1
|
Nani JP, Jansen GB, Ben Zaabza H, VanRaden PM. Improved computation of genomic and pedigree inbreeding and relationships accounting for the X chromosome. J Dairy Sci 2025; 108:6190-6202. [PMID: 40252770 DOI: 10.3168/jds.2024-26056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
Breeders for many decades used pedigrees to limit increases in inbreeding, but genomic measures of relationship and inbreeding provide more precise control. Previous calculations of pedigree inbreeding (Fped), genomic inbreeding (Fgen), pedigree expected future inbreeding (EFIped), and genomic expected future inbreeding (EFIgen) included the X chromosome but ignored its influence when estimating relationships. The X chromosome contributes to inbreeding in female progeny, for example, if parents with the same X chromosome are mated. Because the X-specific region has 3.0% of the 79,060 markers used in US genomic evaluation and those markers are coded as 100% homozygous in males, homozygosity of females appeared to be 3% less than for males. Allele frequency also affects the computation of Fgen. Programs to compute pedigree and genomic measures were revised to improve speed and memory use, as well as to better account for the X chromosome. Revised software reduced computational time from 33 h to 13 min (152 times faster) using 32 processors for Fped and EFIped with 88 million animals in the pedigree and from 19 h to 28 min (41 times faster) for Fgen and EFIgen for 3,280,753 genotyped animals of 5 breeds. Correlations were high between Fgen computed using either an allele frequency of 0.5 or a base population frequency for most breeds. Mean Fgen was higher for males than for females, but adjustments for the X chromosome made Fgen means more comparable across sexes. The X adjustments did not affect correlations within sex. After adjusting Fgen for the X chromosome using an allele frequency of 0.5, correlations across breeds and sex increased, and X-adjusted Fgen was more similar to Fped. Using an allele frequency of 0.5, mean correlation with Fped across breeds was 0.67 for Fgen, 0.67 for X-adjusted Fgen, and 0.54 for Fgen with base population allele frequency; corresponding EFI correlations were 0.83, 0.83, and 0.84. Breeds with smaller populations were more sensitive to the use of different allele frequencies. Mean correlation of haplotype-based inbreeding with Fped was 0.64. Revision of inbreeding software allowed simpler and more accurate comparison of genomic and pedigree relationships and much faster computation.
Collapse
Affiliation(s)
- Juan P Nani
- Agricultural Research Service, Animal Genomics and Improvement Laboratory, USDA, Beltsville, MD 20705-2350; ABS Global Inc., DeForest, WI 53532.
| | | | - Hafedh Ben Zaabza
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - Paul M VanRaden
- Agricultural Research Service, Animal Genomics and Improvement Laboratory, USDA, Beltsville, MD 20705-2350
| |
Collapse
|
2
|
Ziadi C, Valera M, Laseca N, Perdomo-González D, Demyda-Peyrás S, de los Terreros ARS, Molina A. Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction. Genes (Basel) 2025; 16:562. [PMID: 40428384 PMCID: PMC12111279 DOI: 10.3390/genes16050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: By simultaneously integrating both genotyped and non-genotyped animals into genetic evaluation, the single-step genomic BLUP method enhanced the accuracy of genetic assessments. This study aimed to compare the increase in prediction reliability (R2) between restricted maximum likelihood (REML) and single-step genomic REML (ssGREML) in the Pura Raza Española (PRE) horse breed. Methods: The dataset comprised reproductive records for seven fertility traits from 47,502 females, with a total of 57,316 animals represented in the pedigree. A total of 4009 animals were genotyped using the EQUIGENE 90K SNP array, and 71,322 SNPs were retained for analysis after quality control. Genetic parameters were estimated using a multivariate model with the BLUPF90+ v2.60 software. Results: Heritability estimates were similar between REML and ssGREML, ranging from 0.07 for IF12 to 0.349 for ALF. An increase in R2 was observed with ssGREML compared to REML across all traits, with overall gains ranging from 2.20% to 3.71%. Among genotyped animals, R2 values ranged from 17.81% to 24.04%, while significantly lower values (0.80% to 2.34%) were observed in non-genotyped animals. Notably, individuals with low initial R2 values under the REML approach exhibited the most significant gains using ssGREML. This improvement was particularly pronounced among stallions with fewer than 40 controlled foals. Conclusions: Our results demonstrated that incorporating genomic data improves the reliability of genetic evaluations for mare fertility in PRE horses.
Collapse
Affiliation(s)
- Chiraz Ziadi
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; (C.Z.); (S.D.-P.)
| | - Mercedes Valera
- Departamento de Agronomía, Universidad de Sevilla, 41013 Sevilla, Spain; (M.V.); (N.L.)
| | - Nora Laseca
- Departamento de Agronomía, Universidad de Sevilla, 41013 Sevilla, Spain; (M.V.); (N.L.)
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), 41014 Sevilla, Spain;
| | | | | | | | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; (C.Z.); (S.D.-P.)
| |
Collapse
|
3
|
Scott BA, Haile-Mariam M, Tiezzi F, van den Berg I, Maltecca C, Pryce JE. Optimizing genetic diversity in Australian Holsteins and Jerseys: A comparative analysis of whole-genome and regional inbreeding depression effects. J Dairy Sci 2025; 108:2658-2668. [PMID: 39662810 DOI: 10.3168/jds.2024-25341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Homozygosity, which can arise from several genetic mechanisms including inbreeding, is frequently observed in the offspring of related parents. This inbreeding can lead to a reduced performance, owing to a phenomenon known as inbreeding depression. This study assessed inbreeding depression using whole-genome and regional approaches in first-lactation Australian Holsteins and Jerseys, involving ∼33,000 Holstein and 7,000 Jersey cows born between 2000 and 2017. These cows had phenotypic records (milk production, fertility, and survival), pedigree records, and genomic data available. We analyzed genome-wide inbreeding depression through a mixed animal model examining 4 measures of inbreeding: pedigree data, runs of homozygosity (ROH) of at least 1 Mb, ROH greater than 8 Mb, and ROH exceeding 16 Mb, which indicates more recent inbreeding. Additionally, unique ROH haplotypes, identified using a sliding-window approach, were incorporated as fixed effects in the model to estimate their effect on the traits of interest. Results indicated that a 1% increase in pedigree inbreeding led to reduced performance across all traits, with estimates of inbreeding depression ranging from 0.11% to 0.45% of the phenotypic mean. In Holsteins, genome-wide estimates (FROH) were significant and reasonably aligned with pedigree estimates, whereas more recent inbreeding (FROH >16 Mb) had between 2.6 and 3.3 times greater effect on inbreeding depression across all traits compared with smaller FROH (≥1 Mb). In Jerseys, more recent inbreeding had a 2.2 to 2.3 times greater reduction in the performance of milk and protein yields for a 1% increase in genomic inbreeding. For both fitness traits in Jerseys, the effects of inbreeding on fertility and survival were not significant. The most negative effects of ROH were also noted in specific traits: Jersey and Holstein cows with unfavorable ROH took significantly longer to recalve and showed marked reductions in production traits. Moreover, increased homozygosity in certain genomic regions, such as BTA25 in Jerseys, markedly reduced performance, highlighting the importance of genomic location in assessing the effects of homozygosity. These data inform next-generation mating programs, emphasizing avoiding inbreeding in genomic regions most susceptible to inbreeding depression, to enhance animal performance.
Collapse
Affiliation(s)
- B A Scott
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M Haile-Mariam
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| | - F Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - I van den Berg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - C Maltecca
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; Department of Animal Science, North Carolina State University, Raleigh, NC 27695
| | - J E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
4
|
Mckimmie C, Forutan M, Tajet HM, Ehsani A, Hickford J, Amirpour H. Impact of Implementing Female Genomic Selection and the Use of Sex-Selected Semen Technology on Genetic Gain in a Dairy Herd in New Zealand. Int J Mol Sci 2025; 26:990. [PMID: 39940759 PMCID: PMC11817307 DOI: 10.3390/ijms26030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Genomic selection (GS) has changed cattle breeding, but its use so far has been in selecting superior bulls for breeding. However, its farm-level impact, particularly on female selection, remains less explored. This study aimed to investigate the impact of implementing GS to identify superior cows and using artificial mating of those cows with sex-selected semen in a New Zealand Holstein-Friesian (HF) dairy herd (n = 1800 cows). Heifers (n = 2061) born over four consecutive years between 2021 and 2024 were genotyped and their genomic breeding values (GBVs) were estimated. These heifers were ranked based on the Balanced Performance Index (BPI; DataGene, Dairy Australia) Lower-performing cows producing less than 15 L/day (or 20 L/day for older cows) and those with severe mastitis were culled. Cows were mated with HF genetics based on production and udder breeding values, while lower-performing cows were mated to beef genetics. Milking adult cows were mated to bulls with similar BPI value. Annual genetic change was measured using Australian breeding values (ABVg) for milk fat production (FAT), protein production (PROT), fertility (FER), Mastitis Resistance (MAS), and BPI. The genetic merits of the heifers improved annually, with BPI increasing from 136 to 184 between 2021 and 2023, corresponding to a financial gain of NZD 17.53 per animal per year. The predicted BPI gain from 2023 to 2026 is expected to rise from 184 to 384, resulting in a financial gain of NZD 72.96 per animal per year. Using sex-selected semen on the top 50% of BPI-rated heifers in 2024 further accelerated genetic gain. Predicted BPI values for progeny born in 2025 and 2026 are 320 and 384, respectively. These findings revealed that the female GS, combined with sex-selected semen from genomically selected bulls, significantly accelerates genetic gain by improving the intensity and accuracy of selection. The approach achieves genetic progress equivalent to what traditionally would have required eight years of breeding without female GS, and has potential to improve dairy herd performance and profitability.
Collapse
Affiliation(s)
| | - Mehrnush Forutan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | | | - Alireza Ehsani
- Roslin Institute Building, Easter Bush, Scotland Rural College, Midlothian EH25 9RG, UK;
| | - Jonathan Hickford
- Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, New Zealand;
| | | |
Collapse
|
5
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Han J, Wang M. Comparative Analysis of Runs of Homozygosity Islands in Indigenous and Commercial Chickens Revealed Candidate Loci for Disease Resistance and Production Traits. Vet Med Sci 2025; 11:e70074. [PMID: 39655377 PMCID: PMC11629026 DOI: 10.1002/vms3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024] Open
Abstract
Runs of homozygosity (ROH) are contiguous stretches of identical genomic regions inherited from both parents. Assessment of ROH in livestock species contributes significantly to our understanding of genetic health, population genetic structure, selective pressure and conservation efforts. In this study, whole genome re-sequencing data from 140 birds of 10 Iranian indigenous chicken ecotypes, 3 commercial chicken breeds and 1 red junglefowl (RJF) population were used to investigate their population genetic structure, ROH characteristics (length and frequency) and genomic inbreeding coefficients (FROH). Additionally, we examined ROH islands for selection footprints in the indigenous chicken populations. Our results revealed distinct genetic backgrounds, among which the White Leghorn breed exhibited the greatest genetic distance from other populations, while the gamecock populations formed a separate cluster. We observed significant differences in ROH characteristics, in which the commercial breeds showed a higher number of ROH compared to indigenous chickens and red junglefowls. Short ROH ranging from 0.1 to 1 Mb were dominant among the populations. The Arian line had the highest mean length of ROH, while the White Leghorn breed showed the highest number of ROH. Among indigenous chickens, the Lari-Afghani ecotype exhibited the highest FROH, but the Sari inherited the richest genetic diversity. Interestingly, GGA16 carried no ROH in the red junglefowls, whereas GGA22 had the highest FROH across all populations, except in the Isfahan ecotype. We also identified ROH islands associated with genetic adaptations in indigenous ecotypes. These islands harboured immune-related genes contributing to disease resistance (TLR2, TICAM1, IL22RA1, NOS2, CCL20 and IFNLR1), heat tolerance and oxidative stress response (NFKB1, HSF4, OSGIN1 and BDNF), and muscle development, lipid metabolism and reproduction (MEOX2, CEBPB, CDS2 and GnRH-I). Overall, this study highlights the genetic potential of indigenous chickens to survive and adapt to their respective environments.
