1
|
Kyriakaki P, Mavrommatis A, Tsiplakou E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals (Basel) 2024; 14:3291. [PMID: 39595343 PMCID: PMC11591094 DOI: 10.3390/ani14223291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to be effective in enhancing the quality of ruminant products, including meat and milk. However, under these dietary conditions, the de novo lipogenesis could be influenced, too. On the other hand, even if the forage-to-concentrate ratio (F:C) is also a key factor affecting lipid metabolism in small ruminants, there is scarce information about its interaction with dietary PUFA. This study investigates the potential of the F:C ratio as a lever to manipulate lipid metabolism in dairy goats under high dietary PUFA supplementation. For this purpose, twenty-two crossbred dairy goats [Alpine × Local (Greek) breeds] (BW = 50.6 ± 6.1 kg) at early lactation (70 ± 10 days in milk) during the age of 3-4 years old, were separated into two homogeneous subgroups (n = 11). In the first phase, each goat was fed 20 g Schizochytrium spp./day followed by either a high-forage (20 HF) or a high-grain (20 HG) diet, while in the second phase, each goat was fed 40 g Schizochytrium spp./day followed once again either a high-forage (40 HF) or a high-grain (40 HG) diet. The F:C ratio of a high-forage and high-grain diet was 60:40 and 40:60, respectively. Tail fat tissue samples were collected by biopsy on the 42nd day of each experimental phase (last day). Significant decreases (p < 0.05) in the gene expression of ACACA, CBR2, COX4I1, ELOVL5, ELOVL7, LEP, and SCD were presented in goats fed 40 g compared to those fed 20 g Schizochytrium spp., while the gene expression of ACACA, AGPAT2, AGPAT3, ELOVL5, ELOVL6, EPHX2, FASN, and SCD was decreased in high grain compared to high-forage diets. This study also indicated that with the aim to enrich goat products with PUFA by increasing their levels in the diet, lipid metabolism is negatively affected. However, a diet with higher forage inclusion can partially attenuate this condition.
Collapse
Affiliation(s)
| | | | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (P.K.); (A.M.)
| |
Collapse
|
2
|
Jiang W, Mooney MH, Shirali M. Unveiling the Genetic Landscape of Feed Efficiency in Holstein Dairy Cows: Insights into Heritability, Genetic Markers, and Pathways via Meta-Analysis. J Anim Sci 2024; 102:skae040. [PMID: 38354297 PMCID: PMC10957122 DOI: 10.1093/jas/skae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.
Collapse
Affiliation(s)
- Wentao Jiang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| |
Collapse
|
3
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Song Z, Xiong H, Meng X, Ma Q, Wei Y, Li Y, Liu J, Liang M, Xu H. Dietary Cholesterol Supplementation Inhibits the Steroid Biosynthesis but Does Not Affect the Cholesterol Transport in Two Marine Teleosts: A Hepatic Transcriptome Study. AQUACULTURE NUTRITION 2023; 2023:2308669. [PMID: 37312679 PMCID: PMC10260315 DOI: 10.1155/2023/2308669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Cholesterol has been used as additive in fish feeds due to the reduced use of fish meal and fish oil. In order to evaluate the effects of dietary cholesterol supplementation (D-CHO-S) on fish physiology, a liver transcriptome analysis was performed following a feeding experiment on turbot and tiger puffer with different levels of dietary cholesterol. The control diet contained 30% fish meal (0% fish oil) without cholesterol supplementation, while the treatment diet was supplemented with 1.0% cholesterol (CHO-1.0). A total of 722 and 581 differentially expressed genes (DEG) between the dietary groups were observed in turbot and tiger puffer, respectively. These DEG were primarily enriched in signaling pathways related to steroid synthesis and lipid metabolism. In general, D-CHO-S downregulated the steroid synthesis in both turbot and tiger puffer. Msmo1, lss, dhcr24, and nsdhl might play key roles in the steroid synthesis in these two fish species. Gene expressions related to cholesterol transport (npc1l1, abca1, abcg1, abcg2, abcg5, abcg8, abcb11a, and abcb11b) in the liver and intestine were also extensively investigated by qRT-PCR. However, the results suggest that D-CHO-S rarely affected the cholesterol transport in both species. The protein-protein interaction (PPI) network constructed on steroid biosynthesis-related DEG showed that in turbot, Msmo1, Lss, Nsdhl, Ebp, Hsd17b7, Fdft1, and Dhcr7 had high intermediary centrality in the dietary regulation of steroid synthesis. In conclusion, in both turbot and tiger puffer, the supplementation of dietary cholesterol inhibits the steroid metabolism but does not affect the cholesterol transport.
