1
|
Doing G, Shanbhag P, Bell I, Cassidy S, Motakis E, Aiken E, Oh J, Adams MD. TEAL-Seq: targeted expression analysis sequencing. mSphere 2025:e0098424. [PMID: 40261045 DOI: 10.1128/msphere.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Metagenome sequencing enables the genetic characterization of complex microbial communities. However, determining the activity of isolates within a community presents several challenges, including the wide range of organismal and gene expression abundances, the presence of host RNA, and low microbial biomass at many sites. To address these limitations, we developed "targeted expression analysis sequencing" or TEAL-seq, enabling sensitive species-specific analyses of gene expression using highly multiplexed custom probe pools. For proof of concept, we targeted about 1,700 core and accessory genes of Staphylococcus aureus and S. epidermidis, two key species of the skin microbiome. Two targeting methods were applied to laboratory cultures and human nasal swab specimens. Both methods showed a high degree of specificity, with >90% reads on target, even in the presence of complex microbial or human background DNA/RNA. Targeting using molecular inversion probes demonstrated excellent correlation in inferred expression levels with bulk RNA-seq. Furthermore, we show that a linear pre-amplification step to increase the number of nucleic acids for analysis yielded consistent and predictable results when applied to complex samples and enabled profiling of expression from as little as 1 ng of total RNA. TEAL-seq is much less expensive than bulk metatranscriptomic profiling, enables detection across a greater dynamic range, and uses a strategy that is readily configurable for determining the transcriptional status of organisms in any microbial community.IMPORTANCEThe gene expression patterns of bacteria in microbial communities reflect their activity and interactions with other community members. Measuring gene expression in complex microbiome contexts is challenging, however, due to the large dynamic range of microbial abundances and transcript levels. Here we describe an approach to assessing gene expression for specific species of interest using highly multiplexed pools of targeting probes. We show that an isothermal amplification step enables the profiling of low biomass samples. TEAL-seq should be widely adaptable to the study of microbial activity in natural environments.
Collapse
Affiliation(s)
- Georgia Doing
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Priya Shanbhag
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Isaac Bell
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Sara Cassidy
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Elizabeth Aiken
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Pal A, Mohanty D. Machine learning-based approach for identification of new resistance associated mutations from whole genome sequences of Mycobacterium tuberculosis. BIOINFORMATICS ADVANCES 2025; 5:vbaf050. [PMID: 40125545 PMCID: PMC11930343 DOI: 10.1093/bioadv/vbaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Motivation Currently available methods for the prediction of genotypic drug resistance in Mycobacterium tuberculosis utilize information on known markers of drug resistance. Hence, machine learning approaches are needed that can discover new resistance markers. Results Whole genome sequences with known phenotypic drug resistance profiles have been utilized to train XGBoost and ANN classifiers for 5 first-line and 8 second-line tuberculosis drugs. Benchmarking on a completely independent dataset from CRyPTIC database revealed that our method has high sensitivity (90%-95%) and specificity (94%-99%) for five first-line drugs and robust performance for six second-line drugs with a sensitivity of 77%-89% at over 95% specificity. An explainable AI method, SHapley Additive exPlanations, has successfully identified resistance mutations for each drug in a completely automated way. This approach could not only identify known resistance associated mutations in agreement with the WHO mutation catalogue, but also predicted >100 other potential resistance associated mutations for 13 antibiotics in new genes outside the known resistance loci. Identification of new resistance markers opens up the opportunity for the discovery of novel mechanisms of drug resistance. Availability and implementation Our prediction method has been implemented as TB-AMRpred webserver and command line tool, available freely at http://www.nii.ac.in/TB-AMRpred.html and https://github.com/Ankitapal1995/TB-AMRprd.