Collapse
Affiliation(s)
| | - Ali Esmailizadeh
- Department of Animal ScienceFaculty of AgricultureShahid Bahonar University of KermanKermanIran
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Jianlin Han
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Shan Wang
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
6
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 PMCID: PMC11680604 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Liu H, Xu J, Wang X, Wang H, Wang L, Shen Y. Efficient large-scale genomic prediction in approximate genome-based kernel model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:6. [PMID: 39666050 DOI: 10.1007/s00122-024-04793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
KEY MESSAGE Three computationally efficient algorithms of GP including RHBK, RHDK, and RHPK were developed in approximate genome-based kernel model. The drastically growing amount of genomic information contributes to increasing computational burden of genomic prediction (GP). In this study, we developed three computationally efficient algorithms of GP including RHBK, RHDK, and RHPK in approximate genome-based kernel model, which reduces dimension of genomic data via Nyström approximation and decreases the computational cost significantly thereby. According to the simulation study and real datasets, our three methods demonstrated predictive accuracy similar to or better than RHAPY, GBLUP, and rrBLUP in most cases. They also demonstrated a substantial reduction in computational time compared to GBLUP and rrBLUP in simulation. Due to their advanced computing efficiency, our three methods can be used in a wide range of application scenarios in the future.
Collapse
Affiliation(s)
- Hailan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xuesong Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Handong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
8
|
Lin R, Li H, Lai L, Yang F, Qiu J, Lin W, Bao X, Pan C, Lin W, Jiang X. Analysis of genetic structure and identification of important genes associated with muscle growth in Fujian Muscovy duck. Poult Sci 2024; 103:104445. [PMID: 39504826 PMCID: PMC11570716 DOI: 10.1016/j.psj.2024.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Fujian Muscovy duck is a well-known meat waterfowl in Fujian Province due to its high meat production, superior breeding potential, and strong resistance. To fully explore the genetic characteristics of these advantages, Fujian black Muscovy duck and white Muscovy duck were used for whole-genome re-sequencing and transcriptome analyses. Population structure analysis showed significant differentiation between the two feather strains. Runs of homozygosity analysis indicated a stronger artificial influence on the black-feathered strain, with ROH island genes notably enriched in muscle tissue-related terms and pathways. Selective sweep and transcriptome analysis revealed a significant enrichment of genes linked to muscle tissue and muscle fiber-related terms and pathways. Key candidate genes identified, such as MEF2C, MYOZ2, and METTL21C, are believed to play crucial roles in meat production in Fujian Muscovy duck. This study offers a new perspective on improving meat production in Fujian Muscovy duck, which can benefit breeding strategies and production management.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Jialing Qiu
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xiaobing Jiang
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003.
| |
Collapse
|
9
|
Wang Y, Zhu B, Wang J, Zhang L, Xu L, Chen Y, Wang Z, Gao H, Li J, Gao X. Evaluation of genomic mating approach based on genetic algorithms for long-term selection in Huaxi cattle. BMC Genomics 2024; 25:1140. [PMID: 39587475 PMCID: PMC11590262 DOI: 10.1186/s12864-024-11057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Genomic mating (GM) can effectively control the growth rate of inbreeding in population and achieve long-term sustainable genetic progress. However, the design of GM method and assessment of its effects during long-term selection have not been fully explored in beef cattle breeding. RESULTS In this study, we constructed a simulated population based on the real genotypes of Huaxi cattle, where five generations of simulated breeding were carried out using the genomic optimal contribution selection (GOCS), genetic algorithms strategy and three traditional mating strategies. During the breeding process, genetic parameters including average genomic estimated breeding value (GEBV), genetic gain values ( Δ G ), the rate of inbreeding values ( Δ F ) were calculated and compared across generations. Our results showed that the GM method could significantly improve the genetic gain while effectively controlling the inbreeding accumulation within the population. When using the GM method, there was an increase in genetic gain for Huaxi cattle ranging from 1.1% to 25.6% compared to traditional mating strategy, with inbreeding decreasing in the range of 5.8% to 36.2%. Validation using the real dataset from Huaxi cattle further confirmed our findings from the simulated study, offspring populations using the GM strategy exhibited a 7.3% increase in genetic gain compared to positive assortative mating. CONCLUSIONS These findings suggest that the GM method shows potential for achieving sustainable genetic gain and could be utilized during long-term selection in beef cattle breeding.
Collapse
Affiliation(s)
- Yuanqing Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Centre of Beef Cattle Genetic Evaluation, Beijing, 100193, China
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010010, China
| | - Jing Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
11
|
Bian C, Luo Y, Li J, Cheng H, He F, Duan H, Ahmed Z, Lei C, Yi K. Inference of Genetic Diversity, Population Structure, and Selection Signatures in Xiangxi White Buffalo of China Through Whole-Genome Resequencing. Genes (Basel) 2024; 15:1450. [PMID: 39596650 PMCID: PMC11594040 DOI: 10.3390/genes15111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Buffaloes are crucial livestock species for food and service in tropical and subtropical regions. Buffalo genetics, particularly in indigenous Chinese breeds such as the Xiangxi white buffalo (XWB), remains an intriguing area of study due to its unique traits and regional significance. (2) Methods: This investigation utilized the whole-genome sequences of twenty XWBs (newly sequenced), along with eighty published whole-genome sequences of other buffalo breeds (including Guizhou white buffalo, river buffalo, and Chinese buffalo in the Yangtze River). Using whole-genome sequencing analysis technology, the population structure, genomic diversity, and selection signatures of XWB were determined. (3) Results: This study revealed that the XWB, being phylogenetically positioned in the middle and lower reaches of the Yangtze River, exhibited substantial genomic diversity. Employing four selection sweep detection methods (CLR, iHS, π-ratio, and FST), several genes were positively identified for adaptive traits in the XWB, including coat color phenotypes (ASIP, KIT), the nervous system (GRIK2), reproduction (KCNIP4), growth and development (IFNAR1, BMP6, HDAC9, MGAT4C, and SLC30A9), the body (LINGO2, LYN, and FLI1), immunity (IRAK3 and MZB1), and lactation (TP63, LPIN1, SAE1). (4) Conclusions: In conclusion, this study enhances our understanding of the genetic distinctiveness and adaptive traits of XWB, highlighting selection signatures crucial for future breeding and conservation and ensuring sustainable use of this vital livestock resource.
Collapse
Affiliation(s)
- Chenqi Bian
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling 712100, China
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Huan Cheng
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling 712100, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| |
Collapse
|
12
|
Mota LFM, Carvajal AB, Silva Neto JB, Díaz C, Carabaño MJ, Baldi F, Munari DP. Assessment of inbreeding coefficients and inbreeding depression on complex traits from genomic and pedigree data in Nelore cattle. BMC Genomics 2024; 25:944. [PMID: 39379819 PMCID: PMC11460123 DOI: 10.1186/s12864-024-10842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nelore cattle play a key role in tropical production systems due to their resilience to harsh conditions, such as heat stress and seasonally poor nutrition. Monitoring their genetic diversity is essential to manage the negative impacts of inbreeding. Traditionally, inbreeding and inbreeding depression are assessed by pedigree-based coefficients (F), but recently, genetic markers have been preferred for their precision in capturing the inbreeding level and identifying animals at risk of reduced productive and reproductive performance. Hence, we compared the inbreeding and inbreeding depression for productive and reproductive performance traits in Nelore cattle using different inbreeding coefficient estimation methods from pedigree information (FPed), the genomic relationship matrix (FGRM), runs of homozygosity (FROH) of different lengths (> 1 Mb (genome), between 1 and 2 Mb - FROH 1-2; 2-4 Mb FROH 2-4 or > 8 Mb FROH >8) and excess homozygosity (FSNP). RESULTS The correlation between FPed and FROH was lower when the latter was based on shorter segments (r = 0.15 with FROH 1-2, r = 0.20 with FROH 2-4 and r = 0.28 with FROH 4-8). Meanwhile, the FPed had a moderate correlation with FSNP (r = 0.47) and high correlation with FROH >8 (r = 0.58) and FROH-genome (r = 0.60). The FROH-genome was highly correlated with inbreeding based on FROH>8 (r = 0.93) and FSNP (r = 0.88). The FGRM exhibited a high correlation with FROH-genome (r = 0.55) and FROH >8 (r = 0.51) and a lower correlation with other inbreeding estimators varying from 0.30 for FROH 2-4 to 0.37 for FROH 1-2. Increased levels of inbreeding had a negative impact on the productive and reproductive performance of Nelore cattle. The unfavorable inbreeding effect on productive and reproductive traits ranged from 0.12 to 0.51 for FPed, 0.19-0.59 for FGRM, 0.21-0.58 for FROH-genome, and 0.19-0.54 for FSNP per 1% of inbreeding scaled on the percentage of the mean. When scaling the linear regression coefficients on the standard deviation, the unfavorable inbreeding effect varied from 0.43 to 1.56% for FPed, 0.49-1.97% for FGRM, 0.34-2.2% for FROH-genome, and 0.50-1.62% for FSNP per 1% of inbreeding. The impact of the homozygous segments on reproductive and performance traits varied based on the chromosomes. This shows that specific homozygous chromosome segments can be signs of positive selection due to their beneficial effects on the traits. CONCLUSIONS The low correlation observed between FPed and genomic-based inbreeding estimates suggests that the presence of animals with one unknown parent (sire or dam) in the pedigree does not account for ancient inbreeding. The ROH hotspots surround genes related to reproduction, growth, meat quality, and adaptation to environmental stress. Inbreeding depression has adverse effects on productive and reproductive traits in Nelore cattle, particularly on age at puberty in young bulls and heifer calving at 30 months, as well as on scrotal circumference and body weight when scaled on the standard deviation of the trait.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil.
