1
|
Zhang S, Gan P, Xie H, Li C, Tang T, Hu Q, Zhu Z, Zhang Z, Zhang J, Zhu Y, Hu Q, Hu J, Guan H, Zhao S, Wu J. Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae601. [PMID: 39509327 DOI: 10.1093/plphys/kiae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of "Candidatus Phytoplasma oryzae" strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homolog of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Gan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Xie
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuan Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxin Tang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qun Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Xue C, Zhang L, Li H, Liu Z, Zhang Y, Liu M, Zhao J. The effector PHYL1 JWB from Candidatus Phytoplasma ziziphi induces abnormal floral development by destabilising flower development proteins. PLANT, CELL & ENVIRONMENT 2024; 47:4963-4976. [PMID: 39119795 DOI: 10.1111/pce.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Phytoplasmas can induce complex and substantial phenotypic changes in their hosts in ways that favour their colonisation, but the mechanisms underlying these changes remain largely unknown. Jujube witches' broom (JWB) disease is a typical phytoplasma disease causing great economic loss in Chinese jujube (Ziziphus jujuba Mill.). Here, we reported an effector, PHYL1JWB from Candidatus Phytoplasma ziziphi, which implicated in inducing abnormal floral organogenesis. Utilising a combination of in vivo and in vitro methods, we investigated the influence of PHYL1JWB on the proteins associated with floral development. Our findings reveal that PHYL1JWB facilitates the proteasome-mediated degradation of essential flower morphogenetic regulators, including AP1, SEP1, SEP2, SEP3, SEP4, CAL, and AGL6, through a distinctive pathway that is dependent on the activity of the 26S proteasome, thus obviating the requirement for lysine ubiquitination of the substrates. Further, the Y2H analysis showed that the leucine at position 75th in second α helix of PHYL1JWB is fundamental for the interactions of PHYL1JWB with AP1 and SEP1-4 in jujube and Arabidopsis. Our research carry profound implications for elucidating the contribution of PHYL1JWB to the aberrant floral development in diseased jujube, and help to establish a robust theoretical underpinning for the prophylaxis and therapy of JWB disease.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Shanxi Sericulture Science Research Institute, Shanxi Agricultural University, Yuncheng, Shanxi, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Deng M, Ma F, Zhai L, Zhang X, Zhang N, Zheng Y, Chen W, Zhou W, Pang K, Zhou J, Sun Q, Sun J. The effector SJP3 interferes with pistil development by sustaining SHORT VEGETATIVE PHASE 3 expression in jujube. PLANT PHYSIOLOGY 2024; 196:1923-1938. [PMID: 39189604 DOI: 10.1093/plphys/kiae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024]
Abstract
Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stemlike structures within the leaflike ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.
Collapse
Affiliation(s)
- Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Xinyue Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Luo Z, Zhao X, Sun H, Liu J, Zhang D, Cao H, Ai C, Wang L, Dai L, Liu M, Wang L, Liu Z. Mechanism of zju-miR156c-mediated network in regulating witches' broom symptom of Chinese jujube. MOLECULAR PLANT PATHOLOGY 2024; 25:e70031. [PMID: 39558535 PMCID: PMC11573724 DOI: 10.1111/mpp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
Jujube witches' broom, caused by phytoplasma, is a destructive disease of Chinese jujube. Studies have shown that zju-miR156s play an important role in phytoplasma infection in jujube, but the regulatory mechanism between zju-miR156c and witches' broom remains unexplored. In the current study, miRNA-seq and gene expression analysis showed that zju-miR156c was more highly induced in infected jujube plants than the other miRNAs and its target gene was ZjSPL3. In addition, the expression levels of thymidylate kinase gene (TMKJWB) and secreted jujube protein (SJP1JWB) in diseased materials were higher than those in healthy controls. The expression level of zju-miR156c was significantly upregulated, while ZjSPL3 was sharply downregulated and the content of cytokinin (CTK) significantly increased. Overexpression of zju-miR156c in Arabidopsis significantly reduced the expression of AtSPL10 (homologous gene of ZjSPL3) but increased the content of CTK, and the transgenic plants exhibited witches' broom symptoms. In addition, yeast two-hybrid and co-immunoprecipitation assays confirmed that SJP1JWB interacted with ZjERF18. Yeast one-hybrid analysis showed that ZjERF18 could interact with the promoter of zju-MIR156c. In conclusion, our results demonstrated a novel pathogenic module of ZjERF18-zju-miR156c-ZjSPL3-CTK has an important function in the formation of witches' broom caused by SJP1JWB.
Collapse
Affiliation(s)
- Yunjie Wang
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Zhi Luo
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Xuan Zhao
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Hongqiang Sun
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Liaoning Institute of Dryland Agriculture and ForestryChaoyangLiaoningChina
| | - Jiaxin Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Dongfeng Zhang
- Hebei Academy of Forestry and Grassland SciencesShijiazhuangHebeiChina
| | - Haonan Cao
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Changfeng Ai
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Lihu Wang
- College of Landscape and Ecological EngineeringHebei University of EngineeringHandanHebeiChina
| | - Li Dai
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Mengjun Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Lixin Wang
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Zhiguo Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| |
Collapse
|
5
|
Song CS, Xu QC, Wan CP, Kong DZ, Lin CL, Yu SS. Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China. BIOLOGY 2024; 13:886. [PMID: 39596841 PMCID: PMC11592322 DOI: 10.3390/biology13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches' broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas.
Collapse
Affiliation(s)
- Chuan-Sheng Song
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - Qi-Cong Xu
- International Nature Farming Research Center, Nagano 390-1401, Japan;
| | - Cui-Ping Wan
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - De-Zhi Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Cai-Li Lin
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
6
|
Ma F, Zheng Y, Zhang N, Deng M, Zhao M, Fu G, Zhou J, Guo C, Li Y, Huang J, Sun Q, Sun J. The 'Candidatus Phytoplasma ziziphi' effectors SJP1/2 negatively control leaf size by stabilizing the transcription factor ZjTCP2 in jujube. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3054-3069. [PMID: 38320293 DOI: 10.1093/jxb/erae042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.