Collapse
Affiliation(s)
- Ankita Pal
- Bioinformatics Center, National Institute of Immunology, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
3
|
Sury A, Maex M, Baulard A, Bhattacharyya RP, Depickère S, Hung DT, Cos P, Sayes F, Frigui W, Brosch R, Mathys V, Streicher EM, De Keersmaeker F, Rigouts L, Ceyssens PJ, Van den Bossche A. Speeding up drug susceptibility testing in Mycobacterium tuberculosis using RNA biomarkers. EBioMedicine 2025; 113:105611. [PMID: 40010155 PMCID: PMC11905850 DOI: 10.1016/j.ebiom.2025.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Efficient management of drug-resistant tuberculosis relies on fast diagnostics. To accelerate phenotypic drug susceptibility testing [pDST] for Mycobacterium tuberculosis [TB], we introduce TRACeR-TB, a test that infers drug resistance from antibiotic-specific mRNA biomarkers. METHODS To develop TRACeR-TB, target genes were first identified through RNA sequencing experiments conducted on two drug-exposed, susceptible strains for four antitubercular drugs. Based on these findings, we designed drug-specific multiplex Quantigene panels to quantify mRNA levels of 8-9 biomarkers per drug (class), directly from crude cell lysates. The performance of TRACeR-TB was compared to the widely used Mycobacteria Growth Indicator Tube [MGIT] pDST by subjecting 238 strains with diverse drug resistance profiles to both methods, and aligning results to genotypic data. Furthermore, we explored TRACeR-TB's potential for evaluating molecules that enhance antibiotic efficacy, and investigated its applicability in macrophage models to assess Mtb's intracellular stress responses to drugs. FINDINGS Antituberculosis drugs trigger distinct transcriptional stress responses in susceptible, but not resistant bacilli, enabling a differentiation of the antibiotic phenotype in only 6 h. Validation on 238 strains showed TRACeR-TB had 100% (95% CI: 93·1-100%) sensitivity and 89·5% (95% CI: 74·7-97·2%) specificity compared to, respectively, 82·3% (95% CI: 69·2%-91·5%) and 94·8% (95% CI: 81·9%-99·4%) for MGIT pDST. TRACeR-TB specificity is likely underestimated due to the inclusion of isolates harbouring uncharacterised mutations. TRACeR-TB demonstrated 100% concordance with MGIT for drugs with reliable MGIT outcomes (moxifloxacin and isoniazid). Additionally, its sensitivity outperformed current rifampicin testing, detecting resistance in all borderline-resistant strains that MGIT missed, and bedaquiline testing. Furthermore, the assay detected the predicted effect of a novel drug booster and the intracellular drug-induced stress in macrophage models, highlighting its potential for drug optimisation. INTERPRETATION TRACeR-TB is a complementary addition to current DSTs and can have a substantial impact on the TB diagnostics field. This tool can also play a vital role in identifying resistance mutations, thereby closing gaps in genotypic knowledge, and contribute to drug discovery and development. FUNDING Institut Pasteur, Agence Nationale de la Recherche.
Collapse
Affiliation(s)
- Amandine Sury
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Margo Maex
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, 59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, 59000, France
| | - Roby P Bhattacharyya
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsbaan 212, Antwerp, 2610, Belgium
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Vanessa Mathys
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Elizabeth M Streicher
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Frederik De Keersmaeker
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussel, 1050, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium; Mycobacteria Culture Collection of the Belgian Belgian Coordinated Collections of Microorganisms, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Pieter-Jan Ceyssens
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - An Van den Bossche
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium.
| |
Collapse
|
4
|
Munro JE, Coussens AK, Bahlo M. TBtypeR: Sensitive detection and sublineage classification of Mycobacterium tuberculosis complex mixed-strain infections. Commun Biol 2025; 8:260. [PMID: 39972208 PMCID: PMC11840096 DOI: 10.1038/s42003-025-07705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Tuberculosis (TB) is typically attributed to a single infecting strain of the Mycobacterium tuberculosis Complex (MTBC), however mixed-strain infections are more common than reported due to the limitations of conventional diagnostics. While whole genome sequencing (WGS) methods have improved the detection of mixed-strain infections, existing tools struggle to reliably identify mixed-strain infections with frequencies below 10%. TBtypeR, a new tool, addresses this challenge by comparing WGS data to a phylogenetic SNP panel of over 10,000 sites and 164 MTBC phylotypes and using a model based on the binomial distribution to classify sublineage mixtures at frequencies as low as 1%. Extensive benchmarking shows TBtypeR outperforms current methods. Application to a published dataset of 5000 WGS samples identified 305 mixed-strain infections, six-fold higher than previously reported. The TBtypeR R package and a Nextflow pipeline are available at github.com/bahlolab/TBtypeR, providing a powerful tool for studying TB epidemiology and mixed-strain infections.
Collapse
Affiliation(s)
- Jacob E Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia.