Collapse
Affiliation(s)
- Ziling Song
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Haiyan Xiong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Xiaoxue Meng
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yanlu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jian Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
5
|
Wang Y, Li Q, Wang L, Liu Y, Yan T. Effects of a High-Concentrate Diet on the Blood Parameters and Liver Transcriptome of Goats. Animals (Basel) 2023; 13:ani13091559. [PMID: 37174596 PMCID: PMC10177143 DOI: 10.3390/ani13091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The objective of this study was to determine the effect of high-concentrate diets on the blood parameters and liver transcriptome of goats. Eighteen goats were allocated into three dietary treatments: the high level of concentrate (HC) group, the medium level of concentrate (MC) group, and the low level of concentrate (LC) group. The blood parameters and pathological damage of the gastrointestinal tract and liver tissues were measured. In hepatic portal vein blood, HC showed higher LPS, VFAs, and LA; in jugular vein blood, no significant differences in LPS, VFAs, and LA were recorded among groups (p > 0.05). Compared to the LC and MC groups, the HC group showed significantly increased interleukin (IL)-1β, IL-10, TNF-α, and diamine oxidase in jugular vein blood (p < 0.05). Liver transcriptome analysis discovered a total of 1269 differentially expressed genes (DEGs) among the three groups and most of them came from the HC vs. LC group. There were 333 DEGs up-regulated and 608 down-regulated in the HC group compared to the LC group. The gene ontology enrichment analysis showed that these DEGs were mainly focused on the regulation of triacylglycerol catabolism, lipoprotein particle remodeling, and cholesterol transport. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the liver of the HC group enhanced the metabolism of nutrients such as VFAs through the activation of AMPK and other signaling pathways and enhanced the clearance and detoxification of LPS by activating the toll-like receptor signaling pathway. A high-concentrate diet (HCD) can significantly promote the digestion of nutrients; the liver enhances the adaptability of goats to an HCD by regulating the expression of genes involved in nutrient metabolism and toxin clearance.
Collapse
Affiliation(s)
- Yusu Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuehui Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhai Yan
- Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK
| |
Collapse
|
6
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
7
|
Godínez-Olmedo JT, Corona L, Castrejón-Pineda FA, García-Pérez Á, Barreras A, Soto-Alcalá J, Plascencia A. Optimal level of physically effective neutral detergent fibre in corn stover cracked-corn-based finishing diets on the growth performance, dietary energetics, carcase characteristics, and nutrient digestion in fattening lambs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2034538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Josue T. Godínez-Olmedo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. de México, México
| | - Luis Corona
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. de México, México
| | | | - Águeda García-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. de México, México
| | - Alberto Barreras
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Jorge Soto-Alcalá
- Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Guasave, México
| | - Alejandro Plascencia
- Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Guasave, México
| |
Collapse
|
8
|
Zheng J, Du M, Zhang J, Liang Z, Ahmad AA, Shen J, Salekdeh GH, Ding X. Transcriptomic and Metabolomic Analyses Reveal Inhibition of Hepatic Adipogenesis and Fat Catabolism in Yak for Adaptation to Forage Shortage During Cold Season. Front Cell Dev Biol 2022; 9:759521. [PMID: 35111749 PMCID: PMC8802892 DOI: 10.3389/fcell.2021.759521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Hepatic glucose is one such adaptation used by grazing animals. While large vertebrates have been shown to have feed utilization and deposition of nutrients—fluctuations in metabolic rate—little is known about the regulating mechanism that controls hepatic metabolism in yaks under grazing conditions in the cold season. Hence, the objective of this research was to integrate transcriptomic and metabolomic data to better understand how the hepatic responds to chronic nutrient stress. Our analyses indicated that the blood parameters related to energy metabolism (glucose, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, lipoprotein lipase, insulin, and insulin-like growth factor 1) were significantly (p < 0.05) lower in the cold season. The RNA-Seq results showed that malnutrition inhibited lipid synthesis (particularly fatty acid, cholesterol, and steroid synthesis), fatty acid oxidation, and lipid catabolism and promoted gluconeogenesis by inhibiting the peroxisome proliferator-activated receptor (PPAR) and PI3K-Akt signaling pathways. For metabolite profiles, 359 metabolites were significantly altered in two groups. Interestingly, the cold season group remarkably decreased glutathione and phosphatidylcholine (18:2 (2E, 4E)/0:0). Moreover, integrative analysis of the transcriptome and metabolome demonstrated that glycolysis or gluconeogenesis, PPAR signaling pathway, fatty acid biosynthesis, steroid biosynthesis, and glutathione metabolism play an important role in the potential relationship between differential expression genes and metabolites. The reduced lipid synthesis, fatty acid oxidation, and fat catabolism facilitated gluconeogenesis by inhibiting the PPAR and PI3K-Akt signaling pathways to maintain the energy homeostasis of the whole body in the yak, thereby coping with the shortage of forages and adapting to the extreme environment of the Qinghai-Tibetan Plateau (QTP).