Collapse
Affiliation(s)
- Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Meiqi Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Gongyu Fu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, People's Republic of China
| | - Chenglong Guo
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yamei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Jinqiu Huang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
7
|
Fernández FD, Yan XH, Kuo CH, Marcone C, Conci LR. Improving the Comprehension of Pathogenicity and Phylogeny in ' Candidatus Phytoplasma meliae' through Genome Characterization. Microorganisms 2024; 12:142. [PMID: 38257969 PMCID: PMC10819327 DOI: 10.3390/microorganisms12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
'Candidatus Phytoplasma meliae' is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the 'Ca. P. meliae' strain ChTYXIII. The draft assembly consisted of twenty-one contigs with a total length of 751.949 bp, and annotation revealed 669 CDSs, 34 tRNAs, and 1 set of rRNA operons. The metabolic pathways analysis showed that ChTYXIII contains the complete core genes for glycolysis and a functional Sec system for protein translocation. Our phylogenomic analysis based on 133 single-copy genes and genome-to-genome metrics supports the classification as unique 'Ca. P. species' within the MPV clade. We also identified 31 putative effectors, including a homolog to SAP11 and others that have only been described in this pathogen. Our ortholog analysis revealed 37 PMU core genes in the genome of 'Ca. P. meliae' ChTYXIII, leading to the identification of 2 intact PMUs. Our work provides important genomic information for 'Ca. P. meliae' and others phytoplasmas for the 16SrXIII (MPV) group.
Collapse
Affiliation(s)
- Franco Daniel Fernández
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| | - Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Luis Rogelio Conci
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| |
Collapse
|
8
|
Chen P, Zhang Y, Li Y, Yang Q, Li Q, Chen L, Chen Y, Ye X, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J. Jujube Witches' Broom Phytoplasma Effector Zaofeng3, a Homologous Effector of SAP54, Induces Abnormal Floral Organ Development and Shoot Proliferation. PHYTOPATHOLOGY 2024; 114:200-210. [PMID: 37435950 DOI: 10.1094/phyto-10-21-0448-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Plant-pathogenic phytoplasmas secrete specific virulence proteins into a host plant to modulate plant function for their own benefit. Identification of phytoplasmal effectors is a key step toward clarifying the pathogenic mechanisms of phytoplasma. In this study, Zaofeng3, also known as secreted jujube witches' broom phytoplasma protein 3 (SJP3), was a homologous effector of SAP54 and induced a variety of abnormal phenotypes, such as phyllody, malformed floral organs, witches' broom, and dwarfism in Arabidopsis thaliana. Zaofeng3 can also induce small leaves, dwarfism, and witches' broom in Ziziphus jujuba. Further experiments showed that the three complete α-helix domains predicted in Zaofeng3 were essential for induction of disease symptoms in jujube. Yeast two-hybrid library screening showed that Zaofeng3 mainly interacts with proteins involved in flower morphogenesis and shoot proliferation. Bimolecular fluorescence complementation assays confirmed that Zaofeng3 interacted with these proteins in the whole cell. Overexpression of zaofeng3 in jujube shoot significantly altered the expression patterns of ZjMADS19, ZjMADS47, ZjMADS48, ZjMADS77, and ZjTCP7, suggesting that overexpressing zaofeng3 might induce floral organ malformation and witches' broom by altering the expression of the transcriptional factors involved in jujube morphogenesis.
Collapse
Affiliation(s)
- Peng Chen
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yu Zhang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qiqi Yang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qicheng Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Lichuan Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yun Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| |
Collapse
|
9
|
Zhang RY, Wang XY, Li J, Shan HL, Li YH, Huang YK, He XH. Complete genome sequence of " Candidatus Phytoplasma sacchari" obtained using a filter-based DNA enrichment method and Nanopore sequencing. Front Microbiol 2023; 14:1252709. [PMID: 37849920 PMCID: PMC10577292 DOI: 10.3389/fmicb.2023.1252709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.
Collapse
Affiliation(s)
- Rong-Yue Zhang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yan Wang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Jie Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Hong-Li Shan
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Yin-Hu Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ying-Kun Huang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| |
Collapse
|
10
|
Wang J, Zhao Z, Niu Q, Zhu T, Gao R, Sun Y. Draft Genome Sequence Resource of Sweet Cherry Virescence Phytoplasma Strain SCV-TA2020 Associated with Sweet Cherry Virescence Disease in China. PLANT DISEASE 2023; 107:3269-3272. [PMID: 36947840 DOI: 10.1094/pdis-01-23-0042-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sweet cherry virescence phytoplasma strain SCV-TA2020, a related strain of 'Candidatus Phytoplasma ziziphi', is a pathogen associated with sweet cherry virescence disease in China. Here, we provide the first-draft genome sequence of SCV-TA2020, which consists of 775,344 bases, with a GC content of 23.21%. This will provide a reference for understanding the host selection and diversity of host-specific symptoms of 16SrV-B subgroup phytoplasmas.