| | - Alejandro B Carvajal
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - João B Silva Neto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - Clara Díaz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Maria J Carabaño
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Association of Breeders and Researchers, Rua João Godoy 463, Ribeirão Preto, 14020-230, SP, Brazil
| | - Danísio P Munari
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development (CNPq), Brasilia, 71605-001, DF, Brazil
| |
Collapse
|
13
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Silva GAA, Harder AM, Kirksey KB, Mathur S, Willoughby JR. Detectability of runs of homozygosity is influenced by analysis parameters and population-specific demographic history. PLoS Comput Biol 2024; 20:e1012566. [PMID: 39480880 PMCID: PMC11556709 DOI: 10.1371/journal.pcbi.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Wild populations are increasingly threatened by human-mediated climate change and land use changes. As populations decline, the probability of inbreeding increases, along with the potential for negative effects on individual fitness. Detecting and characterizing runs of homozygosity (ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a population and can also shed light on the genetic mechanisms contributing to inbreeding depression. Here, we analyze simulated and empirical datasets to demonstrate the downstream effects of program selection and long-term demographic history on ROH inference, leading to context-dependent biases in the results. Through a sensitivity analysis we evaluate how various parameter values impact ROH-calling results, highlighting its utility as a tool for parameter exploration. Our results indicate that ROH inferences are sensitive to factors such as sequencing depth and ROH length distribution, with bias direction and magnitude varying with demographic history and the programs used. Estimation biases are particularly pronounced at lower sequencing depths, potentially leading to either underestimation or overestimation of inbreeding. These results are particularly important for the management of endangered species, as underestimating inbreeding signals in the genome can substantially undermine conservation initiatives. We also found that small true ROHs can be incorrectly lumped together and called as longer ROHs, leading to erroneous inference of recent inbreeding. To address these challenges, we suggest using a combination of ROH detection tools and ROH length-specific inferences, along with sensitivity analysis, to generate robust and context-appropriate population inferences regarding inbreeding history. We outline these recommendations for ROH estimation at multiple levels of sequencing effort, which are typical of conservation genomics studies.
Collapse
Affiliation(s)
- Gabriel A. A. Silva
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Avril M. Harder
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Kenneth B. Kirksey
- Walker College of Business, Appalachian State University, Boone, North Carolina, United States of America
| | - Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
15
|
Srikanth K, Jaafar MA, Neupane M, Ben Zaabza H, McKay SD, Wolfe CW, Metzger JS, Huson HJ, Van Tassell CP, Blackburn HD. Assessment of genetic diversity, inbreeding and collection completeness of Jersey bulls in the US National Animal Germplasm Program. J Dairy Sci 2024:S0022-0302(24)01152-4. [PMID: 39343205 DOI: 10.3168/jds.2024-25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Genomic selection and extensive use of a few elite bulls through artificial insemination are leading to reduced genetic diversity in Jersey cattle. Conservation of genetic diversity through gene banks can protect a breed's genetic diversity and genetic gain, ensuring continued genetic advancement in the future. The availability of genomic information in the US National Animal Germplasm Program (NAGP) facilitates characterization of Jersey bulls in the germplasm collection. Therefore, in this study, we compared the genetic diversity and inbreeding between Jersey bulls in the NAGP and the national cooperator database (NCD). The NCD is maintained and curated by the Council on Dairy Cattle Breeding (CDCB). We found the genetic diversity to be marginally higher in NAGP (Ho = 0.34 ± 0.17) relative to the NCD population (Ho = 0.33 ± 0.16). The average pedigree and genomic inbreeding (FPED, FGRM, FROH > 2Mb) were similar between the groups, with estimates of 7.6% with FPED, 11.07% with FGRM and 20.13% with FROH > 2Mb. An increasing trend in inbreeding was detected, and a significantly higher level of inbreeding was estimated among the older bulls in the NAGP collection, suggesting an overrepresentation of the genetics from elite bulls. Results from principal component analyses (PCA) provided evidence that the NAGP collection is representative of the genetic variation found in the NCD population and a broad majority of the loci segregating (98.2%) in the NCD population were also segregating in the NAGP. Ward's clustering was used to assess collection completeness of Jerseys in the NAGP by comparison with top 1000 sires of bulls, top 1000 sires of cow, and bulls with high Lifetime Net Merit (NM$). All the clusters were represented in the NAGP suggesting that most of the genetic diversity in the US Jersey population is represented in the NAGP and confirmed the PCA results. The decade of birth was the major driver grouping bulls into clusters, suggesting the importance of selection over time. Selection signature analysis between the historic bulls in the NAGP with the newer bulls, born in the decade after implementation of genomic selection, identified selection for milk production, fat and protein yield, fertility, health, and reproductive traits. Cluster analysis revealed that the NAGP has captured allele frequency changes over time associated with selection, validating the strategy of repeated sampling and suggests that the continuation of a repeated sampling policy is essential for the germplasm collection to maintain its future utility. While NAGP should continue to collect bulls that have large influence on the population due to selection, care should be taken to include the entire breadth of bulls, including low merit bulls.
Collapse
Affiliation(s)
- K Srikanth
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M A Jaafar
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M Neupane
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H Ben Zaabza
- Department of Animal Science, Michigan State, East Lansing, MI, 48824
| | - S D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - C W Wolfe
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - J S Metzger
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - H J Huson
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - C P Van Tassell
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H D Blackburn
- National Animal Germplasm Program, USDA, Fort Collins, CO 80521.
| |
Collapse
|
16
|
Wirth A, Duda J, Emmerling R, Götz KU, Birkenmaier F, Distl O. Analyzing Runs of Homozygosity Reveals Patterns of Selection in German Brown Cattle. Genes (Basel) 2024; 15:1051. [PMID: 39202411 PMCID: PMC11354284 DOI: 10.3390/genes15081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
An increasing trend in ancestral and classical inbreeding coefficients as well as inbreeding depression for longevity were found in the German Brown population. In addition, the proportion of US Brown Swiss genes is steadily increasing in German Browns. Therefore, the aim of the present study was to analyze the presence and genomic localization of runs of homozygosity (ROH) in order to evaluate their associations with the proportion of US Brown Swiss genes and survival rates of cows to higher lactations. Genotype data were sampled in 2364 German Browns from 258 herds. The final data set included 49,693 autosomal SNPs. We identified on average 35.996 ± 7.498 ROH per individual with a mean length of 8.323 ± 1.181 Mb. The genomic inbreeding coefficient FROH was 0.122 ± 0.032 and it decreased to 0.074, 0.031 and 0.006, when genomic homozygous segments > 8 Mb (FROH>8), >16 Mb (FROH>16) and >32 Mb (FROH>32) were considered. New inbreeding showed the highest correlation with FROH>32, whereas ancestral inbreeding coefficients had the lowest correlations with FROH>32. The correlation between the classical inbreeding coefficient and FROH was 0.572. We found significantly lower FROH, FROH>4, FROH>8 and FIS for US Brown Swiss proportions <60% compared to >80%. Cows surviving to the 2nd, 4th, 6th, 8th, and 10th lactation had lower genomic inbreeding for FROH and up to FROH>32, which was due to a lower number of ROH and a shorter average length of ROH. The strongest ROH island and consensus ROH shared by 50% of the animals was found on BTA 6 at 85-88 Mb. The genes located in this genomic region were associated with longevity (NPFFR2 and ADAMTS3), udder health and morphology (SLC4A4, NPFFR2, GC and RASSF6), milk production, milk protein percentage, coagulation properties of milk and milking speed (CSN3). On BTA 2, a ROH island was detected only in animals with <60% US Brown Swiss genes. Genes within this region are predominantly important for dual-purpose cattle breeds including Original Browns. For cows reaching more than 9 lactations, an exclusive ROH island was identified on BTA 7 with genes assumed to be associated with longevity. The analysis indicated that genomic homozygous regions important for Original Browns are still present and also ROH containing genes affecting longevity may have been identified. The breeding of German Browns should prevent any further increase in genomic inbreeding and run a breeding program with balanced weights on production, robustness and longevity.
Collapse
Affiliation(s)
- Anna Wirth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jürgen Duda
- Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. (LKV), 80687 München, Germany;
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Franz Birkenmaier
- Amt für Ernährung, Landwirtschaft und Forsten, 87439 Kempten, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
17
|
Ahadi P, Balasundaram B, Borrero JS, Chen C. Development and optimization of expected cross value for mate selection problems. Heredity (Edinb) 2024; 133:113-125. [PMID: 38956397 PMCID: PMC11286873 DOI: 10.1038/s41437-024-00697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
In this study, we address the mate selection problem in the hybridization stage of a breeding pipeline, which constitutes the multi-objective breeding goal key to the performance of a variety development program. The solution framework we formulate seeks to ensure that individuals with the most desirable genomic characteristics are selected to cross in order to maximize the likelihood of the inheritance of desirable genetic materials to the progeny. Unlike approaches that use phenotypic values for parental selection and evaluate individuals separately, we use a criterion that relies on the genetic architecture of traits and evaluates combinations of genomic information of the pairs of individuals. We introduce the expected cross value (ECV) criterion that measures the expected number of desirable alleles for gametes produced by pairs of individuals sampled from a population of potential parents. We use the ECV criterion to develop an integer linear programming formulation for the parental selection problem. The formulation is capable of controlling the inbreeding level between selected mates. We evaluate the approach or two applications: (i) improving multiple target traits simultaneously, and (ii) finding a multi-parental solution to design crossing blocks. We evaluate the performance of the ECV criterion using a simulation study. Finally, we discuss how the ECV criterion and the proposed integer linear programming techniques can be applied to improve breeding efficiency while maintaining genetic diversity in a breeding program.
Collapse
Affiliation(s)
- Pouya Ahadi
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Juan S Borrero
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, USA
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
18
|
Tenhunen S, Thomasen JR, Sørensen LP, Berg P, Kargo M. Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations. J Dairy Sci 2024; 107:5897-5912. [PMID: 38608951 DOI: 10.3168/jds.2023-24553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 04/14/2024]
Abstract
In recent years, genomic selection (GS) has accelerated genetic gain in dairy cattle breeds worldwide. Despite the evident genetic progress, several dairy populations have also encountered challenges such as heightened inbreeding rates and reduced effective population sizes. The challenge has been to find a balance between achieving substantial genetic gain while managing genetic diversity within the population, thereby mitigating the negative effects of inbreeding depression. This study aims to elucidate the impact of GS on pedigree and genomic rates of inbreeding (ΔF) and coancestry (ΔC) in Nordic Jersey (NJ) and Holstein (NH) cattle populations. Furthermore, key genetic metrics, including the generation interval (L), effective population size (Ne), and future effective population size (FNe) were assessed between 2 time periods, before and after GS, and across distinct animal cohorts in both breeds: females, bulls, and approved semen-producing bulls (AI-sires). Analysis of ΔF and ΔC revealed distinct trends across the studied periods and animal groups. Notably, there was a consistent increase in yearly ΔF for most animal groups in both breeds. An exception was observed in NH AI-sires, which demonstrated a slight decrease in yearly ΔF. Moreover, NJ displayed minimal changes in yearly ΔC between the periods, whereas NH exhibited elevated ΔC values across all animal groups. Particularly striking was the substantial increase in yearly ΔC within the NH female population, surging from 0.02% to 0.39% between the periods. Implementation of GS resulted in a reduction of the generation interval across all animal cohorts in both NJ and NH breeds. However, the extent of reduction was more pronounced in males compared with females. This reduction in generation interval influenced generational changes in ΔF and ΔC. Bulls and AI-sires of both breeds exhibited reduced generational ΔF between periods, in contrast to females that demonstrated an opposing pattern. Between the periods, NJ maintained a relatively stable Ne (29.4 before and 30.3 after GS), whereas NH experienced a notable decline from 54.3 to 42.8. Female groups in both breeds displayed a negative Ne trend, whereas males demonstrated either neutral or positive Ne developments. Regarding FNe, NJ exhibited positive FNe development with an increase from 40.7 to 57.2. The opposite was observed in NH, where FNe decreased from 198.8 to 42.7. In summary, it was evident that the genomic methods could detect differences between the populations and changes in ΔF and ΔC more efficiently than pedigree methods. Implementation of GS yielded positive outcomes within the NJ population regarding the rate of coancestry but the opposite was observed with NH. Moreover, analysis of ΔC data hints at the potential to decrease future ΔF through informed mating strategies. Conversely, NH faces more pressing concerns, even though ΔF remains comparatively modest in contrast to what has been observed in other Holstein populations. These findings underscore the necessity of genomic control of inbreeding and coancestry with strategic changes in the Nordic breeding schemes for dairy to ensure long-term sustainability in the forthcoming years.
