |
Collapse
|
17
|
The Enzymatic Core of Scorpion Venoms. Toxins (Basel) 2022; 14:toxins14040248. [PMID: 35448857 PMCID: PMC9030722 DOI: 10.3390/toxins14040248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022] Open
Abstract
Enzymes are an integral part of animal venoms. Unlike snakes, in which enzymes play a primary role in envenomation, in scorpions, their function appears to be ancillary in most species. Due to this, studies on the diversity of scorpion venom components have focused primarily on the peptides responsible for envenomation (toxins) and a few others (e.g., antimicrobials), while enzymes have been overlooked. In this work, a comprehensive study on enzyme diversity in scorpion venoms was performed by transcriptomic and proteomic techniques. Enzymes of 63 different EC types were found, belonging to 330 orthogroups. Of them, 24 ECs conform the scorpion venom enzymatic core, since they were determined to be present in all the studied scorpion species. Transferases and lyases are reported for the first time. Novel enzymes, which can play different roles in the venom, including direct toxicity, as venom spreading factors, activators of venom components, venom preservatives, or in prey pre-digestion, were described and annotated. The expression profile for transcripts coding for venom enzymes was analyzed, and shown to be similar among the studied species, while being significantly different from their expression pattern outside the telson.
Collapse
|
18
|
Macedo KWR, Costa LJDL, de Souza JO, de Vasconcelos IA, de Castro JS, de Santana CJC, Magalhães ACM, Castro MDS, Pires OR. Brazilian Theraphosidae: a toxicological point of view. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210004. [PMID: 34868282 PMCID: PMC8610171 DOI: 10.1590/1678-9199-jvatitd-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
The Theraphosidae family includes the largest number of species of the
Mygalomorphae infraorder, with hundreds of species currently catalogued.
However, there is a huge lack on physiologic and even ecologic information
available, especially in Brazil, which is the most biodiverse country in the
world. Over the years, spiders have been presented as a source of multiple
biologically active compounds with basic roles, such as primary defense against
pathogenic microorganisms or modulation of metabolic pathways and as specialized
hunters. Spider venoms also evolved in order to enable the capture of prey by
interaction with a diversity of molecular targets of interest, raising their
pharmaceutical potential for the development of new drugs. Among the activities
found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae
there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as
properties related to proteinase action and neuromuscular blockage modulated by
ionic voltage-gated channel interaction. These characteristics are present in
different species from multiple genera, which is strong evidence of the
important role in spider survival. The present review aims to compile the main
results of studies from the last decades on Brazilian Theraphosidae with special
focus on results obtained with the crude venom or compounds isolated from both
venom and hemocytes, and their physiological and chemical characterization.
Collapse
Affiliation(s)
- Keven Wender Rodrigues Macedo
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Lucas Jeferson de Lima Costa
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Jéssica Oliveira de Souza
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Isadora Alves de Vasconcelos
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Jessica Schneider de Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil.,Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Ana Carolina Martins Magalhães
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Mariana de Souza Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil.,Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| | - Osmindo Rodrigues Pires
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
19
|
Fuzita FJ, Palmisano G, Pimenta DC, Terra WR, Ferreira C. A proteomic approach to identify digestive enzymes, their exocytic and microapocrine secretory routes and their compartmentalization in the midgut of Spodoptera frugiperda. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110670. [PMID: 34438074 DOI: 10.1016/j.cbpb.2021.110670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
A proteomic approach was used to identify the digestive enzymes secreted by exocytosis and by microapocrine vesicles and enzyme midgut compartmentalization in Spodoptera frugiperda larvae. For this, proteomic analyses were performed in isolated midgut enterocyte microvillar membrane, in a fraction enriched in microapocrine vesicles (separated in soluble and membrane fractions), in the washings of the peritrophic membrane to isolate its loosely- and tightly-bound proteins, and in the peritrophic membrane contents. PM washings correspond to proteins extracted from the mucus layer surrounding PM. Serine endopeptidases (trypsins, chymotrypsins and serine endopeptidase homologs that have substitutions in the catalytic residues) and lipases are mainly secreted by exocytosis. Aminopeptidases are mainly microvillar enzymes and some are secreted membrane-bound to microapocrine vesicles, whereas carboxypeptidase isoforms follow different secretory routes. The results also showed that most polymer hydrolases (such as amylase and endopeptidases) are not retained in the ectoperitrophic fluid (found in PM washings but absent from PM contents). On the contrary, most enzymes involved in intermediate digestion (exemplified by carboxypeptidase and aminopeptidase) do not pass through the peritrophic membrane. Finally, the data revealed that the protein composition of PM includes peritrophins classified as peritrophic membrane proteins, PMP, and chitin deacetylase.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