Collapse
Affiliation(s)
- Jie Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Zhihui Zhao
- College of Plant Science, Tarim University/Key Laboratories for Integrated Control Corps of Agricultural Pests Management Corps in Southern Xinjiang/National and Local Joint Engineering Laboratories with High-Efficiency and High-Quality Cultivation and Deep Processing Technology for Characteristic Fruit Trees in Southern Xinjiang, Xinjiang Alar 843300, China
| | - Qinglin Niu
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Tiansheng Zhu
- College of Plant Science, Tarim University/Key Laboratories for Integrated Control Corps of Agricultural Pests Management Corps in Southern Xinjiang/National and Local Joint Engineering Laboratories with High-Efficiency and High-Quality Cultivation and Deep Processing Technology for Characteristic Fruit Trees in Southern Xinjiang, Xinjiang Alar 843300, China
| | - Rui Gao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Yugang Sun
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| |
Collapse
|
11
|
Liu RC, Li BL, Chen XL, Liu JJ, Luo K, Li GW. ' Candidatus Phytoplasma ziziphi' Changes the Metabolite Composition of Jujube Tree Leaves and Affects the Feeding Behavior of Its Insect Vector Hishimonus hamatus Kuoh. INSECTS 2023; 14:750. [PMID: 37754718 PMCID: PMC10531678 DOI: 10.3390/insects14090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Hishimonus hamatus Kuoh is a leafhopper species native to China that feeds on Chinese jujube leaves. This leafhopper species has been verified to transmit jujube witches' broom (JWB) disease, caused by phytoplasma, a fatal plant pathogen, which belongs to the phytoplasma subgroup 16SrV-B. The transmission of JWB phytoplasma largely relies on the feeding behavior of piercing-sucking leafhoppers. However, the specific mechanisms behind how and why the infection of JWB influences the feeding behavior of these leafhoppers are not fully understood. To address this, a study was conducted to compare the feeding patterns of H. hamatus when feeding JWB-infested jujube leaves to healthy leaves using the electrical penetration graph (EPG) technique. Then, a widely targeted metabolome analysis was performed to identify differences in the metabolite composition of JWB-infected jujube leaves and that of healthy jujube leaves. The results of EPG analyses revealed that when feeding on JWB-infected jujube leaves, H. hamatus exhibited an increased frequency of phloem ingestion and spent longer in the phloem feeding phase compared to when feeding on healthy leaves. In addition, the results of metabolomic analyses showed that JWB-infected leaves accumulated higher levels of small-molecular carbohydrates, free amino acids, and free fatty acids, as well as lower levels of lignans, coumarins and triterpenoids compared to healthy leaves. The above results indicated that the H. hamatus preferentially fed on the phloem of infected leaves, which seems to be linked to the transmission of the JWB phytoplasma. The results of metabolomic analyses partially imply that the chemical compounds might play a role in making the infected leaves more attractive to H. hamatus for feeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China
| |
Collapse
|
12
|
Ma F, Zhang S, Yao Y, Chen M, Zhang N, Deng M, Chen W, Ma C, Zhang X, Guo C, Huang X, Zhang Z, Li Y, Li T, Zhou J, Sun Q, Sun J. Jujube witches' broom phytoplasmas inhibit ZjBRC1-mediated abscisic acid metabolism to induce shoot proliferation. HORTICULTURE RESEARCH 2023; 10:uhad148. [PMID: 37691966 PMCID: PMC10483173 DOI: 10.1093/hr/uhad148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023]
Abstract
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Wei Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chi Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xinyue Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chenglong Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiang Huang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhenyuan Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Tingyi Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Junyong Zhou
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
13
|
Yang J, Shen Z, Qu P, Yang R, Shao A, Li H, Zhao A, Cheng C. Influences of Jujube Witches' Broom (JWB) Phytoplasma Infection and Oxytetracycline Hydrochloride Treatment on the Gene Expression Profiling in Jujube. Int J Mol Sci 2023; 24:10313. [PMID: 37373459 DOI: 10.3390/ijms241210313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Jujube witches' broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that oxytetracycline hydrochloride (OTC-HCl) trunk injection treatment could recover more than 86% of mild JWB-diseased trees. In order to explore the underlying molecular mechanism, comparative transcriptomic analysis of healthy control (C group), JWB-diseased (D group) and OTC-HCl treated JWB-diseased (T group) jujube leaves was performed. In total, 755 differentially expressed genes (DEGs), including 488 in 'C vs. D', 345 in 'D vs. T' and 94 in 'C vs. T', were identified. Gene enrichment analysis revealed that these DEGs were mainly involved in DNA and RNA metabolisms, signaling, photosynthesis, plant hormone metabolism and transduction, primary and secondary metabolisms, their transportations, etc. Notably, most of the DEGs identified in 'C vs. D' displayed adverse change patterns in 'D vs. T', suggesting that the expression of these genes was restored after OTC-HCl treatment. Our study revealed the influences of JWB phytoplasma infection and OTC-HCl treatment on gene expression profiling in jujube and would be helpful for understanding the chemotherapy effects of OTC-HCl on JWB-diseased jujube.