| | - Anna K Coussens
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
- Infection and Global Health Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
5
|
Büttner KA, Bregy V, Wegner F, Purushothaman S, Imkamp F, Roloff Handschin T, Puolakkainen MH, Hiltunen-Back E, Braun D, Kisakesen I, Schreiber A, Entrocassi AC, Gallo Vaulet ML, López Aquino D, Svidler López L, La Rosa L, Egli A, Rodríguez Fermepin M, Seth-Smith HM, On Behalf Of The Escmid Study Group For Mycoplasma And Chlamydia Infections Esgmac. Evaluating methods for genome sequencing of Chlamydia trachomatis and other sexually transmitted bacteria directly from clinical swabs. Microb Genom 2025; 11. [PMID: 39943872 DOI: 10.1099/mgen.0.001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Rates of bacterial sexually transmitted infections (STIs) are rising, and accessing their genomes provides information on strain evolution, circulating strains and encoded antimicrobial resistance (AMR). Notable pathogens include Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) and Treponema pallidum (TP), globally the most common bacterial STIs. Mycoplasmoides (formerly Mycoplasma) genitalium (MG) is also a bacterial STI that is of concern due to AMR development. These bacteria are also fastidious or hard to culture, and standard sampling methods lyse bacteria, completely preventing pathogen culture. Clinical samples contain large amounts of human and other microbiota DNA. These factors hinder the sequencing of bacterial STI genomes. We aimed to overcome these challenges in obtaining whole-genome sequences and evaluated four approaches using clinical samples from Argentina (39), and Switzerland (14), and cultured samples from Finland (2) and Argentina (1). First, direct genome sequencing from swab samples was attempted through Illumina deep metagenomic sequencing, showing extremely low levels of target DNA, with under 0.01% of the sequenced reads being from the target pathogens. Second, host DNA depletion followed by Illumina sequencing was not found to produce enrichment in these very low-load samples. Third, we tried a selective long-read approach with the new adaptive sequencing from Oxford Nanopore Technologies, which also did not improve enrichment sufficiently to provide genomic information. Finally, target enrichment using a novel pan-genome set of custom SureSelect probes targeting CT, NG, TP and MG followed by Illumina sequencing was successful. We produced whole genomes from 64% of CT-positive samples, from 36% of NG-positive samples and 60% of TP-positive samples. Additionally, we enriched MG DNA to gain partial genomes from 60% of samples. This is the first publication to date to utilize a pan-genome STI panel in target enrichment. Target enrichment, though costly, proved essential for obtaining genomic data from clinical samples. These data can be utilized to examine circulating strains and genotypic resistance and guide public health strategies.
Collapse
Affiliation(s)
- Karina Andrea Büttner
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
- Member of the ESCMID Study Group on Mycoplasma and Chlamydia (ESGMAC), Basel, Switzerland
| | - Vera Bregy
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Fanny Wegner
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | | | - Frank Imkamp
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | | | - Mirja H Puolakkainen
- Member of the ESCMID Study Group on Mycoplasma and Chlamydia (ESGMAC), Basel, Switzerland
- Department of Virology and Helsinki University Hospital, Helsinki, Finland
- Department of Virology and Immunology, University of Helsinki, Helsinki, Finland
| | - Eija Hiltunen-Back
- Department of Dermatology and Allergology, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Domnique Braun
- Department of Infectious Diseases, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - Ibrahim Kisakesen
- Life Sciences and Diagnostic Group, Agilent Technologies France, Les Ulis, France
| | - Andreas Schreiber
- Life Sciences and Diagnostic Group, Agilent Technologies France, Les Ulis, France
| | - Andrea Carolina Entrocassi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - María Lucía Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | | | | | - Luciana La Rosa
- Centro Privado de Cirugía y Coloproctología, Buenos Aires, Argentina
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Marcelo Rodríguez Fermepin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
- Member of the ESCMID Study Group on Mycoplasma and Chlamydia (ESGMAC), Basel, Switzerland
| | - Helena Mb Seth-Smith
- Member of the ESCMID Study Group on Mycoplasma and Chlamydia (ESGMAC), Basel, Switzerland
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Qu J, Liu W, Chen S, Wu C, Lai W, Qin R, Ye F, Li Y, Fu L, Deng G, Liu L, Lin Q, Cui P. Deep Amplicon Sequencing Reveals Culture-dependent Clonal Selection of Mycobacterium tuberculosis in Clinical Samples. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae046. [PMID: 38870522 PMCID: PMC11978391 DOI: 10.1093/gpbjnl/qzae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/15/2024]
Abstract
The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clonal/subclonal selection biases. Here, we developed a targeted deep amplicon sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations (DRMs) associated with 20 anti-tuberculosis drugs with only 4 pg of initial DNA input, and reduced the clinical testing time from 20 days to 2 days. A prospective study was conducted using 115 clinical specimens, predominantly positive for the Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay, to evaluate DRM detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS using the resistance-determining mutation method showed better accuracy (93.03% vs. 92.16%), sensitivity (96.10% vs. 95.02%), and specificity (91.33% vs. 90.62%) than WGS using the Mykrobe software. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at the population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancies in Mycobacterium tuberculosis before and after culture.