Collapse
Affiliation(s)
- S Tenhunen
- Aarhus University, Center for Quantitative Genetics and Genomics, 8000 Aarhus, Denmark; VikingGenetics, 8960 Randers SØ, Denmark.
| | | | | | - P Berg
- Norwegian University of Life Sciences, NMBU, 1433 Ås, Norway
| | - M Kargo
- Aarhus University, Center for Quantitative Genetics and Genomics, 8000 Aarhus, Denmark; VikingGenetics, 8960 Randers SØ, Denmark
| |
Collapse
|
19
|
Bem RD, Benfica LF, Silva DA, Carrara ER, Brito LF, Mulim HA, Borges MS, Cyrillo JNSG, Canesin RC, Bonilha SFM, Mercadante MEZ. Assessing different metrics of pedigree and genomic inbreeding and inbreeding effect on growth, fertility, and feed efficiency traits in a closed-herd Nellore cattle population. BMC Genomics 2024; 25:738. [PMID: 39080557 PMCID: PMC11290228 DOI: 10.1186/s12864-024-10641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.
Collapse
Affiliation(s)
- Ricardo D Bem
- Institute of Animal Science, Sertãozinho, SP, Brazil.
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Lorena F Benfica
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Delvan A Silva
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Eula R Carrara
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Marcelo S Borges
- Department of Pathology, Reproduction and One Health, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | | | | | | | | |
Collapse
|
20
|
Mulim HA, Pedrosa VB, Pinto LFB, Tiezzi F, Maltecca C, Schenkel FS, Brito LF. Detection and evaluation of parameters influencing the identification of heterozygous-enriched regions in Holstein cattle based on SNP chip or whole-genome sequence data. BMC Genomics 2024; 25:726. [PMID: 39060982 PMCID: PMC11282608 DOI: 10.1186/s12864-024-10642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. RESULTS The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima's D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. CONCLUSIONS The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.
Collapse
Affiliation(s)
- Henrique A Mulim
- Department of Animal Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil.
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Parana, 84010-330, Brazil
| | | | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50121, Florence, Italy
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
21
|
Sarviaho K, Uimari P, Martikainen K. Signatures of positive selection after the introduction of genomic selection in the Finnish Ayrshire population. J Dairy Sci 2024; 107:4822-4832. [PMID: 38490540 DOI: 10.3168/jds.2024-24105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The Finnish Ayrshire (FAY) belongs to the Nordic Red breeds and is characterized by high milk yield, high milk components, good fertility, and functional conformation. The FAY breeding program is based on genomic selection. Despite the benefits of selection on breeding values, autozygosity in the genome may increase due to selection, and increased autozygosity may cause inbreeding depression in selected traits. However, there is lack of studies concerning selection signatures in the FAY after genomic selection introduction. The aim of this study was to identify signatures of selection in FAY after the introduction of genomic selection. Genomic data included 45,834 SNPs. The genotyped animals were divided into 2 groups: animals born before genomic selection introduction (6,108 cows) and animals born after genomic selection introduction (47,361 cows). We identified the selection signatures using 3 complementary methods: 2 based on identification of selection signatures from runs of homozygosity (ROH) islands and one based on the decay of site-specific extended haplotype between populations at SNP sites (Rsb). In total, we identified 34 ROH islands on chromosomes 1, 3, 6, 8, 12-15, 17, 19, 22, and 26 in FAY animals born before genomic selection (between 1980 and 2011) and 30 ROH islands on chromosomes 1-3, 13-17, 22, and 25-26 in FAY animals born after genomic selection introduction (between 2015 and 2020). We additionally detected 22 ΔROH islands on chromosomes 2-3, 11, 13, 14, 16, 18, 20, and 25-26. Finally, a total of 31 Rsb regions on chromosomes 2, 3, 14, 18, 20, and 25 were identified. Based on the results, genomic selection has favored certain alleles and haplotypes on genomic regions related to traits relevant in the FAY breeding program: milk production, fertility, growth, beef production traits, and feed efficiency. Several genes related to these traits (e.g., PLA2G4A, MECR, CHUK, COX15, RICTOR, SHISA9, and SEMA4G) overlapped or partially overlapped the observed selection signature regions. The association of genotypes within these regions and their effects on traits relevant in the FAY breeding program should be studied and genetic regions undergoing selection monitored in the FAY population.
Collapse
Affiliation(s)
- Katri Sarviaho
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland.
| | - Pekka Uimari
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Katja Martikainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
22
|
Mugambe J, Ahmed RH, Thaller G, Schmidtmann C. Impact of inbreeding on production, fertility, and health traits in German Holstein dairy cattle utilizing various inbreeding estimators. J Dairy Sci 2024; 107:4714-4725. [PMID: 38310961 DOI: 10.3168/jds.2023-23728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
In dairy cattle production, it is important to understand how inbreeding affects production, fertility, and health traits. However, there is still limited use of genomic information to estimate inbreeding, despite advancements in genotyping technologies. To address this gap, we investigated the effect of inbreeding on German Holstein dairy cattle using both pedigree-based and genomic-based inbreeding estimators. We employed one method based on pedigree information (Fped) together with 6 genomic-based methods, including 3 genome-wide complex trait analysis software estimators (Fhat1, Fhat2, Fhat3), VanRaden's first method (FVR1, with observed allele frequencies, and FVR0.5, when allele frequencies are set to 0.5), and one based on runs of homozygosity (Froh). Data from 24,489 cows with both phenotypes and genotypes were used, with a pedigree including 232,780 animals born between 1970 and 2018. We analyzed the effects of inbreeding depression on production, fertility, and health traits separately, using single-trait linear animal models as well as threshold models to account for the binary nature of the health traits. For the health traits, we transformed solutions from the liability scale to a probability scale for easier interpretation. Our results showed that the mean inbreeding coefficients from all estimators ranged from -0.003 to 0.243, with negative values observed for most genomic-based methods. We found out that a 1% increase in inbreeding caused a depression ranging from 25.94 kg (Fhat1) to 40.62 kg (Fhat3), 1.18 kg (Fhat2) to 1.70 kg (Fhat3), 0.90 kg (Fhat2) to 1.45 kg (Froh and Fhat3), 0.19 (Fped) to 0.34 d (Fhat3) for 305-d milk yield, fat, protein, and calving interval, respectively. The health traits showed very slight gradual changes when inbreeding was increased steadily from 0% to 50%, with digital dermatitis showing a rather contrasting trend to that of mastitis, which increased the more an animal was inbred. Overall, our study highlights the importance of considering both pedigree-based and genomic-based inbreeding estimators when assessing the impact on inbreeding, emphasizing that not all inbreeding is harmful.
Collapse
Affiliation(s)
- Julius Mugambe
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - Rana H Ahmed
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany; IT-Solutions for Animal Production (vit), 27283 Verden, Germany
| |
Collapse
|
23
|
Zhang X, Yang L, Xie Z, Gan J, Zhu P, Song J, Kang H, Zhang Z, Liu L, Xiang H, Li H. Genetic assessment and candidate genes identification for breed-specific characteristics of Qingyuan partridge chicken based on runs of homozygosity. BMC Genomics 2024; 25:577. [PMID: 38858651 PMCID: PMC11163754 DOI: 10.1186/s12864-024-10492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Several core breeding and supporting lines of the Qingyuan partridge chicken, a representative local chicken breed in China, have been developed over 20 years. Consequently, its economic traits related to growth and reproduction have been significantly improved by breeding selection and commercial utilization, but some characteristic traits, such as partridge feathers, high meat quality and sufficient flavor, have always been retained. However, effective methods for genetic assessment and functional gene exploration of similar trait groups are lacking. The presence of identical haplotype fragments transmitted from parent to offspring results in runs of homozygosity (ROH), which offer an efficient solution. In this study, genomes of 134 Qingyuan partridge chickens representing two breeding populations and one preserved population were re-sequenced to evaluate the genetic diversity and explore functional genes by analyzing the diversity, distribution, and frequency of ROH. RESULTS The results showed a low level of genomic linkage and degree of inbreeding within both the bred and preserved populations, suggesting abundant genetic diversity and an adequate genetic potential of the Qingyuan partridge chicken. Throughout the long-term selection process, 21 genes, including GLI3, ANO5, BLVRA, EFNB2, SLC5A12, and SVIP, associated with breed-specific characteristics were accumulated within three ROH islands, whereas another 21 genes associated with growth traits including IRX1, IRX2, EGFR, TPK1, NOVA1, BDNF and so on were accumulated within five ROH islands. CONCLUSIONS These findings provide new insights into the genetic assessment and identification of genes with breed-specific and selective characteristics, offering a solid genetic basis for breeding and protection of Qingyuan partridge chickens.