Collapse
Affiliation(s)
- Junqiang Yang
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhongmei Shen
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Pengyan Qu
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Rui Yang
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Anping Shao
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Hao Li
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ailing Zhao
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunzhen Cheng
- College of Horticulture/Pomology Institute, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
14
|
Xue C, Zhang Y, Li H, Liu Z, Gao W, Liu M, Wang H, Liu P, Zhao J. The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics. BMC PLANT BIOLOGY 2023; 23:251. [PMID: 37173622 PMCID: PMC10176825 DOI: 10.1186/s12870-023-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
15
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Kirdat K, Tiwarekar B, Sathe S, Yadav A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front Microbiol 2023; 14:1123783. [PMID: 36970684 PMCID: PMC10033645 DOI: 10.3389/fmicb.2023.1123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Phytoplasma taxonomy has been a topic of discussion for the last two and half decades. Since the Japanese scientists discovered the phytoplasma bodies in 1967, the phytoplasma taxonomy was limited to disease symptomology for a long time. The advances in DNA-based markers and sequencing improved phytoplasma classification. In 2004, the International Research Programme on Comparative Mycoplasmology (IRPCM)- Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group provided the description of the provisional genus ‘Candidatus Phytoplasma’ with guidelines to describe the new provisional phytoplasma species. The unintentional consequences of these guidelines led to the description of many phytoplasma species where species characterization was restricted to a partial sequence of the 16S rRNA gene alone. Additionally, the lack of a complete set of housekeeping gene sequences or genome sequences, as well as the heterogeneity among closely related phytoplasmas limited the development of a comprehensive Multi-Locus Sequence Typing (MLST) system. To address these issues, researchers tried deducing the definition of phytoplasma species using phytoplasmas genome sequences and the average nucleotide identity (ANI). In another attempts, a new phytoplasma species were described based on the Overall Genome relatedness Values (OGRI) values fetched from the genome sequences. These studies align with the attempts to standardize the classification and nomenclature of ‘Candidatus’ bacteria. With a brief historical account of phytoplasma taxonomy and recent developments, this review highlights the current issues and provides recommendations for a comprehensive system for phytoplasma taxonomy until phytoplasma retains ‘Candidatus’ status.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Bhavesh Tiwarekar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Amit Yadav
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- *Correspondence: Amit Yadav, ,
| |
Collapse
|
17
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Rodoni B, Constable FE. Iodixanol density gradients as an effective phytoplasma enrichment approach to improve genome sequencing. Front Microbiol 2022; 13:937648. [PMID: 36033837 PMCID: PMC9411968 DOI: 10.3389/fmicb.2022.937648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Obtaining complete phytoplasma genomes is difficult due to the lack of a culture system for these bacteria. To improve genome assembly, a non-ionic, low- and iso-osmotic iodixanol (Optiprep™) density gradient centrifugation method was developed to enrich for phytoplasma cells and deplete plant host tissues prior to deoxyribonucleic acid (DNA) extraction and high-throughput sequencing (HTS). After density gradient enrichment, potato infected with a ‘Candidatus Phytoplasma australasia’-related strain showed a ∼14-fold increase in phytoplasma HTS reads, with a ∼1.7-fold decrease in host genomic reads compared to the DNA extracted from the same sample without density gradient centrifugation enrichment. Additionally, phytoplasma genome assemblies from libraries equalized to 5 million reads were, on average, ∼15,000 bp larger and more contiguous (N50 ∼14,800 bp larger) than assemblies from the DNA extracted from the infected potato without enrichment. The method was repeated on capsicum infected with Sweet Potato Little Leaf phytoplasma (‘Ca. Phytoplasma australasia’-related strain) with a lower phytoplasma titer than the potato. In capsicum, ∼threefold more phytoplasma reads and ∼twofold less host genomic reads were obtained, with the genome assembly size and N50 values from libraries equalized to 3.4 million reads ∼137,000 and ∼4,000 bp larger, respectively, compared to the DNA extracted from infected capsicum without enrichment. Phytoplasmas from potato and capsicum were both enriched at a density of 1.049–1.058 g/ml. Finally, we present two highly contiguous ‘Ca. Phytoplasma australasia’ phytoplasma reference genomes sequenced from naturally infected Solanaceae hosts in Australia. Obtaining high-quality phytoplasma genomes from naturally infected hosts will improve insights into phytoplasma taxonomy, which will improve their detection and disease management.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
- *Correspondence: Bianca Rodrigues Jardim,
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| |
Collapse
|
18
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
19
|
Cai W, Nunziata SO, Srivastava SK, Wilson T, Chambers N, Rivera Y, Nakhla M, Costanzo S. Draft Genome Sequence Resource of AldY-WA1, a Phytoplasma Strain Associated with Alder Yellows of Alnus rubra in Washington, U.S.A. PLANT DISEASE 2022; 106:1971-1973. [PMID: 35617486 DOI: 10.1094/pdis-10-21-2350-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Weili Cai
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Schyler O Nunziata
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
| | - Subodh K Srivastava
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Telissa Wilson
- Washington State Department of Agriculture, Plant Pathology and Molecular Diagnostic Lab, Olympia, WA
| | - Nathaniel Chambers
- Washington State Department of Agriculture, Plant Pathology and Molecular Diagnostic Lab, Olympia, WA
| | - Yazmín Rivera
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
| | - Mark Nakhla
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
| | - Stefano Costanzo
- United States Department of Agriculture Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD
| |
Collapse
|
20
|
Wang XY, Zhang RY, Li J, Li YH, Shan HL, Li WF, Huang YK. The Diversity, Distribution and Status of Phytoplasma Diseases in China. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.943080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are important prokaryotic pathogenic bacteria without cell walls, which were formerly known as mycoplasma-like organisms, and belong to the Mollicutes class, Candidatus Phytoplasma genus. They are widely distributed in plants and insects, and can cause serious diseases in important food crops, vegetables, fruit trees, ornamental plants and trees, resulting in huge economic losses. To date, more than 100 phytoplasma diseases have been reported in China, which are distributed throughout the country. Jujube witches'-broom, paulownia witches'-broom, wheat blue dwarf, banana bunchy top, sugarcane white leaf, rice orange leaf and mulberry dwarf represent the phytoplasma diseases causing the most serious damage in China. New phytoplasma diseases and their strains are being reported continuously, indicating that phytoplasmas are more diverse than previously thought. Phytoplasmas are mainly transmitted by insect vectors, such as leafhopper and planthopper, and can also be spread by grafting or Cuscuta australis (known as dodder). Mixed infections of phytoplasmas and viruses, bacteria, and spiroplasmas have also become a serious problem in several crops and are responsible for more synergistic losses. With the continuous development and improvement of technology, molecular biological detection has become the main technique for phytoplasma detection and identification. Currently, research on phytoplasma diseases in China mainly focuses on pathogen identification and classification, and insect vector and host diversity; however, there is less focus on pathogenicity, comparative genomics, and effect factors. More research attention has been paid to wheat blue dwarf phytoplasma, paulownia witches'-broom phytoplasma, jujube witches'-broom phytoplasma, and sugarcane white leaf phytoplasma. Other phytoplasma diseases have been reported; however, there have been no in-depth studies. In this paper, the history and present situation of phytoplasma research, and the status, distribution, and diversity of phytoplasma diseases are summarized, and some possible research directions of phytoplasma in the future in China are proposed.