Collapse
Affiliation(s)
- Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuyan Chen
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Chi Wu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Wenjie Lai
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Rui Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Feidi Ye
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Liang Fu
- Division Two of Pulmonary Diseases Department, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Guofang Deng
- Division Two of Pulmonary Diseases Department, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Lei Liu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Mann BC, Loubser J, Omar S, Glanz C, Ektefaie Y, Jacobson KR, Warren RM, Farhat MR. Systematic review and meta-analysis of protocols and yield of direct from sputum sequencing of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.625621. [PMID: 39677639 PMCID: PMC11642866 DOI: 10.1101/2024.12.04.625621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Direct sputum whole genome sequencing (dsWGS) can revolutionize Mycobacterium tuberculosis (Mtb) diagnosis by enabling rapid detection of drug resistance and strain diversity without the biohazard of culture. We searched PubMed, Web of Science and Google scholar, and identified 8 studies that met inclusion criteria for testing protocols for dsWGS. Utilising meta-regression we identify several key factors positively associated with dsWGS success, including higher Mtb bacillary load, mechanical disruption, and enzymatic/chemical lysis. Specifically, smear grades of 3+ (OR = 14.7, 95% CI: 3.5, 62.1; p = 0.0005) were strongly associated with improved outcomes, whereas decontamination with sodium hydroxide (NaOH) was negatively associated (OR = 0.005, 95% CI: 0.001, 0.03; p = 7e-06), likely due to its harsh effects on Mtb cells. Furthermore, mechanical lysis (OR = 193.3, 95% CI: 11.7, 3197.8; p = 0.008) and enzymatic/chemical lysis (OR = 18.5, 95% CI: 1.9, 183.1; p = 0.02) were also strongly associated with improved dsWGS. Across the studies, we observed a high degree of variability in approaches to sputum pre-processing prior to dsWGS highlighting the need for standardized best practices. In particular we conclude that optimizing pre-processing steps including decontamination with the exploration of alternatives to NaOH to better preserve Mtb cells and DNA, and best practices for cell lysis during DNA extraction as priorities. Further and considering the strong association between Mtb load and successful dsWGS, protocol improvements for optimal sputum sample collection, handling, and storage could also further enhance the success rate of dsWGS.
Collapse
Affiliation(s)
- B C Mann
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - J Loubser
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Omar
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Glanz
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Y Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - K R Jacobson
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Mariner-Llicer C, Goig GA, Torres-Puente M, Vashakidze S, Villamayor LM, Saavedra-Cervera B, Mambuque E, Khurtsilava I, Avaliani Z, Rosenthal A, Gabrielian A, Shurgaia M, Shubladze N, García-Basteiro AL, López MG, Comas I. Genetic diversity within diagnostic sputum samples is mirrored in the culture of Mycobacterium tuberculosis across different settings. Nat Commun 2024; 15:7114. [PMID: 39237504 PMCID: PMC11377819 DOI: 10.1038/s41467-024-51266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Culturing and genomic sequencing of Mycobacterium tuberculosis (MTB) from tuberculosis (TB) cases is the basis for many research and clinical applications. The alternative, culture-free sequencing from diagnostic samples, is promising but poses challenges to obtain and analyse the MTB genome. Paradoxically, culture is assumed to impose a diversity bottleneck, which, if true, would entail unexplored consequences. To unravel this paradox we generate high-quality genomes of sputum-culture pairs from two different settings after developing a workflow for sequencing from sputum and a tailored bioinformatics analysis. Careful downstream comparisons reveal sources of sputum-culture incongruences due to false positive/negative variation associated with factors like low input MTB DNA or variable genomic depths. After accounting for these factors, contrary to the bottleneck dogma, we identify a 97% variant agreement within sputum-culture pairs, with a high correlation also in the variants' frequency (0.98). The combined analysis from five different settings and more than 100 available samples shows that our results can be extrapolated to different TB epidemic scenarios, demonstrating that for the cases tested culture accurately mirrors clinical samples.