Collapse
Affiliation(s)
- Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of National Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant, China Conservation and Research Centre for the Giant Panda, Panda National Park, Chengdu, 611830, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jiankang Gan
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China
| | - Piao Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jiani Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China.
| |
Collapse
|
24
|
Gomez Proto G, Mancin E, Sartori C, Mantovani R. Unraveling inbreeding patterns and selection signals in Alpine Grey cattle. Animal 2024; 18:101159. [PMID: 38718700 DOI: 10.1016/j.animal.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Inbreeding plays a crucial role in livestock breeding, influencing genetic diversity and phenotypic traits. Genomic data have helped address limitations posed by incomplete pedigrees, providing deeper insights into breed genetic diversity. This study assesses inbreeding levels via pedigree and genomic approaches and analyzes old and recent inbreeding using runs of homozygosity (ROH), and selection signals in Alpine Grey cattle. Pedigree data from 165 575 individuals, analyzed with INBUPGF90 software, computed inbreeding coefficients. Genomic-based coefficients derived from PLINK v1.9. or DetectRUNS R package analyses of 1 180 individuals' genotypes. Common single nucleotide polymorphisms within ROH pinpointed genomic regions, aggregating into "ROH islands" indicative of selection pressure. Overlaps with USCS Genome Browser unveiled gene presence. Moderate correlations (0.20-0.54) existed between pedigree and genomic coefficients, with most genomic estimators having higher (>0.8) correlation values. Inbreeding averaged 0.04 in < 8 Mb ROH segments, and 0.03 in > 16 Mb segments; > 90% of ROHs were < 8 Mb, indicating ancient inbreeding prevalence. Recent inbreeding proved less detrimental than in cosmopolitan breeds. Two major ROH islands on chromosomes 6 and 7 harbored genes linked to immune response, disease resistance (PYURF, HERC3), and fertility (EIF4EBP3, SRA1). This study underscores the need for detailed inbreeding analyses to understand genetic characteristics and historical changes in local breeds like Alpine Grey cattle. Genomic insights, especially from ROH, facilitated overcoming pedigree limitations, illuminating breed genetic diversity. Our findings reveal ancient inbreeding's enduring genetic impact and ROH islands potential for selective sweeps, elucidating traits in Alpine Grey cattle.
Collapse
Affiliation(s)
- G Gomez Proto
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - E Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - R Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
25
|
Zhao Q, Huang C, Chen Q, Su Y, Zhang Y, Wang R, Su R, Xu H, Liu S, Ma Y, Zhao Q, Ye S. Genomic Inbreeding and Runs of Homozygosity Analysis of Cashmere Goat. Animals (Basel) 2024; 14:1246. [PMID: 38672394 PMCID: PMC11047310 DOI: 10.3390/ani14081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cashmere goats are valuable genetic resources which are famous worldwide for their high-quality fiber. Runs of homozygosity (ROHs) have been identified as an efficient tool to assess inbreeding level and identify related genes under selection. However, there is limited research on ROHs in cashmere goats. Therefore, we investigated the ROH pattern, assessed genomic inbreeding levels and examined the candidate genes associated with the cashmere trait using whole-genome resequencing data from 123 goats. Herein, the Inner Mongolia cashmere goat presented the lowest inbreeding coefficient of 0.0263. In total, we identified 57,224 ROHs. Seventy-four ROH islands containing 50 genes were detected. Certain identified genes were related to meat, fiber and milk production (FGF1, PTPRM, RERE, GRID2, RARA); fertility (BIRC6, ECE2, CDH23, PAK1); disease or cold resistance and adaptability (PDCD1LG2, SVIL, PRDM16, RFX4, SH3BP2); and body size and growth (TMEM63C, SYN3, SDC1, STRBP, SMG6). 135 consensus ROHs were identified, and we found candidate genes (FGF5, DVL3, NRAS, KIT) were associated with fiber length or color. These findings enhance our comprehension of inbreeding levels in cashmere goats and the genetic foundations of traits influenced by selective breeding. This research contributes significantly to the future breeding, reservation and use of cashmere goats and other goat breeds.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Chang Huang
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yingxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Huijuan Xu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Shucai Liu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
| |
Collapse
|
26
|
Värv S, Põlluäär T, Sild E, Viinalass H, Kaart T. Genetic Variation and Composition of Two Commercial Estonian Dairy Cattle Breeds Assessed by SNP Data. Animals (Basel) 2024; 14:1101. [PMID: 38612340 PMCID: PMC11010984 DOI: 10.3390/ani14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The aims of this study were to assess the genomic relatedness of Estonian and selected European dairy cattle breeds and to examine the within-breed diversity of two Estonian dairy breeds using genome-wide SNP data. This study was based on a genotyped heifer population of the Estonian Red (ER) and Estonian Holstein (EH) breeds, including about 10% of all female cattle born in 2017-2020 (sample sizes n = 215 and n = 2265, respectively). The within-breed variation study focused on the level of inbreeding using the ROH-based inbreeding coefficient. The genomic relatedness analyses were carried out among two Estonian and nine European breeds from the WIDDE database. Admixture analysis revealed the heterogeneity of ER cattle with a mixed pattern showing several ancestral populations containing a relatively low proportion (1.5-37.0%) of each of the reference populations used. There was a higher FROH in EH (FROH = 0.115) than in ER (FROH = 0.044). Compared to ER, the long ROHs of EH indicated more closely related parents. The paternal origin of the genetic material used in breeding had a low effect on the inbreeding level. However, among EH, the highest genomic inbreeding was estimated in daughters of USA-born sires.
Collapse
Affiliation(s)
- Sirje Värv
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| | | | | | | | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| |
Collapse
|
27
|
Ristanic M, Zorc M, Glavinic U, Stevanovic J, Blagojevic J, Maletic M, Stanimirovic Z. Genome-Wide Analysis of Milk Production Traits and Selection Signatures in Serbian Holstein-Friesian Cattle. Animals (Basel) 2024; 14:669. [PMID: 38473054 DOI: 10.3390/ani14050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
Collapse
Affiliation(s)
- Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1000 Ljubljana, Slovenia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jovan Blagojevic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Milan Maletic
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
28
|
Li W, Wu X, Xiang D, Zhang W, Wu L, Meng X, Huo J, Yin Z, Fu G, Zhao G. Genome-Wide Detection for Runs of Homozygosity in Baoshan Pigs Using Whole Genome Resequencing. Genes (Basel) 2024; 15:233. [PMID: 38397222 PMCID: PMC10887577 DOI: 10.3390/genes15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Baoshan pigs (BS) are a local breed in Yunnan Province that may face inbreeding owing to its limited population size. To accurately evaluate the inbreeding level of the BS pig population, we used whole-genome resequencing to identify runs of homozygosity (ROH) regions in BS pigs, calculated the inbreeding coefficient based on pedigree and ROH, and screened candidate genes with important economic traits from ROH islands. A total of 22,633,391 SNPS were obtained from the whole genome of BS pigs, and 201 ROHs were detected from 532,450 SNPS after quality control. The number of medium-length ROH (1-5 Mb) was the highest (98.43%), the number of long ROH (>5 Mb) was the lowest (1.57%), and the inbreeding of BS pigs mainly occurred in distant generations. The inbreeding coefficient FROH, calculated based on ROH, was 0.018 ± 0.016, and the FPED, calculated based on the pedigree, was 0.027 ± 0.028, which were positively correlated. Forty ROH islands were identified, containing 507 genes and 891 QTLs. Several genes were associated with growth and development (IGFALS, PTN, DLX5, DKK1, WNT2), meat quality traits (MC3R, ACSM3, ECI1, CD36, ROCK1, CACNA2D1), and reproductive traits (NPW, TSHR, BMP7). This study provides a reference for the protection and utilization of BS pigs.
Collapse
Affiliation(s)
- Wenjun Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xudong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Decai Xiang
- Institute of Pig and Animal Research, Yunnan Academy of Animal Husbandry and Veterinary Science, Kunming 650201, China;
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Lingxiang Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xintong Meng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Guowen Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| |
Collapse
|
29
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
30
|
Illa SK, Mumtaz S, Nath S, Mukherjee S, Mukherjee A. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet 2024; 65:167-180. [PMID: 38110827 DOI: 10.1007/s13353-023-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Runs of homozygosity (ROH) are contiguous genomic regions, homozygous across all sites which arise in an individual due to the parents transmitting identical haplotypes to their offspring. The genetic improvement program of Sahiwal cattle after decades of selection needs re-assessment of breeding strategy and population phenomena. Hence, the present study was carried out to optimize input parameters in PLINK for ROH estimates, to explore ROH islands and assessment of pedigree and genome-based inbreeding in Sahiwal cattle. The sliding window approach with parameters standardized to define ROH for the specific population under study was used for the identification of runs. The optimum maximum gap, density, window-snp and window-threshold were 250 Kb, 120 Kb/SNP, 10, 0.05 respectively and ROH patterns were also characterized. ROH islands were defined as the short homozygous genomic regions shared by a large proportion of individuals in a population, containing significantly higher occurrences of ROH than the population specific threshold level. These were identified using the -homozyg-group function of the PLINK v1.9 program. Our results indicated that the Islands of ROH harbor a few candidate genes, ACAD11, RFX4, BANP, UBA5 that are associated with major economic traits. The average FPED (Pedigree based inbreeding coefficient), FROH (Genomic inbreeding coefficient), FHOM (Inbreeding estimated as the ratio of observed and expected homozygous genotypes), FGRM (Inbreeding estimated on genomic relationship method) and FGRM0.5 (Inbreeding estimated from the diagonal of a GRM with allele frequencies near to 0.5) were 0.009, 0.091, 0.035, -0.104 and -0.009, respectively. Our study revealed the optimum parameter setting in PLINK viz. maximal gaps between two SNPs, minimal density of SNPs in a segment (in kb/SNP) and scanning window size to identify ROH segments, which will enable ROH estimation more efficient and comparable across various SNP genotyping-based studies. The result further emphasized the significant role of genomics in unraveling population diversity, selection signatures and inbreeding in the ongoing Sahiwal breed improvement programs.