Collapse
|
21
|
The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. BIOLOGY 2022; 11:biology11070953. [PMID: 36101334 PMCID: PMC9312162 DOI: 10.3390/biology11070953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022]
Abstract
Members of the genus ‘Candidatus Phytoplasma’ are obligate intracellular bacteria restricted to phloem sieve elements and are able to colonize several tissues and the hemolymph in their insect vectors. The current unfeasibility of axenic culture and the low complexity of genomic sequences are obstacles in assembling complete chromosomes. Here, a method combining pathogen DNA enrichment from infected insects and dual deep-sequencing technologies was used to obtain the complete genome of a phytoplasma causing Grapevine Flavescence dorée. The de novo assembly generated a circular chromosome of 654,223 bp containing 506 protein-coding genes. Quality assessment of the draft showed a high degree of completeness. Comparative analysis with other phytoplasmas revealed the absence of potential mobile units and a reduced amount of putative phage-derived segments, suggesting a low genome plasticity. Phylogenetic analyses identified Candidatus Phytoplasma ziziphi as the closest fully sequenced relative. The “Flavescence dorée” phytoplasma strain CH genome also encoded for several putative effector proteins potentially playing a role in pathogen virulence. The availability of this genome provides the basis for the study of the pathogenicity mechanisms and evolution of the Flavescence dorée phytoplasma.
Collapse
|
22
|
Huang CT, Cho ST, Lin YC, Tan CM, Chiu YC, Yang JY, Kuo CH. Comparative Genome Analysis of ‘Candidatus Phytoplasma luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Front Microbiol 2022; 13:773608. [PMID: 35300489 PMCID: PMC8923039 DOI: 10.3389/fmicb.2022.773608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of ‘Candidatus Phytoplasma luffae’ strain NCHU2019 that is associated with witches’ broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has a remarkably repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for subfunctionalization or neofunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.
Collapse
Affiliation(s)
- Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Choon-Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Jun-Yi Yang,
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Chih-Horng Kuo,
| |
Collapse
|
23
|
Chen P, Chen L, Ye X, Tan B, Zheng X, Cheng J, Wang W, Yang Q, Zhang Y, Li J, Feng J. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba. HORTICULTURE RESEARCH 2022; 9:6510945. [PMID: 35043187 PMCID: PMC8769037 DOI: 10.1093/hr/uhab032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 05/02/2023]
Abstract
The jujube witches' broom (JWB) phytoplasma is associated with witches' broom, dwarfism, and smaller leaves in jujube, resulting in yield losses. In this study, eight putative JWB effector proteins were identified from potential mobile units of the JWB genome. Among them, Zaofeng6 induced witches' broom symptoms in Arabidopsis and jujube. Zaofeng6-overexpressing Arabidopsis and unrooted jujube transformants displayed witches' broom-like shoot proliferation. Transient expression of Zaofeng6 induced hypersensitive response like cell death and expression of hypersensitive response marker genes, like harpin-induced gene 1 (H1N1), and the pathogenesis-related genes PR1, PR2, and PR3 in transformed Nicotiana benthamiana leaves, suggesting that Zaofeng6 could be a virulence effector. Yeast two-hybrid library screening and bimolecular fluorescence complementation confirmed that Zaofeng6 interacts with ZjTCP7 through its first two α-helix domains in the cell nuclei. ZjTCP7 mRNA and protein abundance decreased in Zaofeng6 transgenic jujube seedlings. The expression of some genes in the strigolactone signaling pathway (ZjCCD7, ZjCCD8, and CYP711A1) were down-regulated in jujube shoots overexpressing Zaofeng6 and in zjtcp7 CRISPR/Cas9 mutants. Zaofeng6 induces shoot proliferation through decreased expression of ZjTCP7 at the transcriptional and translational levels.
Collapse
Affiliation(s)
- Peng Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Lichuan Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Qiqi Yang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Yu Zhang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Corresponding author. E-mail: ;
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Corresponding author. E-mail: ;
| |
Collapse
|
24
|
Tan CM, Lin YC, Li JR, Chien YY, Wang CJ, Chou L, Wang CW, Chiu YC, Kuo CH, Yang JY. Accelerating Complete Phytoplasma Genome Assembly by Immunoprecipitation-Based Enrichment and MinION-Based DNA Sequencing for Comparative Analyses. Front Microbiol 2021; 12:766221. [PMID: 34858377 PMCID: PMC8632452 DOI: 10.3389/fmicb.2021.766221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are uncultivated plant-pathogenic bacteria with agricultural importance. Those belonging to the 16SrII group, represented by 'Candidatus P. aurantifolia', have a wide range of plant hosts and cause significant yield losses in valuable crops, such as pear, sweet potato, peanut, and soybean. In this study, a method that combines immunoprecipitation-based enrichment and MinION long-read DNA sequencing was developed to solve the challenge of phytoplasma genome studies. This approach produced long reads with high mapping rates and high genomic coverage that can be combined with Illumina reads to produce complete genome assemblies with high accuracy. We applied this method to strain NCHU2014 and determined its complete genome sequence, which consists of one circular chromosome with 635,584 bp and one plasmid with 4,224 bp. Although 'Ca. P. aurantifolia' NCHU2014 has a small chromosome with only 471 protein-coding genes, it contains 33 transporter genes and 27 putative effector genes, which may contribute to obtaining nutrients from hosts and manipulating host developments for their survival and multiplication. Two effectors, the homologs of SAP11 and SAP54/PHYL1 identified in 'Ca. P. aurantifolia' NCHU2014, have the biochemical activities in destabilizing host transcription factors, which can explain the disease symptoms observed in infected plants. Taken together, this study provides the first complete genome available for the 16SrII phytoplasmas and contributes to the understanding of phytoplasma pathogenicity.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Rong Li
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Yu Chien
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Jui Wang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Wei Wang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Cao Y, Sun G, Zhai X, Xu P, Ma L, Deng M, Zhao Z, Yang H, Dong Y, Shang Z, Lv Y, Yan L, Liu H, Cao X, Li B, Wang Z, Zhao X, Yu H, Wang F, Ma W, Huang J, Fan G. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches' broom. MOLECULAR PLANT 2021; 14:1668-1682. [PMID: 34214658 DOI: 10.1016/j.molp.2021.06.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Paulownias are among the fastest growing trees in the world, but they often suffer tremendous loss of wood production due to infection by Paulownia witches' broom (PaWB) phytoplasmas. In this study, we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei, a commonly cultivated paulownia species. The assembled genome of P. fortunei is 511.6 Mb in size, with 93.2% of its sequences anchored to 20 pseudo-chromosomes, and it contains 31 985 protein-coding genes. Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae. Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway, which may contribute to the extremely fast growth habit of paulownia trees. Comparative transcriptome analyses reveal modules related to cambial growth and development, photosynthesis, and defense responses. Additional genome sequencing of PaWB phytoplasma, combined with functional analyses, indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa, which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches' broom. Taken together, these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.