Collapse
Affiliation(s)
| | - Galo A Goig
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | - Luis M Villamayor
- FISABIO, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, València, Spain
| | - Belén Saavedra-Cervera
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Wellcome Sanger Institute, Hinxton, UK
| | - Edson Mambuque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Iza Khurtsilava
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- European University, Tbilisi, Georgia
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Marika Shurgaia
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Natalia Shubladze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- CIBERINFEC, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Mariana G López
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
- CIBERESP, Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
9
|
Dippenaar A, Costa Conceição E, Wells F, Loubser J, Mann B, De Diego Fuertes M, Rennie V, Warren RM, Van Rie A. Exploring the potential of Oxford Nanopore Technologies sequencing for Mycobacterium tuberculosis sequencing: An assessment of R10 flowcells and V14 chemistry. PLoS One 2024; 19:e0303938. [PMID: 38843147 PMCID: PMC11156342 DOI: 10.1371/journal.pone.0303938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Oxford Nanopore Technologies (ONT) sequencing is a promising technology. We assessed the performance of the new ONT R10 flowcells and V14 rapid sequencing chemistry for Mtb whole genome sequencing of Mycobacterium tuberculosis (Mtb) DNA extracted from clinical primary liquid cultures (CPLCs). Using the recommended protocols for MinION Mk1C, R10.4.1 MinION flowcells, and the ONT Rapid Sequencing Kit V14 on six CPLC samples, we obtained a pooled library yield of 10.9 ng/μl, generated 1.94 Gb of sequenced bases and 214k reads after 48h in a first sequencing run. Only half (49%) of all generated reads met the Phred Quality score threshold (>8). To assess if the low data output and sequence quality were due to impurities present in DNA extracted directly from CPLCs, we added a pre-library preparation bead-clean-up step and included purified DNA obtained from an Mtb subculture as a control sample in a second sequencing run. The library yield for DNA extracted from four CPLCs and one Mtb subculture (control) was similar (10.0 ng/μl), 2.38 Gb of bases and 822k reads were produced. The quality was slightly better with 66% of the produced reads having a Phred Quality >8. A third run of DNA from six CPLCs with bead clean-up pre-processing produced a low library yield (±1 Gb of bases, 166k reads) of low quality (51% of reads with a Phred Quality score >8). A median depth of coverage above 10× was only achieved for five of 17 (29%) sequenced libraries. Compared to Illumina WGS of the same samples, accurate lineage predictions and full drug resistance profiles from the generated ONT data could not be determined by TBProfiler. Further optimization of the V14 ONT rapid sequencing chemistry and library preparation protocol is needed for clinical Mtb WGS applications.
Collapse
Affiliation(s)
- Anzaan Dippenaar
- Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilyn Costa Conceição
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Felicia Wells
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johannes Loubser
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brendon Mann
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Miguel De Diego Fuertes
- Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Rennie
- Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Robin Mark Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Tagami Y, Horita N, Kaneko M, Muraoka S, Fukuda N, Izawa A, Kaneko A, Somekawa K, Kamimaki C, Matsumoto H, Tanaka K, Murohashi K, Aoki A, Fujii H, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Whole-Genome Sequencing Predicting Phenotypic Antitubercular Drug Resistance: Meta-analysis. J Infect Dis 2024; 229:1481-1492. [PMID: 37946558 DOI: 10.1093/infdis/jiad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For simultaneous prediction of phenotypic drug susceptibility test (pDST) for multiple antituberculosis drugs, the whole genome sequencing (WGS) data can be analyzed using either a catalog-based approach, wherein 1 causative mutation suggests resistance, (eg, World Health Organization catalog) or noncatalog-based approach using complicated algorithm (eg, TB-profiler, machine learning). The aim was to estimate the predictive ability of WGS-based tests with pDST as the reference, and to compare the 2 approaches. METHODS Following a systematic literature search, the diagnostic test accuracies for 14 drugs were pooled using a random-effect bivariate model. RESULTS Of 779 articles, 44 with 16 821 specimens for meta-analysis and 13 not for meta-analysis were included. The areas under summary receiver operating characteristic curve suggested test accuracy was excellent (0.97-1.00) for 2 drugs (isoniazid 0.975, rifampicin 0.975), very good (0.93-0.97) for 8 drugs (pyrazinamide 0.946, streptomycin 0.952, amikacin 0.968, kanamycin 0.963, capreomycin 0.965, para-aminosalicylic acid 0.959, levofloxacin 0.960, ofloxacin 0.958), and good (0.75-0.93) for 4 drugs (ethambutol 0.926, moxifloxacin 0.896, ethionamide 0.878, prothionamide 0.908). The noncatalog-based and catalog-based approaches had similar ability for all drugs. CONCLUSIONS WGS accurately identifies isoniazid and rifampicin resistance. For most drugs, positive WGS results reliably predict pDST positive. The 2 approaches had similar ability. CLINICAL TRIALS REGISTRATION UMIN-ID UMIN000049276.