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Du
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiahao Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- *Correspondence: Ghasem Hosseini Salekdeh, ; Xuezhi Ding,
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Ghasem Hosseini Salekdeh, ; Xuezhi Ding,
| |
Collapse
|
9
|
Xue Y, Yin Y, Trabi EB, Xie F, Lin L, Mao S. Transcriptome analysis reveals the effect of high-grain pelleted and non-pelleted diets on ruminal epithelium of Hu-lamb. Animal 2021; 15:100278. [PMID: 34126388 DOI: 10.1016/j.animal.2021.100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022] Open
Abstract
High-grain non-pelleted (HG) and high-grain pelleted (HP) diets are becoming prevalent for ruminant feeding in intensive farms. However, rare information is about their effect on sheep and the comparison between these two kinds of diets. The current study investigated how HG and HP diets affected the transcriptome profiles of rumen epithelium in Hu-lamb. Fifteen male Hu-lambs were assigned randomly to three groups (n = 5 for each group). Lambs in the control (CON), HG, and HP groups were fed with low-grain non-pelleted diet (30% grain), HG diet (70% grain), and HP diet (70% grain), respectively, for 42 days. All these lambs were slaughtered to collect ruminal epithelium samples for transcriptome analysis. Results showed both HG and HP diets obviously changed the transcriptome profiles, and 192, 319, and three differentially expressed genes (DEGs) were identified for CON_HG, CON_HP, and HG_HP comparisons, respectively. Clusters of orthologous group functional classification of CON_HG and CON_HP DEG datasets both showed the enrichments of DEGs in pathways involved in protein biogenesis and modification as well as energy production and conversion. Kyoto encyclopedia of genes and genomes pathway analysis of CON_HG and CON_HP DEG datasets both displayed the enrichments of DEGs in ribosome and oxidative phosphorylation. Almost all these DEGs involved in translation and ribosomal structure and biogenesis as well as oxidative phosphorylation were downregulated in the HG and HP groups compared to the CON group. Furthermore, CON_HP comparison demonstrated more DEGs related to these two pathways than CON_HG comparison. In conclusion, both HG and HP diets inhibited energy production and conversion as well as protein synthesis and modification in ruminal epithelium. HP diet showed lower growth benefits, induced severer rumen acidosis, and more seriously inhibited energy production and protein synthesis as compared to HG diet.
Collapse
Affiliation(s)
- Y Xue
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109 Jilin, China
| | - Y Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - E B Trabi
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109 Jilin, China
| | - F Xie
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109 Jilin, China
| | - L Lin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109 Jilin, China
| | - S Mao
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109 Jilin, China.