Collapse
Affiliation(s)
- Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Guiling Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Pingluo Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhonghai Shang
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Yujie Lv
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Lijun Yan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Wen Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
26
|
Zhou J, Ma F, Yao Y, Deng M, Chen M, Zhang S, Li Y, Yang J, Zhang N, Huang J, Sun Q, Sun J. Jujube witches' broom phytoplasma effectors SJP1 and SJP2 induce lateral bud outgrowth by repressing the ZjBRC1-controlled auxin efflux channel. PLANT, CELL & ENVIRONMENT 2021; 44:3257-3272. [PMID: 34189742 DOI: 10.1111/pce.14141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Comprehensively controlling phytoplasma-associated jujube witches' broom (JWB) disease is extremely challenging for the jujube industry. Although the pathogenesis of phytoplasma disease has been highlighted in many plant species, the release of lateral buds from dormancy under JWB phytoplasma infection has not been characterized in woody perennial jujube. Here, two 16SrV-B group phytoplasma effectors, SJP1 and SJP2, were experimentally determined to induce witches' broom with increased lateral branches. In vivo interaction and subcellular localization analyses showed that both SJP1 and SJP2 were translocated from the cytoplasm to the nucleus to target the CYC/TB1-TCP transcription factor ZjBRC1. The N- and C-terminal coiled-coil domains of SJP1 and SJP2 were required for the TCP-binding ability. ZjBRC1 bound directly to the auxin efflux carrier ZjPIN1c/3 promoters and down-regulated their expression to promote the accumulation of endogenous auxin indole-3-acetic acid in jujube calli. Furthermore, JWB phytoplasma infection suppressed ZjBRC1 accumulation and induced ZjPIN1c/3 expression to stimulate lateral bud outgrowth. Therefore, SJP1 and SJP2 stimulate lateral bud outgrowth, at least partly, by repressing the ZjBRC1-controlled auxin efflux channel in jujube, representing a potential strategy for comprehensive phytoplasma-associated disease control and a resource for gene editing breeding to create new cultivars with varying degrees of shoot branching.
Collapse
Affiliation(s)
- Junyong Zhou
- College of Horticulture, Anhui Agricultural University, Hefei City, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, Hefei City, China
| | - Fuli Ma
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, Hefei City, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Jian Yang
- College of Horticulture, Anhui Agricultural University, Hefei City, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Jingqiu Huang
- College of Horticulture, Anhui Agricultural University, Hefei City, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, Hefei City, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| |
Collapse
|
27
|
Ultrastructure of phytoplasma-infected jujube leaves with witches' broom disease. Micron 2021; 148:103108. [PMID: 34237476 DOI: 10.1016/j.micron.2021.103108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
The subcellular characteristics of phytoplasma-infected jujube (Ziziphus jujuba) leaves were investigated using transmission electron microscopy. Midrib fragments of witches' broom-diseased jujube leaves were collected from abnormally small leaves at an early stage of branch clustering. The diseased jujube leaves showed multivesicular bodies (MVBs) with vesicles and tubules in the phloem parenchyma cells and sieve elements. The MVBs were connected to the plasma membrane appressed to the cell wall. There were increased callose collars at the pore-plasmodesma unit ends of the sieve elements in the diseased leaves than in control leaves. The proliferation of MVBs in the diseased jujube leaves could be associated with endoplasmic reticulum stress-dependent exosome release. The phytoplasma produced pleomorphic cells in sieve elements. Several types of putative extracellular structures were observed on the phytoplasma cells: (i) fimbriae-like threads, (ii) pili-like projections, (iii) flagella-like appendages, and (iv) tube-like structures. This study provides novel insights into intracellular obligate cell wall-less prokaryotes and host phloem structures.
Collapse
|
28
|
Garcion C, Béven L, Foissac X. Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas. Front Microbiol 2021; 12:661524. [PMID: 33841387 PMCID: PMC8026896 DOI: 10.3389/fmicb.2021.661524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.