Collapse
Affiliation(s)
- Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Megumi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
11
|
Dippenaar A, Ismail N, Heupink TH, Grobbelaar M, Loubser J, Van Rie A, Warren RM. Droplet based whole genome amplification for sequencing minute amounts of purified Mycobacterium tuberculosis DNA. Sci Rep 2024; 14:9931. [PMID: 38689002 PMCID: PMC11061190 DOI: 10.1038/s41598-024-60545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Implementation of whole genome sequencing (WGS) for patient care is hindered by limited Mycobacterium tuberculosis (Mtb) in clinical specimens and slow Mtb growth. We evaluated droplet multiple displacement amplification (dMDA) for amplification of minute amounts of Mtb DNA to enable WGS as an alternative to other Mtb enrichment methods. Purified genomic Mtb-DNA (0.1, 0.5, 1, and 5 pg) was encapsulated and amplified using the Samplix Xdrop-instrument and sequenced alongside a control sample using standard Illumina protocols followed by MAGMA-analysis. The control and 5 pg input dMDA samples underwent nanopore sequencing followed by Nanoseq and TB-profiler analysis. dMDA generated 105-2400 ng DNA from the 0.1-5 pg input DNA, respectively. Followed by Illumina WGS, dMDA raised mean sequencing depth from 7 × for 0.1 pg input DNA to ≥ 60 × for 5 pg input and the control sample. Bioinformatic analysis revealed a high number of false positive and false negative variants when amplifying ≤ 0.5 pg input DNA. Nanopore sequencing of the 5 pg dMDA sample presented excellent coverage depth, breadth, and accurate strain characterization, albeit elevated false positive and false negative variants compared to Illumina-sequenced dMDA sample with identical Mtb DNA input. dMDA coupled with Illumina WGS for samples with ≥ 5 pg purified Mtb DNA, equating to approximately 1000 copies of the Mtb genome, offers precision for drug resistance, phylogeny, and transmission insights.
Collapse
Affiliation(s)
- Anzaan Dippenaar
- Tuberculosis Omics Research Consortium, Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Nabila Ismail
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tim H Heupink
- Tuberculosis Omics Research Consortium, Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johannes Loubser
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Tuberculosis Omics Research Consortium, Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Opperman CJ, Singh S, Goosen W, Cox H, Warren R, Esmail A. Incorporating direct molecular diagnostics in management algorithms for nontuberculous mycobacteria: Is it high time? IJID REGIONS 2024; 10:140-145. [PMID: 38304760 PMCID: PMC10831244 DOI: 10.1016/j.ijregi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Nontuberculous mycobacteria (NTM) are a group of acid-fast mycobacteria other than Mycobacterium tuberculosis complex (MTBC) that cause pulmonary disease that is similar to the disease caused by MTBC. International guidelines for the diagnosis of pulmonary NTM disease are rigid and have remained unchanged for nearly 2 decades. In this opinion piece, we provide a new perspective on the traditional criteria by suggesting a diagnostic algorithm that incorporates direct molecular identification of NTM performed on raw sputum specimens (using Sanger or targeted deep sequencing approaches, among others) paired with traditional culture methods. Our approach ensures a more rapid diagnosis of pulmonary NTM disease, thus, facilitating timeous clinical diagnosis, and prompt treatment initiation, where indicated, and leverages recent advances in novel molecular techniques into routine NTM identification practice.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB Laboratory, Cape Town, South Africa
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sarishna Singh
- National Health Laboratory Service, Green Point TB Laboratory, Cape Town, South Africa
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Wynand Goosen
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Helen Cox
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| | - Rob Warren
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Aliasgar Esmail
- UCT Lung Institute, Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town, & Groote Schuur Hospital
| |
Collapse
|
13
|
Nimmo C, Ortiz AT, Tan CCS, Pang J, Acman M, Millard J, Padayatchi N, Grant AD, O'Donnell M, Pym A, Brynildsrud OB, Eldholm V, Grandjean L, Didelot X, Balloux F, van Dorp L. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med 2024; 16:34. [PMID: 38374151 PMCID: PMC10877763 DOI: 10.1186/s13073-024-01289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
Collapse
Affiliation(s)
- Camus Nimmo
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
- Division of Infection and Immunity, University College London, London, UK.
- Africa Health Research Institute, Durban, South Africa.