Collapse
Affiliation(s)
- Satish Kumar Illa
- Livestock Research Station, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Shabahat Mumtaz
- Animal Husbandry Department, Kolkata, West Bengal State, India
| | - Sapna Nath
- College of Veterinary Science, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Sabyasachi Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| | - Anupama Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| |
Collapse
|
31
|
Falchi L, Cesarani A, Criscione A, Hidalgo J, Garcia A, Mastrangelo S, Macciotta NPP. Effect of genotyping density on the detection of runs of homozygosity and heterozygosity in cattle. J Anim Sci 2024; 102:skae147. [PMID: 38798158 PMCID: PMC11197001 DOI: 10.1093/jas/skae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Runs of homozygosity (ROHom) are contiguous stretches of homozygous regions of the genome. In contrast, runs of heterozygosity (ROHet) are heterozygosity-rich regions. The detection of these two types of genomic regions (ROHom and ROHet) is influenced by the parameters involved in their identification and the number of available single-nucleotide polymorphisms (SNPs). The present study aimed to test the effect of chip density in detecting ROHom and ROHet in the Italian Simmental cattle breed. A sample of 897 animals were genotyped at low density (50k SNP; 397 individuals), medium density (140k SNP; 348 individuals), or high density (800k SNP; 152 individuals). The number of ROHom and ROHet per animal (nROHom and nROHet, respectively) and their average length were calculated. ROHom or ROHet shared by more than one animal and the number of times a particular SNP was inside a run were also computed (SNPROHom and SNPROHet). As the chip density increased, the nROHom increased, whereas their average length decreased. In contrast, the nROHet decreased and the average length increased as the chip density increased. The most repeated ROHom harbored no genes, whereas in the most repeated ROHet four genes (SNRPN, SNURF, UBE3A, and ATP10A) previously associated with reproductive traits were found. Across the 3 datasets, 31 SNP, located on Bos taurus autosome (BTA) 6, and 37 SNP (located on BTA21) exceeded the 99th percentile in the distribution of the SNPROHom and SNPROHet, respectively. The genomic region on BTA6 mapped the SLIT2, PACRGL, and KCNIP4 genes, whereas 19 and 18 genes were mapped on BTA16 and BTA21, respectively. Interestingly, most of genes found through the ROHet analysis were previously reported to be related to health, reproduction, and fitness traits. The results of the present study confirm that the detection of ROHom is more reliable when the chip density increases, whereas the ROHet trend seems to be the opposite. Genes and quantitative trait loci (QTL) mapped in the highlighted regions confirm that ROHet can be due to balancing selection, thus related to fitness traits, health, and reproduction, whereas ROHom are mainly involved in production traits. The results of the present study strengthened the usefulness of these parameters in analyzing the genomes of livestock and their biological meaning.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania 95123, Italy
| | - Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andre Garcia
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari, e Forestali, Università degli Studi di Palermo, Palermo 90128, Italy
| | | |
Collapse
|
32
|
Nayak SS, Panigrahi M, Kumar H, Rajawat D, Sharma A, Bhushan B, Dutt T. Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Anim Biotechnol 2023; 34:4167-4173. [PMID: 37039747 DOI: 10.1080/10495398.2023.2196317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Major Histocompatibility Complex (MHC) genes are among the immune genes that have been extensively studied in vertebrates and are necessary for adaptive immunity. In the immunological response to infectious diseases, they play several significant roles. This research paper provides the selection signatures in the MHC region of the bovine genome as well as how certain genes related to innate immunity are undergoing a positive selective sweep. Here, we investigated signatures of historical selection on MHC genes in 15 different cattle populations and a total of 427 individuals. To identify the selection signatures, we have used three separate summary statistics. The findings show potential selection signatures in cattle from whom we isolated genes involved in the MHC. The most significant regions related to the bovine MHC are BOLA, non-classical MHC class I antigen (BOLA-NC1), Microneme protein 1 (MIC1) , Cluster of Differentiation 244 (CD244), Gap Junction Alpha-5 Protein (GJA5). It will be possible to gain new insight into immune system evolution by understanding the distinctive characteristics of MHC in cattle.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
33
|
Saif-Ur-Rehman M, Hassan FU, Reecy J, Deng T. Whole-genome SNP markers reveal runs of homozygosity in indigenous cattle breeds of Pakistan. Anim Biotechnol 2023; 34:1384-1396. [PMID: 35044288 DOI: 10.1080/10495398.2022.2026369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The runs of homozygosity (ROH) were identified in 14 Pakistani cattle breeds (n = 105) by genotyping with the Illumina 50 K SNP BeadChip. These breeds were categorized into Dairy, Dual, and Draft breeds based on their utility and production performance. We identified a total of 10,936 ROHs which mainly consisted of a high number of shorter segments (1-4 Mb). Dairy group exhibited the highest level of inbreeding (FROH: 0.078 ± 0.028) while the lowest (FROH: 0.002 ± 0.008) was observed in Dual group. In 48 genomic regions identified with a high frequency of ROH, 207 genes were detected in the three breed groups. A substantially higher number of ROH islands detected in dairy breeds indicated the impact of the positive selection pressure over the years. Important candidate genes and QTL were detected in the ROH islands associated with economic traits like milk production, reproduction, meat, carcass, and health traits in dairy cattle.
Collapse
Affiliation(s)
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
34
|
Amandykova M, Akhatayeva Z, Kozhakhmet A, Kapassuly T, Orazymbetova Z, Yergali K, Khamzin K, Iskakov K, Dossybayev K. Distribution of Runs of Homozygosity and Their Relationship with Candidate Genes for Productivity in Kazakh Meat-Wool Sheep Breed. Genes (Basel) 2023; 14:1988. [PMID: 38002931 PMCID: PMC10671688 DOI: 10.3390/genes14111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Increasing the fertility of sheep remains one of the crucial issues of modern sheep breeding. The Kazakh meat-wool sheep is an excellent breed with high meat and wool productivity and well adapted to harsh conditions. Nowadays, runs of homozygosity (ROHs) are considered a suitable approach for studying the genetic characteristics of farm animals. The aims of the study were to analyze the distribution of ROHs, describe autozygosity, and detect genomic regions with high ROH islands. In this study, we genotyped a total of 281 Kazakh meat-wool sheep using the Illumina iScan® system (EquipNet, Canton, MA, USA) via Ovine SNP50 BeadChip array. As a results, a total of 15,069 ROHs were found in the three Kazakh meat-wool sheep populations. The mean number of ROH per animal across populations varied from 40.3 (POP1) to 42.2 (POP2) in the category 1+ Mb. Furthermore, the number of ROH per animal in ROH1-2 Mb were much higher than ROH2-4 Mb and ROH8-16 Mb in the three sheep populations. Most of individuals had small number of ROH>16 Mb. The highest and lowest genomic inbreeding coefficient values were observed in POP2 and POP3, respectively. The estimated FROH presented the impact that recent inbreeding has had in all sheep populations. Furthermore, a set of interesting candidate genes (BMP2, BMPR2, BMPRIB, CLOCK, KDM2B, TIAM1, TASP1, MYBPC1, MYOM1, and CACNA2D1), which are related to the productive traits, were found. Collectively, these findings will contribute to the breeding and conservation strategies of the Kazakh meat-wool sheep breed.
Collapse
Affiliation(s)
- Makpal Amandykova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
| | - Zhanerke Akhatayeva
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Altynay Kozhakhmet
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Tilek Kapassuly
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
| | - Zarina Orazymbetova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
| | - Kanagat Yergali
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kadyrzhan Khamzin
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kairat Iskakov
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kairat Dossybayev
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| |
Collapse
|
35
|
Sallam AM, Reyer H, Wimmers K, Bertolini F, Aboul-Naga A, Braz CU, Rabee AE. Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics 2023; 24:573. [PMID: 37752425 PMCID: PMC10521497 DOI: 10.1186/s12864-023-09679-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the genomic features of livestock is essential for successful breeding programs and conservation. This information is scarce for local goat breeds in Egypt. In the current study, genomic regions with selection signatures were identified as well as runs of homozygosity (ROH), genomic inbreeding coefficients (FROH) and fixation index (FST) were detected in Egyptian Nubian, Damascus, Barki and Boer goat breeds. A total of 46,268 SNP markers and 337 animals were available for the genomic analyses. On average, 145.44, 42.02, 87.90 and 126.95 ROHs were detected per individual in the autosomal genome of the respective breeds. The mean accumulative ROH lengths ranged from 46.5 Mb in Damascus to 360 Mb in Egyptian Nubian. The short ROH segments (< 2 Mb) were most frequent in all breeds, while the longest ROH segments (> 16 Mb) were exclusively found in the Egyptian Nubian. The highest average FROH was observed in Egyptian Nubian (~ 0.12) followed by Boer (~ 0.11), while the lowest FROH was found in Damascus (~ 0.05) and Barki breed (~ 0.03). The estimated mean FST was 0.14 (Egyptian Nubian and Boer), 0.077 (Egyptian Nubian and Barki), 0.075 (Egyptian Nubian and Damascus), 0.071 (Barki and Boer), 0.064 (Damascus and Boer), and 0.015 (Damascus and Barki), for each pair of breeds. Interestingly, multiple SNPs that accounted for high FST values were observed on chromosome 6 in regions harboring ALPK1 and KCNIP4. Genomic regions overlapping both FST and ROH harbor genes related to immunity (IL4R, PHF23, GABARAP, GPS2, and CD68), reproduction (SPATA2L, TNFSF12, TMEM95, and RNF17), embryonic development (TCF25 and SOX15) and adaptation (MC1R, KDR, and KIT), suggesting potential genetic adaptations to local environmental conditions. Our results contribute to the understanding of the genetic architecture of different goat breeds and may provide valuable information for effective preservation and breeding programs of local goat breeds in Egypt.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Adel Aboul-Naga
- Animal Production Research Institute, Agricultural Research Center, Dokki, Cairo, Egypt
| | - Camila U Braz
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Alaa Emara Rabee
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 Gregory Dr, Urbana, 61801, USA
| |
Collapse
|
36
|
Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:471-479. [PMID: 37808215 PMCID: PMC10556852 DOI: 10.18699/vjgb-23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
Collapse
Affiliation(s)
- M G Smaragdov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, Pushkin, Russia
| |
Collapse
|
37
|
Zheng X, Wang T, Niu Q, Wu J, Zhao Z, Gao H, Li J, Xu L. Evaluation of Linear Programming and Optimal Contribution Selection Approaches for Long-Term Selection on Beef Cattle Breeding. BIOLOGY 2023; 12:1157. [PMID: 37759557 PMCID: PMC10525978 DOI: 10.3390/biology12091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
The optimized selection method can maximize the genetic gain in offspring under the premise of controlling the inbreeding level of the population. At present, genetic gain has been largely improved by using genomic selection in multiple farm animals. However, the design of the optimal selection method and assessment of its effects during long-term selection in beef cattle breeding are yet to be fully explored. In this study, a simulated beef cattle population was constructed, and 15 generations of simulated breeding were carried out using the linear programming breeding strategy (LP) and optimal contribution selection strategy (OCS), respectively. The truncation selection strategy (TS-I and TS-II) was used as the control. During the breeding process, genetic parameters including genetic gain, average kinship coefficient, QTL effect variance, and average observed heterozygosity were calculated and compared across generations. Our results showed that the LP method can significantly improve the genetic gain in the population, especially the genetic performance of the traits with high heritability and the traits with high weight in the breeding process, but the inbreeding level of the population is higher under LP strategy. Although the genetic gain in the population under the OCS strategy is lower than the TS-II strategy, this method can effectively control the inbreeding level of the population. Our findings also suggest that the LP and OCS method can be used as an effective means to improve genetic gain, while the OCS method is a more ideal method to obtain sustainable genetic gain during long-term selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (T.W.); (Q.N.); (J.W.); (Z.Z.); (H.G.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (T.W.); (Q.N.); (J.W.); (Z.Z.); (H.G.)
| |
Collapse
|
38
|
Hu Y, Yu Z, Gao X, Liu G, Zhang Y, Šmarda P, Guo Q. Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars. HORTICULTURE RESEARCH 2023; 10:uhad136. [PMID: 37564270 PMCID: PMC10410194 DOI: 10.1093/hr/uhad136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan 571339, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Koltlářská 2, Brno 61137, Czech Republic
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
39
|
Abdoli R, Mirhoseini SZ, Ghavi Hossein-Zadeh N, Zamani P, Moradi MH, Ferdosi MH, Sargolzaei M, Gondro C. Runs of homozygosity and cross-generational inbreeding of Iranian fat-tailed sheep. Heredity (Edinb) 2023; 130:358-367. [PMID: 37016136 PMCID: PMC10238534 DOI: 10.1038/s41437-023-00611-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
The Lori-Bakhtiari fat-tailed sheep is one of the most important heavyweight native breeds of Iran. The breed is robust and well-adapted to semi-arid regions and an important resource for smallholder farms. An established nucleus-based breeding scheme is used to improve their production traits but there is an indication of inbreeding depression and loss of genetic diversity due to selection. Here, we estimated the inbreeding levels and the distribution of runs of homozygosity (ROH) islands in 122 multi-generational female Lori-Bakhtiari from different half-sib families selected from a breeding station that were genotyped on the 50k array. A total of 2404 ROH islands were identified. On average, there were 19.70 ± 1.4 ROH per individual ranging between 6 and 41. The mean length of the ROH was 4.1 ± 0.14 Mb. There were 1999 short ROH of length 1-6 Mb and another 300 in the 6-12 Mb range. Additionally long ROH indicative of inbreeding were found in the ranges of 12-24 Mb (95) and 24-48 Mb (10). The average inbreeding coefficient (FROH) was 0.031 ± 0.003 with estimates varying from 0.006 to 0.083. Across generations, FROH increased from 0.019 ± 0.012 to 0.036 ± 0.007. Signatures of selection were identified on chromosomes 2, 6, and 10, encompassing 55 genes and 23 QTL associated with production traits. Inbreeding coefficients are currently within acceptable levels but across generations, inbreeding is increasing due to selection. The breeding program needs to actively monitor future inbreeding rates and ensure that the breed maintains or improves on its current levels of environmental adaptation.
