1
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Reyes‐Galindo V, Jaramillo‐Correa JP, Shishkova S, Sandoval‐Zapotitla E, Flores‐Ortiz CM, Piñero D, Spurgin LG, Martin CA, Torres‐Jardón R, Zamora‐Callejas C, Mastretta‐Yanes A. Histologic, metabolomic, and transcriptomic differences in fir trees from a peri-urban forest under chronic ozone exposure. Ecol Evol 2024; 14:e11343. [PMID: 38746548 PMCID: PMC11091488 DOI: 10.1002/ece3.11343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 01/06/2025] Open
Abstract
Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O3), which contributes to the decline of urban and peri-urban forests. A notable case are fir (Abies religiosa) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O3-related damage have been observed within a zone of significant O3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (≤15 years old; n = 10) using histologic, metabolomic, and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analyzed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (ß-pinene, ß-caryophylene oxide, α-caryophylene, and ß-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for 13 genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O3 tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.
Collapse
Affiliation(s)
- Verónica Reyes‐Galindo
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Programa de Maestría en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Juan P. Jaramillo‐Correa
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | | | - César Mateo Flores‐Ortiz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de MéxicoMexico
| | - Daniel Piñero
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Lewis G. Spurgin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorfolkUnited Kingdom
| | - Claudia A. Martin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorfolkUnited Kingdom
- School of Biological SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Ricardo Torres‐Jardón
- Departamento de Ciencias AmbientalesInstituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Alicia Mastretta‐Yanes
- Consejo Nacional de Humanidades, Ciencias y TecnologíasMexico CityMexico
- Departamento de Ecología de la BiodiversidadInstituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
3
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
4
|
Proteomics Data Analysis for the Identification of Proteins and Derived Proteotypic Peptides of Potential Use as Putative Drought Tolerance Markers for Quercus ilex. Int J Mol Sci 2021; 22:ijms22063191. [PMID: 33800973 PMCID: PMC8003919 DOI: 10.3390/ijms22063191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
Drought is one of the main causes of mortality in holm oak (Quercus ilex) seedlings used in reforestation programs. Although this species shows high adaptability to the extreme climate conditions prevailing in Southern Spain, its intrinsic genetic variability may play a role in the differential response of some populations and individuals. The aim of this work was to identify proteins and derived proteotypic peptides potentially useful as putative markers for drought tolerance in holm oak by using a targeted post-acquisition proteomics approach. For this purpose, we used a set of proteins identified by shotgun (LC-MSMS) analysis in a drought experiment on Q. ilex seedlings from four different provenances (viz. the Andalusian provinces Granada, Huelva, Cadiz and Seville). A double strategy involving the quantification of proteins and target peptides by shotgun analysis and post-acquisition data analysis based on proteotypic peptides was used. To this end, an initial list of proteotypic peptides from proteins highly represented under drought conditions was compiled that was used in combination with the raw files from the shotgun experiment to quantify the relative abundance of the fragment’s ion peaks with the software Skyline. The most abundant peptides under drought conditions in at least two populations were selected as putative markers of drought tolerance. A total of 30 proteins and 46 derived peptides belonging to the redox, stress-related, synthesis,-folding and degradation, and primary and secondary metabolism functional groups were thus identified. Two proteins (viz., subtilisin and chaperone GrpE protein) were found at increased levels in three populations, which make them especially interesting for validation drought tolerance markers in subsequent experiments.
Collapse
|
5
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
6
|
Zandalinas SI, Fritschi FB, Mittler R. Signal transduction networks during stress combination. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1734-1741. [PMID: 31665392 DOI: 10.1093/jxb/erz486] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/18/2019] [Indexed: 05/18/2023]
Abstract
Episodes of heat waves combined with drought can have a devastating impact on agricultural production worldwide. These conditions, as well as many other types of stress combinations, impose unique physiological and developmental demands on plants and require the activation of dedicated pathways. Here, we review recent RNA sequencing studies of stress combination in plants, and conduct a meta-analysis of the transcriptome response of plants to different types of stress combination. Our analysis reveals that each different stress combination is accompanied by its own set of stress combination-specific transcripts, and that the response of different transcription factor families is unique to each stress combination. The alarming rate of increase in global temperatures, coupled with the predicted increase in future episodes of extreme weather, highlight an urgent need to develop crop plants with enhanced tolerance to stress combination. The uniqueness and complexity of the physiological and molecular response of plants to each different stress combination, highlighted here, demonstrate the daunting challenge we face in accomplishing this goal. Dedicated efforts combining field experimentation, omics, and network analyses, coupled with advanced phenotyping and breeding methods, will be needed to address specific crops and particular stress combinations relevant to maintaining our future food chain secured.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| | - Felix B Fritschi
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| | - Ron Mittler
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| |
Collapse
|
7
|
Wang M, Wang Y, Zhang Y, Li C, Gong S, Yan S, Li G, Hu G, Ren H, Yang J, Yu T, Yang K. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genomics 2019; 41:781-801. [DOI: 10.1007/s13258-019-00793-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
|