| |
Collapse
|
10
|
Heymann AK, Schnabel K, Billenkamp F, Bühler S, Frahm J, Kersten S, Hüther L, Meyer U, von Soosten D, Trakooljul N, Teifke JP, Dänicke S. Effects of glyphosate residues and different concentrate feed proportions in dairy cow rations on hepatic gene expression, liver histology and biochemical blood parameters. PLoS One 2021; 16:e0246679. [PMID: 33577576 PMCID: PMC7880452 DOI: 10.1371/journal.pone.0246679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glyphosate (GLY) is worldwide one of the most used active substances in non-selective herbicides. Although livestock might be orally exposed via GLY-contaminated feedstuffs, not much is known about possible hepatotoxic effects of GLY. As hepatic xenobiotic and nutrient metabolism are interlinked, toxic effects of GLY residues might be influenced by hepatic nutrient supply. Therefore, a feeding trial with lactating dairy cows was conducted to investigate effects of GLY-contaminated feedstuffs and different concentrate feed proportions (CFP) in the diets as tool for varying nutrient supply to the liver. For this, 61 German Holstein cows (207 ± 49 days in milk; mean ± standard deviation) were either fed a GLY-contaminated total mixed ration (TMR, GLY groups, mean GLY intake 122.7 μg/kg body weight/day) or control TMR (CON groups, mean GLY intake 1.2 μg/kg body weight/day) for 16 weeks. Additionally, both groups were further split into subgroups fed a lower (LC, 30% on dry matter basis) or higher (HC, 60% on dry matter basis) CFP resulting in groups CONHC (n = 16), CONLC (n = 16), GLYHC (n = 15), GLYLC (n = 14). Blood parameters aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, cholesterol, triglyceride, total protein, calcium, phosphorus, acetic acid and urea and histopathological evaluation were not influenced by GLY, whereas all mentioned parameters were at least affected by time, CFP or an interactive manner between time and CFP. Total bilirubin blood concentration was significantly influenced by an interaction between GLY and CFP with temporarily elevated concentrations in GLYHC, whereas the biological relevance remained unclear. Gene expression analysis indicated 167 CFP-responsive genes, while seven genes showed altered expression in GLY groups compared to CON groups. Since expression changes of GLY-responsive genes were low and liver-related blood parameters changed either not at all or only slightly, the tested GLY formulation was considered to have no toxic effects on the liver of dairy cows.
Collapse
Affiliation(s)
- Ann-Katrin Heymann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Karina Schnabel
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Fabian Billenkamp
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jens Peter Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
11
|
Gao S, Zhou Z, Wang J, Loor J, Bionaz M, Ma L, Bu D. Diet Composition Affects Liver and Mammary Tissue Transcriptome in Primiparous Holstein Dairy Cows. Animals (Basel) 2020; 10:E1191. [PMID: 32674414 PMCID: PMC7401567 DOI: 10.3390/ani10071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of the present study was to evaluate the overall adaptations of liver and mammary tissue to a corn stover (CS) compared to a mixed forage (MF) diet in mid-lactation primiparous dairy cows. Twenty-four primiparous lactating Holstein cows were randomly allocated to 2 groups receiving either an alfalfa forage diet (MF, F:C = 60:40) with Chinese wildrye, alfalfa hay and corn silage as forage source or a corn stover forage diet (CS, F:C = 40:60). A subgroup of cows (n = 5/diet) was used for analysis of liver and mammary transcriptome using a 4 × 44K Bovine Agilent microarray chip. The results of functional annotation analysis showed that in liver CS vs. MF inhibited pathways related to lipid metabolism while induced the activity of the potassium channel. In mammary tissue, fatty acid metabolism was activated in CS vs. MF. In conclusion, the analysis of genes affected by CS vs. MF indicated mammary gland responding to lower level of linoleate from the diet (lower in CS vs. MF) by activating the associated biosynthesis metabolic pathway while the liver adaptively activated potassium transport to compensate for a lower K ingestion.
Collapse
Affiliation(s)
- Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Juan Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 17019, USA;
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| |
Collapse
|
12
|
Carbohydrate and amino acid metabolism and oxidative status in Holstein heifers precision-fed diets with different forage to concentrate ratios. Animal 2020; 14:2315-2325. [PMID: 32602427 DOI: 10.1017/s1751731120001287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
Collapse
|
13
|
Kizaki K, Kageyama T, Toji N, Koshi K, Sasaki K, Yamagishi N, Ishiguro-Oonuma T, Takahashi T, Hashizume K. Gene expression profiles in bovine granulocytes reflect the aberration of liver functions. Anim Sci J 2019; 91:e13324. [PMID: 31863537 DOI: 10.1111/asj.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022]
Abstract
Liver performs several important functions; however, predicting its functions is difficult. Methods of analyzing gene expression profiles, for example, microarray, provide functional information of tissues. Liver and peripheral blood leukocytes (PBLs) were collected from Holstein cows subjected to two different physiological conditions (non-pregnant and pregnant), and PBLs were fractionated by gradient cell separation. RNA from PBLs and liver were applied to oligo-DNA microarray and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It revealed a group of stable bovine liver genes under constant physiological conditions. When they applied to physiological conditions including non-pregnant and pregnant, the profiles of some genes in liver were consistent with those in PBLs. Microarray data subjected to a principal component analysis (PCA) showed that the hepatic gene expression profiles were more consistent with those of granulocytes than mononuclear cells. The relationship of gene profiles in liver with granulocytes was confirmed by RT-qPCR and hierarchical cluster analysis. Gene profiles of granulocytes were more reliable than those of mononuclear cells, which reflected liver functions. These results suggest that the genes expressed in PBLs, particularly granulocytes, may be convenient bioindicators for the diagnosis of clinical disorder and/or detecting aberration of liver functions in cows subjected to different physiological conditions.