Collapse
Affiliation(s)
- Ramin Abdoli
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Gilan, Iran.
| | - Seyed Ziaeddin Mirhoseini
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran.
| | - Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| | - Pouya Zamani
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, 65178-33131, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran
| | - Mohammad Hossein Ferdosi
- AGBU, a joint venture of NSW Department of Primary Industries and University of New England, University of New England, Armidale, NSW, 2351, Australia
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Cedric Gondro
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
40
|
Carrier A, Gilbert I, Leclerc P, Duchesne M, Robert C. Characterization of the genetic pool of the Canadienne dairy cattle breed. Genet Sel Evol 2023; 55:32. [PMID: 37161364 PMCID: PMC10170705 DOI: 10.1186/s12711-023-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Canadienne cattle are the oldest breed of dairy cattle in North America. The Canadienne breed originates from cattle that were brought to America by the mid-seventeenth century French settlers. The herd book was established in 1886 and the current breed characteristics include dark coat color, small size compared to the modern Holstein breed, and overall rusticity shaped by the harsh environmental conditions that were prevalent during the settlement of North America. The Canadienne breed is an invaluable genetic resource due to its high resilience, longevity and fertility. However, it is heavily threatened with a current herd limited to an estimated 1200 registered animals, of which less than 300 are fullblood. To date, no effort has been made to document the genetic pool of this heritage breed in order to preserve it. RESULTS In this project, we used genomic data, which allow a precise description of the genetic makeup of a population, to provide valuable information on the genetic diversity of this heritage breed and suggest management options for its long-term viability. Using a panel that includes 640,000 single nucleotide polymorphisms (SNPs), we genotyped 190 animals grouped into six purity ranges. Unsupervised clustering analyses revealed three genetically distinct groups among those with the higher levels of purity. The observed heterozygosity was higher than expected even in the 100% purebreds. Comparison with Holstein genotypes showed significantly shorter runs of homozygosity for the Canadienne breed, which was unexpected due to the high inbreeding value calculated from pedigree data. CONCLUSIONS Overall, our data indicate that the fullblood gene pool of the Canadienne breed is more diversified than expected and that bloodline management could promote breed sustainability. In its current state, the Canadienne is not a dead-end breed but remains highly vulnerable due to its small population size.
Collapse
Affiliation(s)
- Alexandra Carrier
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Pierre Leclerc
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Dé̇partement d'obstétrique, gynécologie et reproduction, Faculté de médecine, Université Laval, QC, Québec, Canada
| | - Mario Duchesne
- Association de Mise en Valeur de La Race Bovine Canadienne (AVRBC), Québec, QC, Canada
| | - Claude Robert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada.
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada.
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
| |
Collapse
|
41
|
Bengtsson C, Stålhammar H, Thomasen JR, Fikse WF, Strandberg E, Eriksson S. Mating allocations in Holstein combining genomic information and linear programming optimization at the herd level. J Dairy Sci 2023; 106:3359-3375. [PMID: 37028963 DOI: 10.3168/jds.2022-22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 04/08/2023]
Abstract
In this study, we explored mating allocation in Holstein using genomic information for 24,333 Holstein females born in Denmark, Finland, and Sweden. We used 2 data sets of bulls: the top 50 genotyped bulls and the top 25 polled genotyped bulls on the Nordic total merit scale. We used linear programming to optimize economic scores within each herd, considering genetic level, genetic relationship, semen cost, the economic impact of genetic defects, polledness, and β-casein. We found that it was possible to reduce genetic relationships and eliminate expression of genetic defects with minimal effect on the genetic level in total merit index. Compared with maximizing only Nordic total merit index, the relative frequency of polled offspring increased from 13.5 to 22.5%, and that of offspring homozygous for β-casein (A2A2) from 66.7 to 75.0% in one generation, without any substantial negative impact on other comparison criteria. Using only semen from polled bulls, which might become necessary if dehorning is banned, considerably reduced the genetic level. We also found that animals carrying the polled allele were less likely to be homozygous for β-casein (A2A2) and more likely to be carriers of the genetic defect HH1. Hence, adding economic value to a monogenic trait in the economic score used for mating allocation sometimes negatively affected another monogenetic trait. We recommend that the comparison criteria used in this study be monitored in a modern genomic mating program.
Collapse
Affiliation(s)
- C Bengtsson
- VikingGenetics, VikingGenetics Sweden AB, 53294 Skara, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007 Uppsala, Sweden.
| | - H Stålhammar
- VikingGenetics, VikingGenetics Sweden AB, 53294 Skara, Sweden
| | - J R Thomasen
- VikingGenetics, VikingGenetics Sweden AB, 53294 Skara, Sweden
| | - W F Fikse
- Växa Sverige, Växa Sverige, Box 288, 75105 Uppsala, Sweden
| | - E Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007 Uppsala, Sweden
| | - S Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007 Uppsala, Sweden
| |
Collapse
|
42
|
Wang Q, Zhang J, Wang H, Wang Z, Li Q, Zhao G, Zheng M, Wen J. Estimates of genomic inbreeding and identification of candidate regions in Beijing-You chicken populations. Anim Genet 2023; 54:155-165. [PMID: 36541281 DOI: 10.1111/age.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Runs of homozygosity (ROHs) has become an effective method for analysing inbreeding in livestock populations. Moreover, ROHs is well-suited to detect signatures of selection via ROH islands. This study aimed to investigate the occurrence and distribution of ROHs, compare the genomic inbreeding coefficients and identify the genomic regions with high ROH frequencies in different Beijing-You chicken (BY) populations, including a random conservation population (BY_R), a pedigree conservation population (BY_P), and a commercial population obtained from the market (BY_C). Among them, BY_R in 2010 and 2019 were BY_R1 and BY_R2 respectively. A total of 27 916 ROHs were identified. The average number of ROHs per individual across the three BY populations ranged from 213 (BY_P) to 161 (BY_C), and the average length of ROHs ranged from 0.432 Mb (BY_R2) to 0.451 Mb (BY_P). The highest inbreeding coefficient calculated based on ROHs (FROH ) was 0.1 in BY_P, whereas the lowest FROH was 0.0743 in BY_C. In addition, the inbreeding coefficient of BY_R2 (FROH = 0.0798) was higher than that of BY_R1 (FROH = 0.0579). Furthermore, the highest proportion of long ROH fragments (>4 Mb) was observed in BY_P and BY_C. This study showed the top 10 ROH islands of each population, and these ROH islands harboured 53 genes, some of which were related to limb development, body size and immune response. These findings contribute to the understanding of genetic diversity and population demography, and might help improve breeding and conservation strategies for BY populations.
Collapse
Affiliation(s)
- Qiao Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Jin Zhang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Hailong Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Zixuan Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Qinghe Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Guiping Zhao
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Jie Wen
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
43
|
Visser C, Lashmar SF, Reding J, Berry DP, van Marle-Köster E. Pedigree and genome-based patterns of homozygosity in the South African Ayrshire, Holstein, and Jersey breeds. Front Genet 2023; 14:1136078. [PMID: 37007942 PMCID: PMC10063850 DOI: 10.3389/fgene.2023.1136078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The erosion of genetic diversity limits long-term genetic gain and impedes the sustainability of livestock production. In the South African (SA) dairy industry, the major commercial dairy breeds have been applying estimated breeding values (EBVs) and/or have been participating in Multiple Across Country Evaluations (MACE). The transition to genomic estimated breeding values (GEBVs) in selection strategies requires monitoring of the genetic diversity and inbreeding of current genotyped animals, especially considering the comparatively small population sizes of global dairy breeds in SA. This study aimed to perform a homozygosity-based evaluation of the SA Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy cattle breeds. Three sources of information, namely 1) single nucleotide polymorphism (SNP) genotypes (3,199 animals genotyped for 35,572 SNPs) 2) pedigree records (7,885 AYR; 28,391 HST; 18,755 JER), and 3) identified runs of homozygosity (ROH) segments were used to quantify inbreeding related parameters. The lowest pedigree completeness was for the HST population reducing from a value of 0.990 to 0.186 for generation depths of one to six. Across all breeds, 46.7% of the detected ROH were between 4 megabase pairs (Mb) and 8 Mb in length. Two conserved homozygous haplotypes were identified in more than 70% of the JER population on Bos taurus autosome (BTA) 7. The JER breed displayed the highest level of inbreeding across all inbreeding coefficients. The mean (± standard deviation) pedigree-based inbreeding coefficient (FPED) ranged from 0.051 (±0.020) for AYR to 0.062 (±0.027) for JER, whereas SNP-based inbreeding coefficients (FSNP) ranged from 0.020 (HST) to 0.190 (JER) and ROH-based inbreeding coefficients, considering all ROH segment coverage (FROH), ranged from 0.053 (AYR) to 0.085 (JER). Within-breed Spearman correlations between pedigree-based and genome-based estimates ranged from weak (AYR: 0.132 between FPED and FROH calculated for ROH <4Mb in size) to moderate (HST: 0.584 between FPED and FSNP). Correlations strengthened between FPED and FROH as the ROH length category was considered lengthened, suggesting a dependency on breed-specific pedigree depth. The genomic homozygosity-based parameters studied proved useful in investigating the current inbreeding status of reference populations genotyped to implement genomic selection in the three most prominent South African dairy cattle breeds.