| | - Arturo Torres Ortiz
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Department of Medicine, Imperial College, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - Juanita Pang
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Mislav Acman
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - James Millard
- Africa Health Research Institute, Durban, South Africa
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Medicine & Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Pym
- Africa Health Research Institute, Durban, South Africa
| | - Ola B Brynildsrud
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis Grandjean
- Division of Infection and Immunity, University College London, London, UK
- Laboratorio de Investigacion y Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - François Balloux
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| |
Collapse
|
14
|
Cooke DM, Clarke C, Kerr TJ, Warren RM, Witte C, Miller MA, Goosen WJ. Detection of Mycobacterium bovis in nasal swabs from communal goats ( Capra hircus) in rural KwaZulu-Natal, South Africa. Front Microbiol 2024; 15:1349163. [PMID: 38419629 PMCID: PMC10899470 DOI: 10.3389/fmicb.2024.1349163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Animal tuberculosis, caused by Mycobacterium bovis, presents a significant threat to both livestock industries and public health. Mycobacterium bovis tests rely on detecting antigen specific immune responses, which can be influenced by exposure to non-tuberculous mycobacteria, test technique, and duration and severity of infection. Despite advancements in direct M. bovis detection, mycobacterial culture remains the primary diagnostic standard. Recent efforts have explored culture-independent PCR-based methods for identifying mycobacterial DNA in respiratory samples. This study aimed to detect M. bovis in nasal swabs from goats (Capra hircus) cohabiting with M. bovis-infected cattle in KwaZulu-Natal, South Africa. Nasal swabs were collected from 137 communal goats exposed to M. bovis-positive cattle and 20 goats from a commercial dairy herd without M. bovis history. Swabs were divided into three aliquots for analysis. The first underwent GeneXpert® MTB/RIF Ultra assay (Ultra) screening. DNA from the second underwent mycobacterial genus-specific PCR and Sanger sequencing, while the third underwent mycobacterial culture followed by PCR and sequencing. Deep sequencing identified M. bovis DNA in selected Ultra-positive swabs, confirmed by region-of-difference (RD) PCR. Despite no other evidence of M. bovis infection, viable M. bovis was cultured from three communal goat swabs, confirmed by PCR and sequencing. Deep sequencing of DNA directly from swabs identified M. bovis in the same culture-positive swabs and eight additional communal goats. No M. bovis was found in commercial dairy goats, but various NTM species were detected. This highlights the risk of M. bovis exposure or infection in goats sharing pastures with infected cattle. Rapid Ultra screening shows promise for selecting goats for further M. bovis testing. These techniques may enhance M. bovis detection in paucibacillary samples and serve as valuable research tools.
Collapse
Affiliation(s)
- Deborah M. Cooke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Charlene Clarke
- Faculty of Natural and Agricultural Sciences, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- The Center for Wildlife Studies, South Freeport, ME, United States
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Heupink TH, Verboven L, Sharma A, Rennie V, de Diego Fuertes M, Warren RM, Van Rie A. The MAGMA pipeline for comprehensive genomic analyses of clinical Mycobacterium tuberculosis samples. PLoS Comput Biol 2023; 19:e1011648. [PMID: 38019772 PMCID: PMC10686480 DOI: 10.1371/journal.pcbi.1011648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) holds great potential for the management and control of tuberculosis. Accurate analysis of samples with low mycobacterial burden, which are characterized by low (<20x) coverage and high (>40%) levels of contamination, is challenging. We created the MAGMA (Maximum Accessible Genome for Mtb Analysis) bioinformatics pipeline for analysis of clinical Mtb samples. METHODS AND RESULTS High accuracy variant calling is achieved by using a long seedlength during read mapping to filter out contaminants, variant quality score recalibration with machine learning to identify genuine genomic variants, and joint variant calling for low Mtb coverage genomes. MAGMA automatically generates a standardized and comprehensive output of drug resistance information and resistance classification based on the WHO catalogue of Mtb mutations. MAGMA automatically generates phylogenetic trees with drug resistance annotations and trees that visualize the presence of clusters. Drug resistance and phylogeny outputs from sequencing data of 79 primary liquid cultures were compared between the MAGMA and MTBseq pipelines. The MTBseq pipeline reported only a proportion of the variants in candidate drug resistance genes that were reported by MAGMA. Notable differences were in structural variants, variants in highly conserved rrs and rrl genes, and variants in candidate resistance genes for bedaquiline, clofazmine, and delamanid. Phylogeny results were similar between pipelines but only MAGMA visualized clusters. CONCLUSION The MAGMA pipeline could facilitate the integration of WGS into clinical care as it generates clinically relevant data on drug resistance and phylogeny in an automated, standardized, and reproducible manner.