Collapse
Affiliation(s)
- Christophe Garcion
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Laure Béven
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Xavier Foissac
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| |
Collapse
|
29
|
Tan Y, Li Q, Zhao Y, Wei H, Wang J, Baker CJ, Liu Q, Wei W. Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS One 2021; 16:e0246203. [PMID: 33539421 PMCID: PMC7861385 DOI: 10.1371/journal.pone.0246203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that induce abnormal plant growth and various diseases, causing severe economic loss. Phytoplasmas are highly dependent on nutrients imported from host cells because they have lost many genes involved in essential metabolic pathways during reductive evolution. However, metabolic crosstalk between phytoplasmas and host plants and the mechanisms of phytoplasma nutrient acquisition remain poorly understood. In this study, using metabolomics approach, sweet cherry virescence (SCV) phytoplasma-induced metabolite alterations in sweet cherry trees were investigated. A total of 676 metabolites were identified in SCV phytoplasma-infected and mock inoculated leaves, of which 187 metabolites were differentially expressed, with an overwhelming majority belonging to carbohydrates, fatty acids/lipids, amino acids, and flavonoids. Available omics data of interactions between plant and phytoplasma were also deciphered and integrated into the present study. The results demonstrated that phytoplasma infection promoted glycolysis and pentose phosphate pathway activities, which provide energy and nutrients, and facilitate biosynthesis of necessary low-molecular metabolites. Our findings indicated that phytoplasma can induce reprograming of plant metabolism to obtain nutrients for its own replication and infection. The findings from this study provide new insight into interactions of host plants and phytoplasmas from a nutrient acquisition perspective.
Collapse
Affiliation(s)
- Yue Tan
- Shandong Institute of Pomology, Taian, China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yan Zhao
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | - Hairong Wei
- Shandong Institute of Pomology, Taian, China
| | - Jiawei Wang
- Shandong Institute of Pomology, Taian, China
| | - Con Jacyn Baker
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | | | - Wei Wei
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| |
Collapse
|
30
|
Molecular Characteristics of Jujube Yellow Mottle-Associated Virus Infecting Jujube ( Ziziphus jujuba Mill.) Grown at Aksu in Xinjiang of China. Viruses 2020; 13:v13010025. [PMID: 33375657 PMCID: PMC7823511 DOI: 10.3390/v13010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022] Open
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a native fruit crop in China. Leaf mottle and dapple fruit disease is prevalent in cultivated jujube plants grown at Aksu in Xinjiang Uygur Autonomous Region of China. Jujube yellow mottle-associated virus (JYMaV), a tentative member in the genus Emaravirus, was recently identified from mottle-diseased jujube plants grown in Liaoning Province in China, but its incidence and genetic diversity in China is unknown. In this study, the genome sequences of three JYMaV isolates from two jujube cultivars and one jujube variant were determined by high-throughput sequencing (HTS) for small RNA and rRNA-depleted RNA coupled with RT-PCR assays. Comparison of these sequences together with sequences of the viral RNA segments derived by primer set 3C/5H-based RT-PCR revealed that genetic diversity was present in the virus populations and high sequence variation occurred at the non-translational regions of each of the viral genomic segments. Field investigation confirmed the close association of the virus with leaf mottle symptoms of jujube plants. Furthermore, this study revealed that P5 encoded in the viral RNA5 displayed a nuclear localization feature differing from the plasmodesma (PD) subcellular localization of the virus movement protein (P4), and the two proteins could interact with each other in the BiFC assays. Our study provides a snapshot of JYMaV genetic diversity in its natural hosts.
Collapse
|
31
|
Xue C, Liu Z, Wang L, Li H, Gao W, Liu M, Zhao Z, Zhao J. The antioxidant defense system in Chinese jujube is triggered to cope with phytoplasma invasion. TREE PHYSIOLOGY 2020; 40:1437-1449. [PMID: 32483619 DOI: 10.1093/treephys/tpaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) in plants increase dramatically under pathogen attack, and the antioxidant defense system is then triggered to protect the plant against the ROS. Jujube witches' broom disease (JWB), caused by phytoplasma, is a destructive disease of Chinese jujube. The results of fluorescence-based measurement revealed that ROS were overproduced within jujube leaves after phytoplasma invasion. Furthermore, analysis based on mRNA and metabolite levels revealed that ascorbic acid (AsA) metabolism was strengthened under phytoplasma stress. The high expression of genes involved in the AsA/glutathione (GSH) cycle and thioredoxin (Trx) synthesis in diseased leaves indicated that GSH and Trx actively respond to phytoplasma infection. Moreover, higher activities of enzymatic antioxidants and the upregulated expression of related genes were confirmed in diseased tissues. Both nonenzymatic and enzymatic antioxidants in the host jujube were strongly stimulated to cope with ROS caused by phytoplasma stress. Compared with that in the susceptible variety, the activities of glutathione S-transferase and peroxidase in the resistant variety at the earlier infection stage were higher, indicating that enzymes might be involved in the resistance to phytoplasma. These results highlight the roles of the antioxidant defense system of the host plant in the tolerance to phytoplasma invasion.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
32
|
Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Suzuki T, Nijo T, Oshima K, Namba S, Yamaji Y. Functional variation in phyllogen, a phyllody-inducing phytoplasma effector family, attributable to a single amino acid polymorphism. MOLECULAR PLANT PATHOLOGY 2020; 21:1322-1336. [PMID: 32813310 PMCID: PMC7488466 DOI: 10.1111/mpp.12981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.