Collapse
Affiliation(s)
- Carina Visser
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Simon Frederick Lashmar
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jason Reding
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Donagh P. Berry
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Animal and Grassland Research and Innovation Centre, Teagasc, Co. Cork, Ireland
| | - Esté van Marle-Köster
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
Sarviaho K, Uimari P, Martikainen K. Estimating inbreeding rate and effective population size in the Finnish Ayrshire population in the era of genomic selection. J Anim Breed Genet 2023; 140:343-353. [PMID: 36808142 DOI: 10.1111/jbg.12762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Genomic selection has been applied in dairy cattle breeding over the last decade. Using genomic information may speed up genetic gain as breeding values can be predicted reasonably accurately directly after birth. However, genetic diversity may decrease if the inbreeding rate per generation increases and the effective population size decreases. Despite many positive qualities of the Finnish Ayrshire, for example, high average protein yield and fertility, over time the breed has lost its place as the most common dairy breed in Finland. Thus, maintaining the genetic variability of the breed is becoming more important. The aim of our research was to estimate the impact of genomic selection on inbreeding rate and effective population size using both pedigree and genomic data. The genomic data included 46,914 imputed single nucleotide polymorphism (SNP) variants from 75,038 individuals, and the pedigree data included 2,770,025 individuals. All animals in the data were born between 2000 and 2020. Genomic inbreeding coefficients were estimated as the proportion of SNPs in runs of homozygosity (ROH) out of the total number of SNPs. The inbreeding rate was estimated by regressing the mean genomic inbreeding coefficients on birth years. Effective population size was then estimated based on the inbreeding rate. Additionally, effective population size was estimated from the mean increase in individual inbreeding using pedigree data. Introduction of genomic selection was assumed to have taken place gradually; years 2012-2014 were treated as a transition period from the traditional phenotype-based breeding value estimation to genomic-based estimation. The median length of the identified homozygous segments was 5.5 Mbp, and a slight increase in the proportion of segments over 10 Mbp was observed after 2010. The inbreeding rate decreased from 2000 to 2011 and subsequently increased slightly. The pedigree- and genomic-based estimates of inbreeding rate were similar to each other. The estimates of effective population size based on the regression method were very sensitive to the number of years considered; thus, the estimates were not very reliable. The effective population size estimated from the mean increase in individual inbreeding reached its highest value of 160 in 2011 and decreased to 150 after that. In addition, the generation interval in the sire path has decreased from 5.5 years to 3.5 years after genomic selection was implemented. Based on our results, after the implementation of genomic selection, the proportion of long ROH stretches has increased, the generation interval in the sire path has decreased, the inbreeding rate has increased and the effective population size has decreased. However, the effective population size is still at a good level, allowing for an efficient selection scheme in the Finnish Ayrshire breed.
Collapse
Affiliation(s)
- Katri Sarviaho
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Uimari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Katja Martikainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India. Genes Genomics 2023; 45:813-825. [PMID: 36807878 DOI: 10.1007/s13258-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Genome-wide runs of homozygosity (ROH) are appropriate to estimate genomic inbreeding, determine population history, unravel the genetic architecture of complex traits and disorders. OBJECTIVE The study sought to investigate and compare the actual proportion of homozygosity or autozygosity in the genomes of progeny of four subtypes of first cousin mating in humans, using both pedigree and genomic measures for autosomes and sex chromosomes. METHODS For this purpose, Illumina Global Screening Array-24 v1.0 BeadChip followed by cyto-ROH analysis through Illumina Genome Studio was used to characterise the homozygosity in five participants from North Indian state (Uttar Pradesh). PLINK v.1.9 software was used to estimate the genomic inbreeding coefficients viz. ROH-based inbreeding estimate (FROH) and homozygous loci-based inbreeding estimate (FHOM). RESULTS A total of 133 ROH segments were detected with maximum number and genomic coverage in Matrilateral Parallel (MP) type and minimum in outbred individual. ROH pattern revealed that MP type has a higher degree of homozygosity than other subtypes. The comparison of FROH, FHOM, and pedigree-based inbreeding estimate (FPED) showed some difference in theoretical and realised proportion of homozygosity for sex-chromosomal loci but not for autosome for each type of consanguinity. CONCLUSIONS This is the very first study to compare and estimate the pattern of homozygosity among the kindreds of first cousin unions. However, a greater number of individuals from each type of marriage is required for statistical inference of no difference between theoretical and realized homozygosity among different degrees of inbreeding prevalent in humans worldwide.
Collapse
|
46
|
Hu X, Carver BF, El-Kassaby YA, Zhu L, Chen C. Weighted kernels improve multi-environment genomic prediction. Heredity (Edinb) 2023; 130:82-91. [PMID: 36522412 PMCID: PMC9905581 DOI: 10.1038/s41437-022-00582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Crucial to variety improvement programs is the reliable and accurate prediction of genotype's performance across environments. However, due to the impactful presence of genotype by environment (G×E) interaction that dictates how changes in expression and function of genes influence target traits in different environments, prediction performance of genomic selection (GS) using single-environment models often falls short. Furthermore, despite the successes of genome-wide association studies (GWAS), the genetic insights derived from genome-to-phenome mapping have not yet been incorporated in predictive analytics, making GS models that use Gaussian kernel primarily an estimator of genomic similarity, instead of the underlying genetics characteristics of the populations. Here, we developed a GS framework that, in addition to capturing the overall genomic relationship, can capitalize on the signal of genetic associations of the phenotypic variation as well as the genetic characteristics of the populations. The capacity of predicting the performance of populations across environments was demonstrated by an overall gain in predictability up to 31% for the winter wheat DH population. Compared to Gaussian kernels, we showed that our multi-environment weighted kernels could better leverage the significance of genetic associations and yielded a marked improvement of 4-33% in prediction accuracy for half-sib families. Furthermore, the flexibility incorporated in our Bayesian implementation provides the generalizable capacity required for predicting multiple highly genetic heterogeneous populations across environments, allowing reliable GS for genetic improvement programs that have no access to genetically uniform material.
Collapse
Affiliation(s)
- Xiaowei Hu
- grid.65519.3e0000 0001 0721 7331Department of Statistics, Oklahoma State University, Stillwater, OK USA ,grid.27755.320000 0000 9136 933XPresent Address: Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Brett F. Carver
- grid.65519.3e0000 0001 0721 7331Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK USA
| | - Yousry A. El-Kassaby
- grid.17091.3e0000 0001 2288 9830Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC Canada
| | - Lan Zhu
- grid.65519.3e0000 0001 0721 7331Department of Statistics, Oklahoma State University, Stillwater, OK USA
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
47
|
Chen Z, Zhu M, Wu Q, Lu H, Lei C, Ahmed Z, Sun J. Analysis of genetic diversity and selection characteristics using the whole genome sequencing data of five buffaloes, including Xilin buffalo, in Guangxi, China. Front Genet 2023; 13:1084824. [PMID: 36699455 PMCID: PMC9869173 DOI: 10.3389/fgene.2022.1084824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Buffalo is an economically important livestock that renders useful services to manhood in terms of meat, milk, leather, and draught. The Xilin buffalo is among the native buffalo breeds of China. In the present study, the genetic architecture and selection signature signals of Xilin buffalo have been explored. Correlation analysis of the population structure of Xilin buffalo was conducted by constructing NJ tree, PCA, ADMIXTURE and other methods. A total of twenty-five (n = 25) Xilin buffalo whole genome data and data of forty-six (n = 46) buffaloes published data were used. The population structure analysis showed that the Xilin buffalo belong to the Middle-Lower Yangtze. The genome diversity of Xilin buffalo was relatively high. The CLR, π ratio, F ST, and XP-EHH were used to detect the candidate genes characteristics of positive selection in Xilin buffalo. Among the identified genes, most of the enriched signal pathways were related to the nervous system and metabolism. The mainly reported genes were related to the nervous system (GRM5, GRIK2, GRIA4), reproductive genes (CSNK1G2, KCNIP4), and lactation (TP63). The results of this study are of great significance for understanding the molecular basis of phenotypic variation of related traits of Xilin buffalo. We provide a comprehensive overview of sequence variations in Xilin buffalo genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Xilin buffalo and help in future breeding and conservation programs of this important livestock genetic resource.
Collapse
Affiliation(s)
- Zhefu Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China,College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Min Zhu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Wu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huilin Lu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, China
| | - Junli Sun
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China,*Correspondence: Junli Sun,
| |
Collapse
|
48
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
49
|
Ablondi M, Summer A, Stocco G, Finocchiaro R, van Kaam JT, Cassandro M, Dadousis C, Sabbioni A, Cipolat-Gotet C. The role of inbreeding depression on productive performance in the Italian Holstein breed. J Anim Sci 2023; 101:skad382. [PMID: 37983004 PMCID: PMC10693289 DOI: 10.1093/jas/skad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/18/2023] [Indexed: 11/21/2023] Open
Abstract
Inbreeding depression has become an urgent issue in cosmopolitan breeds where the massive genetic progress achieved in the latest generations is counterbalanced by a dramatic loss of genetic diversity causing increased health issues. Thus, the aim of this study was to estimate inbreeding depression on productive traits in Holstein dairy cattle. More precisely, we aimed to i) determine the level of inbreeding in 27,735 Italian Holstein dairy cows using pedigree and genotype data, ii) quantify the effect of inbreeding on 305-d in milk yield (MY; kg), fat yield (FY; kg), and protein yield (PY; kg) based on different statistical approaches, iii) determine if recent inbreeding has a more harmful impact than ancestral ones, and iv) quantify chromosomal homozygosity effect on productive traits. Quality control was performed on the autosomal chromosomes resulting in a final dataset of 84,443 single nucleotide polymorphisms. Four statistical models were used to evaluate the presence of inbreeding depression, which included linear regression analysis and division of FPED and FROH into percentile classes. Moreover, FROH was partitioned into i) length classes to assess the role of recent and ancestral inbreeding and ii) chromosome-specific contributions (FROH-CHR). Results evidenced that inbreeding negatively impacted the productive performance of Italian Holstein Friesian cows. However, differences between the estimated FPED and FROH coefficients resulted in different estimates of inbreeding depression. For instance, a 1% increase in FPED and FROH was associated with a decrease in MY of about 44 and 61 kg (P < 0.01). Further, when considering the extreme inbreeding percentile classes moving from the 5th lowest to the 95th highest, there was a reduction of -263 kg and -561 kg per lactation for FPED and FROH. Increased inbreeding, estimated by FPED and FROH, had also a negative effect on PY and FY, either fit as a regressor or percentile classes. When evaluating the impact of inbreeding based on runs of homozygosity (ROH) length classes, longer ROH (over 8 Mb) had a negative effect in all traits, indicating that recent inbreeding might be more harmful than the ancestral one. Finally, results within chromosome homozygosity highlighted specific chromosomes with a more deleterious effect on productive traits.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Raffaella Finocchiaro
- Associazione Nazionale Allevatori della Razza Frisona Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
| | - Jan-Thijs van Kaam
- Associazione Nazionale Allevatori della Razza Frisona Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
| | - Martino Cassandro
- Associazione Nazionale Allevatori della Razza Frisona Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | - Christos Dadousis
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
50
|
Caballero A, Fernández A, Villanueva B, Toro MA. A comparison of marker-based estimators of inbreeding and inbreeding depression. Genet Sel Evol 2022; 54:82. [PMID: 36575379 PMCID: PMC9793638 DOI: 10.1186/s12711-022-00772-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We investigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD). RESULTS If the allele frequencies of a base population taken as a reference for the computation of inbreeding are known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate estimates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity (FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main findings of the simulations. CONCLUSIONS When base population allele frequencies are known, all marker-allele frequency-based estimators of inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. The estimators FVR2 and FLH2 have the poorest performances.
Collapse
Affiliation(s)
- Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310 Vigo, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Miguel A. Toro
- grid.5690.a0000 0001 2151 2978Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|