20
|
Costa-Leonardo AM, da Silva IB, Janei V, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, Palma MS. Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell Tissue Res 2021; 385:603-621. [PMID: 33961129 DOI: 10.1007/s00441-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Salivary glands are omnipresent in termites and occur in all developmental stages and castes. They function to produce, store, and secrete compounds, ranging from a feeding function to defensive mechanisms. Here, we provide a complete morphological overview of the salivary glands in the soldierless species Ruptitermes reconditus and R. xanthochiton, and the first proteomic profile of the salivary glands in a Neotropical Apicotermitinae representative, R. reconditus. Salivary glands from both species were composed of several acini, roughly spherical structures composed of two types of central cells (type I and II) and peripheral parietal cells, as well as transporting ducts and two salivary reservoirs. Central cells were richly supplied with electron-lucent secretory vesicles and rough endoplasmic reticulum, a feature of protein-secreting cells. Parietal cells of Ruptitermes spp. had conspicuous characteristics such as electron-lucent secretory vesicles surrounded by mitochondria and well-developed microvilli. Moreover, different individuals showed variation in the secretory cycle of salivary acini, which may be related to polyethism. Ultrastructural analysis evidenced a high synthesis of secretion and also the occurrence of lysosomes and autophagic structures in central cells. Proteomic analysis of the salivary glands revealed 483 proteins divided into functional groups, highlighting toxins/defensins and compounds related to alarm communication and colony asepsis. Soldierless termites are quite successful, especially due to morphological adaptations of the workers, including unknown modifications of exocrine glands. Thus, according to our morphological and proteomic findings, we discuss the potential roles of the salivary gland secretion in different social aspects of the sampled species.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Silvana Beani Poiani
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Franciele Grego Esteves
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
21
|
Cantón PE, Bonning BC. Extraoral digestion: outsourcing the role of the hemipteran midgut. CURRENT OPINION IN INSECT SCIENCE 2020; 41:86-91. [PMID: 32823203 DOI: 10.1016/j.cois.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Extraoral digestion allows for breakdown of dietary components before they reach the midgut for final enzymatic degradation and absorption. In the Hemiptera, this is achieved by the secretion of enzyme-rich fluids from the salivary gland, with the combination of protein and mRNA from these tissues termed the sialome. Separate channels within the hemipteran stylets allow for secretion of saliva and ingestion of predigested material in a non-reflux mechanism. Both feeding mode and diet type influence the composition of the hemipteran sialome, as illustrated by 1) differences in protease abundance between hematophagous and predatory heteropteran sialomes, 2) diet specific aminopeptidase-N genes among aphid biotypes, and 3) adaptation-induced sialome variation in related cicada populations. Despite challenges associated with incomplete genome annotation, -omics analysis of the sialomes of diverse hemipteran species will enhance understanding of both sialome function and the evolution of extraoral digestion within the order.
Collapse
Affiliation(s)
| | - Bryony C Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, USA.
| |
Collapse
|
22
|
Walker R, Wilder SM, González AL. Temperature dependency of predation: Increased killing rates and prey mass consumption by predators with warming. Ecol Evol 2020; 10:9696-9706. [PMID: 33005340 PMCID: PMC7520176 DOI: 10.1002/ece3.6581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/10/2020] [Accepted: 05/31/2020] [Indexed: 01/10/2023] Open
Abstract
Temperature dependency of consumer-resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature-driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb-weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid-rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low- or high-elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species-specific differences in their hunting behavior and sensitivity to temperature.