Collapse
Affiliation(s)
- Nozomu Iwabuchi
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ouki Matsumoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Suzuki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takamichi Nijo
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
33
|
Cho ST, Kung HJ, Huang W, Hogenhout SA, Kuo CH. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front Microbiol 2020; 11:1531. [PMID: 32754131 PMCID: PMC7366425 DOI: 10.3389/fmicb.2020.01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus ‘Candidatus Phytoplasma’ and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Jui Kung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. Pest categorisation of the non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2020; 18:e05929. [PMID: 32626484 PMCID: PMC7008834 DOI: 10.2903/j.efsa.2020.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of nine phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. (hereafter "host plants") known to occur only outside the EU or having a limited presence in the EU. This opinion covers the (i) reference strains of 'Candidatus Phytoplasma australiense', 'Ca. P. fraxini', 'Ca. P. hispanicum', 'Ca. P. trifolii', 'Ca. P. ziziphi', (ii) related strains infecting the host plants of 'Ca. P. aurantifolia', 'Ca. P. pruni', and 'Ca. P. pyri', and (iii) an unclassified phytoplasma causing Buckland valley grapevine yellows. Phytoplasmas can be detected by available methods and are efficiently transmitted by vegetative propagation, with plants for planting acting as a major entry pathway and a long-distance spread mechanism. Phytoplasmas are also transmitted in a persistent and propagative manner by some insect families of the Fulgoromorpha, Cicadomorpha and Sternorrhyncha (order Hemiptera). No transovarial, pollen or seed transmission has been reported. The natural host range of the categorised phytoplasmas varies from one to more than 90 plant species, thus increasing the possible entry pathways. The host plants are widely cultivated in the EU. All the categorised phytoplasmas can enter and spread through the trade of host plants for planting, and by vectors. Establishment of these phytoplasmas is not expected to be limited by EU environmental conditions. The introduction of these phytoplasmas in the EU would have an economic impact. There are measures to reduce the risk of entry, establishment, spread and impact. Uncertainties result from limited information on distribution, biology and epidemiology. All the phytoplasmas categorised here meet the criteria evaluated by EFSA to qualify as potential Union quarantine pests, and they do not qualify as potential regulated non-quarantine pests, because they are non-EU phytoplasmas.
Collapse
|
35
|
Jollard C, Foissac X, Desqué D, Razan F, Garcion C, Beven L, Eveillard S. Flavescence Dorée Phytoplasma Has Multiple ftsH Genes that Are Differentially Expressed in Plants and Insects. Int J Mol Sci 2019; 21:E150. [PMID: 31878312 PMCID: PMC6981957 DOI: 10.3390/ijms21010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of "Candidatus Phytoplasma mali" strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandrine Eveillard
- UMR 1332, INRAE, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (C.J.); (X.F.); (D.D.); (F.R.); (C.G.); (L.B.)
| |
Collapse
|
36
|
Buoso S, Pagliari L, Musetti R, Martini M, Marroni F, Schmidt W, Santi S. 'Candidatus Phytoplasma solani' interferes with the distribution and uptake of iron in tomato. BMC Genomics 2019; 20:703. [PMID: 31500568 PMCID: PMC6734453 DOI: 10.1186/s12864-019-6062-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
Abstract
Background ‘Candidatus Phytoplasma solani’ is endemic in Europe and infects a wide range of weeds and cultivated plants. Phytoplasmas are prokaryotic plant pathogens that colonize the sieve elements of their host plant, causing severe alterations in phloem function and impairment of assimilate translocation. Typical symptoms of infected plants include yellowing of leaves or shoots, leaf curling, and general stunting, but the molecular mechanisms underlying most of the reported changes remain largely enigmatic. To infer a possible involvement of Fe in the host-phytoplasma interaction, we investigated the effects of ‘Candidatus Phytoplasma solani’ infection on tomato plants (Solanum lycopersicum cv. Micro-Tom) grown under different Fe regimes. Results Both phytoplasma infection and Fe starvation led to the development of chlorotic leaves and altered thylakoid organization. In infected plants, Fe accumulated in phloem tissue, altering the local distribution of Fe. In infected plants, Fe starvation had additive effects on chlorophyll content and leaf chlorosis, suggesting that the two conditions affected the phenotypic readout via separate routes. To gain insights into the transcriptional response to phytoplasma infection, or Fe deficiency, transcriptome profiling was performed on midrib-enriched leaves. RNA-seq analysis revealed that both stress conditions altered the expression of a large (> 800) subset of common genes involved in photosynthetic light reactions, porphyrin / chlorophyll metabolism, and in flowering control. In Fe-deficient plants, phytoplasma infection perturbed the Fe deficiency response in roots, possibly by interference with the synthesis or transport of a promotive signal transmitted from the leaves to the roots. Conclusions ‘Candidatus Phytoplasma solani’ infection changes the Fe distribution in tomato leaves, affects the photosynthetic machinery and perturbs the orchestration of root-mediated transport processes by compromising shoot-to-root communication. Electronic supplementary material The online version of this article (10.1186/s12864-019-6062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.,IGA Technology Services, Via Jacopo Linussio, 51, 33100, Udine, Italy
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, 40227, Taichung, Taiwan
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
| |
Collapse
|
37
|
Three Main Genes in the MAPK Cascade Involved in the Chinese Jujube-Phytoplasma Interaction. FORESTS 2019. [DOI: 10.3390/f10050392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, caused by ‘Candidatus Phytoplasma ziziphi’. Mitogen-activated protein kinase (MAPK) cascades are highly universal signal transduction modules and play crucial roles in regulating innate immune responses in plants. Thus, in the current study, systematical expression profiles of 10 ZjMPK and 4 ZjMPKK genes were conducted in plantlets with JWB disease, plantlets recovered from JWB disease, the tissues showing different disease symptoms, and resistant/susceptible cultivars infected by JWB phytoplasma. We found that most ZjMPK and ZjMKK genes exhibited significant up- or down-regulation expression under phytoplasma infection, but the top three differentially expressed genes (DEGs) were ZjMPK2, ZjMKK2 and ZjMKK4, which showed the biggest times of gene’s significant difference expression in all materials. Based on STRING database analysis, ZjMKK2 and ZjMPK2 were involved in the same plant-pathogen interaction pathway, and Yeast two-hybrid screening showed that ZjMKK2 could interact with ZjMPK2. Finally, we deduced a pathway of jujube MAPK cascades which response to ‘Candidatus Phytoplasma ziziphi’ infection. Our study presents the first gene-family-wide investigation on the systematical expression analysis of MAPK and MAPKK genes in Chinese jujube under phytoplasma infection. These results provide valuable information for the further research on the signaling pathway of phytoplasma infection in Chinese jujube.
Collapse
|