Collapse
Affiliation(s)
- Keiichiro Kizaki
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tomomi Kageyama
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| | - Noriyuki Toji
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Katsuo Koshi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| | - Kouya Sasaki
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Norio Yamagishi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toshina Ishiguro-Oonuma
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toru Takahashi
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kazuyoshi Hashizume
- Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Japan
| |
Collapse
|
14
|
Lu Z, Xu Z, Shen Z, Shen H, Aschenbach JR. Transcriptomic analyses suggest a dominant role of insulin in the coordinated control of energy metabolism and ureagenesis in goat liver. BMC Genomics 2019; 20:854. [PMID: 31726987 PMCID: PMC6854773 DOI: 10.1186/s12864-019-6233-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ureagenesis plays a central role in the homeostatic control of nitrogen metabolism. This process occurs in the liver, the key metabolic organ in the maintenance of energy homeostasis in the body. To date, the understanding of the influencing factors and regulators of ureagenesis in ruminants is still poor. The aim of this study was to investigate the relationship between energy metabolism and ureagenesis and detect the direct regulators of ureagenesis in the liver by using RNA-seq technology. RESULTS Eighteen four-month-old male goats were divided into two groups randomly and received a diet containing 10% (LNFC group, n = 9) or 30% non-fiber carbohydrate (MNFC group, n = 9), respectively, for four weeks. The global gene expression analysis of liver samples showed that, compared with a LNFC diet, the MNFC diet promoted the expression of genes required for synthesis of fatty acid and glycerol, whereas it suppressed those related to fatty acid oxidation, gluconeogenesis from amino acids and ureagenesis. Additionally, gene expression for rate-limiting enzymes of ureagenesis were highly correlated to the gene expression of key enzymes of both fatty acid synthesis and glycerol synthesis (Spearman correlation coefficient > 0.8 and p < 0.05). In the differentially expressed signaling pathways related to the endocrine system, the MNFC diet activated the insulin and PPAR signaling pathway, whereas it suppressed the leptin-JAK/STAT signaling pathway, compared with the LNFC diet. Reverse transcription quantitative PCR analyses of 40 differentially expressed genes confirmed the RNA-seq results (R2 = 0.78). CONCLUSION Our study indicated that a dietary NFC-induced increase of energy supply promoted lipid anabolism and decreased ureagenesis in the caprine liver. By combining our results with previously published reports, insulin signaling can be suggested to play the dominant role in the coordinated control of hepatic energy metabolism and ureagenesis.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Lab of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihui Xu
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Bioinformatics Center, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China
| | - Zanming Shen
- Key Lab of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hong Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China. .,Bioinformatics Center, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Zhang J, Shi H, Li S, Cao Z, Yang H, Wang Y. Integrative hepatic metabolomics and proteomics reveal insights into the mechanism of different feed efficiency with high or low dietary forage levels in Holstein heifers. J Proteomics 2019; 194:1-13. [DOI: 10.1016/j.jprot.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023]
|
16
|
Zhou C, Li C, Cai W, Liu S, Yin H, Shi S, Zhang Q, Zhang S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front Genet 2019; 10:72. [PMID: 30838020 PMCID: PMC6389681 DOI: 10.3389/fgene.2019.00072] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWASs) have been widely used to determine the genetic architecture of quantitative traits in dairy cattle. In this study, with the aim of identifying candidate genes that affect milk protein composition traits, we conducted a GWAS for nine such traits (αs1-casein, αs2-casein, β-casein, κ-casein, α-lactalbumin, β-lactoglobulin, casein index, protein percentage, and protein yield) in 614 Chinese Holstein cows using a single-step strategy. We used the Illumina BovineSNP50 Bead chip and imputed genotypes from high-density single-nucleotide polymorphisms (SNPs) ranging from 50 to 777 K, and subsequent to genotype imputation and quality control, we screened a total of 586,304 informative high-quality SNPs. Phenotypic observations for six major milk proteins (αs1-casein, αs2-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin) were evaluated as weight proportions of the total protein fraction (wt/wt%) using a commercial enzyme-linked immunosorbent assay kit. Informative windows comprising five adjacent SNPs explaining no < 0.5% of the genomic variance per window were selected for gene annotation and gene network and pathway analyses. Gene network analysis performed using the STRING Genomics 10.0 database revealed a co-expression network comprising 46 interactions among 62 of the most plausible candidate genes. A total of 178 genomic windows and 194 SNPs on 24 bovine autosomes were significantly associated with milk protein composition or protein percentage. Regions affecting milk protein composition traits were mainly observed on chromosomes BTA 1, 6, 11, 13, 14, and 18. Of these, several windows were close to or within the CSN1S1, CSN1S2, CSN2, CSN3, LAP3, DGAT1, RPL8, and HSF1 genes, which have well-known effects on milk protein composition traits of dairy cattle. Taken together with previously reported quantitative trait loci and the biological functions of the identified genes, we propose 19 novel candidate genes affecting milk protein composition traits: ARL6, SST, EHHADH, PCDHB4, PCDHB6, PCDHB7, PCDHB16, SLC36A2, GALNT14, FPGS, LARP4B, IDI1, COG4, FUK, WDR62, CLIP3, SLC25A21, IL5RA, and ACADSB. Our findings provide important insights into milk protein synthesis and indicate potential targets for improving milk quality.
Collapse
Affiliation(s)
- Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaolei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Iannaccone M, Elgendy R, Giantin M, Martino C, Giansante D, Ianni A, Dacasto M, Martino G. RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet. Animals (Basel) 2018; 8:ani8110188. [PMID: 30360570 PMCID: PMC6262483 DOI: 10.3390/ani8110188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Grape pomace (GPO) is an important source of polyphenols which are known to have antioxidant properties. In the past decade, GPO has received some attention as a bioactive dietary component in farm animals’ diet. In this study, we have analyzed the whole-transcriptome of Friesian calves fed with a GPO-supplemented diet using RNA-sequencing. We noted that the most affected pathway was the cholesterol lipid biosynthesis and this effect was consistent with a reduction in both serum cholesterol and lipid oxidation in the carcasses. This study provides evidence on the antioxidant property of GPO-supplemented diet, from a molecular biology standpoint. Abstract Grape pomace (GPO), the main by-product of the wine making process, is a rich source of polyphenols with potent antioxidant properties. Recently, GPO has emerged as a potential feed additive in livestock nutrition, with several reports describing its beneficial effects on animals’ overall health status or production traits. However, little is known about it from a molecular biology standpoint. In the present study, we report the first RNA sequencing-based whole-transcriptome profiling of Friesian calves fed with a GPO-supplemented diet. We identified 367 differentially expressed genes (p < 0.05) in the GPO-supplemented calves (n = 5), when compared with unsupplemented control group (n = 5). The pathway analysis showed that ‘cholesterol lipid biosynthesis’ was the most negatively-enriched (p < 0.001) pathway in the GPO-supplemented animals. In specific terms, five important genes coding for cholesterol biosynthesis enzymes, namely the Farnesyl-diphosphate Farnesyltransferase 1 (FDFT-1), Squalene Epoxidase (SQLE), NAD(P)-dependent Steroid Dehydrogenase-like (NSDHL), Methylsterol Monooxygenase (MSMO)-1, and Sterol-C5-desaturase (SC5D), two major transcription factors (the Sterol Regulatory Element-binding Transcription Factor 1 and 2), as well as the Low-Density Lipoprotein Receptor (LDLR), were all downregulated following GPO supplementation. Such an effect was mirrored by a reduction of blood cholesterol levels (p = 0.07) and a lowered (p < 0.001) Malondialdehyde (lipid oxidation marker) level in carcasses. We provide evidence on the effects of GPO-supplemented diets on the whole-transcriptome signature in veal calves, which mainly reflects an antioxidant activity.
Collapse
Affiliation(s)
- Marco Iannaccone
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
| | - Ramy Elgendy
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro (Padua), Italy.
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro (Padua), Italy.
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy.
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italia.
| | - Andrea Ianni
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro (Padua), Italy.
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|