Collapse
Affiliation(s)
- Ryan Walker
- Department of BiologyRutgers UniversityCamdenNJUSA
| | - Shawn M. Wilder
- Department of Integrative BiologyOklahoma State UniversityStillwaterOKUSA
| | - Angélica L. González
- Department of BiologyRutgers UniversityCamdenNJUSA
- Center for Computational and Integrative BiologyRutgers UniversityCamdenNJUSA
| |
Collapse
|
23
|
Esteves FG, Dos Santos-Pinto JRA, Ferro M, Sialana FJ, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Lubec G, Palma MS. Revealing the Venomous Secrets of the Spider's Web. J Proteome Res 2020; 19:3044-3059. [PMID: 32538095 DOI: 10.1021/acs.jproteome.0c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Collapse
Affiliation(s)
- Franciele Grego Esteves
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Milene Ferro
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mauricio Bacci Júnior
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Gert Lubec
- Paracelsus Medical University, A 5020 Salzburg, Austria
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
24
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
25
|
Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics 2020; 21:34. [PMID: 31924169 PMCID: PMC6954513 DOI: 10.1186/s12864-019-6396-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). RESULTS Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. CONCLUSION The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maddalena Avolio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Infrastrutture di Ricerca per le Risorse Biologiche Marine, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Donato Mancini
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Pietro Pucci
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| |
Collapse
|
26
|
Medina-Santos R, Guerra-Duarte C, de Almeida Lima S, Costal-Oliveira F, Alves de Aquino P, Oliveira do Carmo A, Ferreyra CB, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C. Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019; 167:81-92. [PMID: 31476328 DOI: 10.1016/j.biochi.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
Abstract
Loxosceles spiders are found in almost all countries of South America. In Peru, Loxosceles laeta species is the main responsible for the accidents caused by poisonous animals, being known as "killer spiders", due to the large number of fatal accidents observed. Astacin-like metalloproteases, named LALPs (Loxosceles astacin-like metalloproteases) are highly expressed in Loxosceles spiders venom gland. These proteases may be involved in hemorrhage and venom spreading, being relevant to the envenoming proccess. Thus, the aim of this work was to analyze Peruvian L. laeta venom gland transcripts using bioinformatics tools, focusing on LALPs. A cDNA library from Peruvian L. laeta venom glands was constructed and sequenced by MiSeq (Illumina) sequencer. After assembly, the resulting sequences were annotated, seeking out for similarity with previously described LALPs. Nine possible LALPs isoforms from Peruvian L. laeta venom were identified and the results were validated by in silico and in vitro experiments. This study contributes to a better understanding of the molecular diversity of Loxosceles venom and provide insights about the action of LALPs.
Collapse
Affiliation(s)
- Raíssa Medina-Santos
- Biochemistry and Immunology Department, Federal University of Minas Gerais, Brazil; Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | | | | | | | - César Bonilla Ferreyra
- Univesidad Nacional Mayor de San Marcos, Facultad de Odontología, Lima, Peru; Instituto Nacional de Salud, Lima, Peru
| | | | | | | |
Collapse
|
27
|
Worker Defensive Behavior Associated with Toxins in the Neotropical Termite Neocapritermes braziliensis (Blattaria, Isoptera, Termitidae, Termitinae). J Chem Ecol 2019; 45:755-767. [PMID: 31440960 DOI: 10.1007/s10886-019-01098-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Termite societies are abundant in the tropics, and are therefore exposed to multiple enemies and predators, especially during foraging activity. Soldiers constitute a specialized defensive caste, although workers also participate in this process, and even display suicidal behavior, which is the case with the species Neocapritermes braziliensis. Here we describe the morphology, mechanisms of action, and proteomics of the salivary weapon in workers of this species, which due to the autothysis of the salivary glands causes their body rupture, in turn releasing a defensive secretion, observed during aggressiveness bioassays. Salivary glands are paired, composed of two translucent reservoirs, ducts and a set of multicellular acini. Histological and ultrastructural techniques showed that acini are composed of two types of central cells, and small parietal cells located in the acinar periphery. Type I central cells were abundant and filled with a large amount of secretion, while type II central cells were scarce and presented smaller secretion. Parietal cells were often paired and devoid of secretion. The gel-free proteomic approach (shotgun) followed by mass spectrometry revealed 235 proteins in the defensive secretion, which were classified into functional groups: (i) toxins and defensins, (ii) folding/conformation and post-translational modifications, (iii) salivary gland detoxification, (iv) housekeeping proteins and (v) uncharacterized and hypothetical proteins. We highlight the occurrence of neurotoxins previously identified in arachnid venoms, which are novelties for termite biology, and contribute to the knowledge regarding the defense strategies developed by termite species from the Neotropical region.
Collapse
|
28
|
Zobel-Thropp PA, Mullins J, Kristensen C, Kronmiller BA, David CL, Breci LA, Binford GJ. Not so Dangerous After All? Venom Composition and Potency of the Pholcid (Daddy Long-Leg) Spider Physocyclus mexicanus. Front Ecol Evol 2019; 7:256. [PMID: 33235882 PMCID: PMC7682650 DOI: 10.3389/fevo.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 µg/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.
Collapse
Affiliation(s)
| | - Jennifer Mullins
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Cynthia L. David
- Arizona Proteomics Consortium, University of Arizona, Tucson, AZ, United States
| | - Linda A. Breci
- Arizona Proteomics Consortium, University of Arizona, Tucson, AZ, United States
| | - Greta J. Binford
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| |
Collapse
|
29
|
Koemel NA, Barnes CL, Wilder SM. Metabolic and behavioral responses of predators to prey nutrient content. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:25-31. [PMID: 31009622 DOI: 10.1016/j.jinsphys.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Predators feed on a diversity of prey that can vary widely in nutrient content. While prey nutrient content is known to have important consequences for life history traits, less is known about how it affects physiology and behavior. The purpose of this study was to test how diet affected the physiology and behavior of the wolf spider Hogna carolinensis. We hypothesized that higher protein intake would result in a lower metabolic rate due to less energy intake. Further, we also expected the high protein group to exhibit increased activity levels and aggression in an attempt to increase energy intake. Spiders were maintained on three different treatment diets in order to simulate prey with differing macronutrient composition: high protein, intermediate, and high lipid. Spider respiration was measured to quantify the baseline metabolic rate (SMR), digestive metabolic rate (SDA), and active metabolic rate (AMR). We found no significant effect of diet on metabolic rates. However, the SDA coefficient (i.e. digestive cost relative to prey content) was higher in the high protein group, meaning that this group metabolized a greater portion of their prey during digestion and had a lower net energy intake from prey. In our behavioral assays, spiders in the high protein group were significantly more active and attacked prey more quickly in their first trial. Our results demonstrate that diet had relatively little effect on predator metabolism but more of an effect on behavior. These findings suggest that diet regulation should be analyzed by studying multiple responses together, including metabolism and behavior, to gain a more comprehensive understanding of the effects of diet on organism performance and fitness.
Collapse
Affiliation(s)
- Nicholas A Koemel
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, OK 74075, USA
| | - Cody L Barnes
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, OK 74075, USA
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, OK 74075, USA.
| |
Collapse
|
30
|
Bowman CE. The gut epithelium from feeding to fasting in the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae): one tissue, two roles. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:253-357. [PMID: 30895556 DOI: 10.1007/s10493-019-00356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
A review of acarine gut physiology based on published narratives dispersed over the historical international literature is given. Then, in an experimental study of the free-living predatory soil mite Pergamasus longicornis (Berlese), quantitative micro-anatomical changes in the gut epithelium are critically assessed from a temporal series of histological sections during and after feeding on larval dipteran prey. An argued functional synthesis based upon comparative kinetics is offered for verification in other mesostigmatids. Mid- and hind-gut epithelia cell types interconvert in a rational way dependent upon the physical consequences of ingestion, absorption and egestion. The fasted transitional pseudo-stratified epithelium rapidly becomes first squamous on prey ingestion (by stretching), then columnar during digestion before confirmed partial disintegration (gut 'lumenation') during egestion back to a pseudo-stratified state. Exponential processes within the mid- and endodermic hind-gut exhibit 'stiff' dynamics. Cells expand rapidly ([Formula: see text] 22.9-49.5 min) and vacuolate quickly ([Formula: see text] 1.1 h). Cells shrink very slowly ([Formula: see text] 4.9 days) and devacuolate gently ([Formula: see text] 1.0-1.7 days). Egestive cellular degeneration has an initial [Formula: see text] 7.7 h. Digestion appears to be triggered by maximum gut expansion-estimated at 10 min post start of feeding. Synchrony with changes in gut lumen contents suggests common changes in physiological function over time for the cells as a whole tightly-coupled epithelium. Distinct in architecture as a tissue over time the various constituent cell types appear functionally the same. Functional phases are: early fluid transportation (0-1 h) and extracellular activity (10-90 min); through rising food absorption (10 min to [Formula: see text] day); to slow intracellular meal processing and degenerative egestive waste material production (1 to [Formula: see text] days) much as in ticks. The same epithelium is both absorptive and degenerative in role. The switch in predominant physiology begins 4 h after the start of feeding. Two separate pulses of clavate cells appear to be a mechanism to facilitate transport by increasing epithelial surface area in contact with the lumen. Free-floating cells may augment early extracellular lumenal digestion. Possible evidence for salivary enzyme alkaline-related extra-corporeal digestion was found. Giant mycetome-like cells were found embedded in the mid-gut wall. Anteriorly, the mid-gut behaves like a temporally expendable food processing tissue and minor long-term resistive store. Posteriorly the mid-gut behaves like a major assimilative/catabolic tissue and 'last-out' food depot (i.e., a 'hepatopancreas' function) allowing the mite to resist starvation for up to 3.5 weeks after a single meal. A 'conveyor-belt' wave of physiology (i.e., feeding and digestion, then egestion and excretion) sweeps posteriorly but not necessarily pygidially over time. Assimilation efficiency is estimated at 82%. The total feeding cycle time histologically from a single meal allowing for the bulk of intracellular digestion and egestive release is not 52.5 h but of the order of 6 days ([Formula: see text] total gut emptyings per day), plus typically a further 3 days for subsequent excretion to occur. Final complete gut system clearance in this cryptozooid may take much longer ([Formula: see text] days). A common physiology across the anactinotrichid acarines is proposed. A look to the future of this field is included.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
31
|
Bastos CLQ, Josende ME, Ferreira SP, de Magalhães MTQ, de Castro Pimenta AM, Lima JV, Boyle RT. Polypeptides secreted from the columnar vesicles of the sea anemone Bunodosoma cangicum and their in vivo effects on Caenorhabditis elegans. Cell Biol Int 2019; 43:429-436. [PMID: 30672061 DOI: 10.1002/cbin.11107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/19/2019] [Indexed: 11/09/2022]
Abstract
In this study we provide new evidence that the columnar vesicles of the sea anemone Bunodosoma cangicum are toxic in vivo and contain at least two active polypeptides, a neurotoxic and an apoptosis inducing polypeptide. Here we show that it is also an effective inducer of apoptosis in vivo in the nematode Caenorhabditis elegans. In addition, the anemone peptides rapidly paralyze C. elegans, and set in motion a sequence of events that result in the complete dissolution of the internal organs in adult animals within 60 min. Nematodes that survive the toxin treatment exhibit a decreased reproductive capacity. Interestingly, adult animals appear to be much more susceptible to the effects of the toxins than larval stages, suggesting possible developmentally dependent targets of the toxins. Here we also provide chemical characterization of the compounds through chromatographic analysis and mass spectrometry. Gel filtration chromatography coupled with reverse phase HPLC shows that our partially purified extract contains at least two principle components. Additionally, MALDI-TOF mass spectrometry analysis of our extract shows three principal compounds at 814.6, 2914.1, and 4360.3 m/z plus three other minor components or fragments. Mass spectrometry analysis also indicates the presence of three disulfide bridges. Which is in agreement with other characterizations of anemone venoms.
Collapse
Affiliation(s)
- Claudio L Q Bastos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Marcelo Estrella Josende
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Shana Pires Ferreira
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | | | | | - Juliane Ventura Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| |
Collapse
|
32
|
Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel) 2018; 10:E359. [PMID: 30189638 PMCID: PMC6162517 DOI: 10.3390/toxins10090359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as "other venom components". A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.
Collapse
Affiliation(s)
- Maria Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Carlos Eduardo Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
- Department of Integrative Biology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Cesar Vicente Ferreira Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
33
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|