Collapse
Affiliation(s)
- Tim H. Heupink
- TORCH Consortium, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Lennert Verboven
- TORCH Consortium, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Abhinav Sharma
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vincent Rennie
- TORCH Consortium, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Miguel de Diego Fuertes
- TORCH Consortium, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Robin M. Warren
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- TORCH Consortium, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Ismail N, Dippenaar A, Morgan G, Grobbelaar M, Wells F, Caffry J, Morais C, Gizynski K, McGurk D, Boada E, Murton H, Warren RM, Van Rie A. Microfluidic Capture of Mycobacterium tuberculosis from Clinical Samples for Culture-Free Whole-Genome Sequencing. Microbiol Spectr 2023; 11:e0111423. [PMID: 37358439 PMCID: PMC10433858 DOI: 10.1128/spectrum.01114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Mycobacterium tuberculosis whole-genome sequencing (WGS) is a powerful tool as it can provide data on population diversity, drug resistance, disease transmission, and mixed infections. Successful WGS is still reliant on high concentrations of DNA obtained through M. tuberculosis culture. Microfluidics technology plays a valuable role in single-cell research but has not yet been assessed as a bacterial enrichment strategy for culture-free WGS of M. tuberculosis. In a proof-of-principle study, we evaluated the use of Capture-XT, a microfluidic lab-on-chip cleanup and pathogen concentration platform to enrich M. tuberculosis bacilli from clinical sputum specimens for downstream DNA extraction and WGS. Three of the four (75%) samples processed by the microfluidics application passed the library preparation quality control, compared to only one of the four (25%) samples not enriched by the microfluidics M. tuberculosis capture application. WGS data were of sufficient quality, with mapping depth of ≥25× and 9 to 27% of reads mapping to the reference genome. These results suggest that microfluidics-based M. tuberculosis cell capture might be a promising method for M. tuberculosis enrichment in clinical sputum samples, which could facilitate culture-free M. tuberculosis WGS. IMPORTANCE Diagnosis of tuberculosis is effective using molecular methods; however, a comprehensive characterization of the resistance profile of Mycobacterium tuberculosis often requires culturing and phenotypic drug susceptibility testing or culturing followed by whole-genome sequencing (WGS). The phenotypic route can take anywhere from 1 to >3 months to result, by which point the patient may have acquired additional drug resistance. The WGS route is a very attractive option; however, culturing is the rate-limiting step. In this original article, we provide proof-of-principle evidence that microfluidics-based cell capture can be used on high-bacillary-load clinical samples for culture-free WGS.
Collapse
Affiliation(s)
- Nabila Ismail
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Melanie Grobbelaar
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Felicia Wells
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | - David McGurk
- QuantuMDx Ltd., Newcastle upon Tyne, United Kingdom
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Zeineldin M, Camp P, Farrell D, Lehman K, Thacker T. Whole genome sequencing of Mycobacterium bovis directly from clinical tissue samples without culture. Front Microbiol 2023; 14:1141651. [PMID: 37275178 PMCID: PMC10232834 DOI: 10.3389/fmicb.2023.1141651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Advancement in next generation sequencing offers the possibility of routine use of whole genome sequencing (WGS) for Mycobacterium bovis (M. bovis) genomes in clinical reference laboratories. To date, the M. bovis genome could only be sequenced if the mycobacteria were cultured from tissue. This requirement for culture has been due to the overwhelmingly large amount of host DNA present when DNA is prepared directly from a granuloma. To overcome this formidable hurdle, we evaluated the usefulness of an RNA-based targeted enrichment method to sequence M. bovis DNA directly from tissue samples without culture. Initial spiking experiments for method development were established by spiking DNA extracted from tissue samples with serially diluted M. bovis BCG DNA at the following concentration range: 0.1 ng/μl to 0.1 pg/μl (10-1 to 10-4). Library preparation, hybridization and enrichment was performed using SureSelect custom capture library RNA baits and the SureSelect XT HS2 target enrichment system for Illumina paired-end sequencing. The method validation was then assessed using direct WGS of M. bovis DNA extracted from tissue samples from naturally (n = 6) and experimentally (n = 6) infected animals with variable Ct values. Direct WGS of spiked DNA samples achieved 99.1% mean genome coverage (mean depth of coverage: 108×) and 98.8% mean genome coverage (mean depth of coverage: 26.4×) for tissue samples spiked with BCG DNA at 10-1 (mean Ct value: 20.3) and 10-2 (mean Ct value: 23.4), respectively. The M. bovis genome from the experimentally and naturally infected tissue samples was successfully sequenced with a mean genome coverage of 99.56% and depth of genome coverage ranging from 9.2× to 72.1×. The spoligoyping and M. bovis group assignment derived from sequencing DNA directly from the infected tissue samples matched that of the cultured isolates from the same sample. Our results show that direct sequencing of M. bovis DNA from tissue samples has the potential to provide accurate sequencing of M. bovis genomes significantly faster than WGS from cultures in research and diagnostic settings.
Collapse
|
18
|
Macedo R, Isidro J, Ferreira R, Pinto M, Borges V, Duarte S, Vieira L, Gomes JP. Molecular Capture of Mycobacterium tuberculosis Genomes Directly from Clinical Samples: A Potential Backup Approach for Epidemiological and Drug Susceptibility Inferences. Int J Mol Sci 2023; 24:ijms24032912. [PMID: 36769230 PMCID: PMC9918089 DOI: 10.3390/ijms24032912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The application of whole genome sequencing of Mycobacterium tuberculosis directly on clinical samples has been investigated as a means to avoid the time-consuming need for culture isolation that can lead to a potential prolonged suboptimal antibiotic treatment. We aimed to provide a proof-of-concept regarding the application of the molecular capture of M. tuberculosis genomes directly from positive sputum samples as an approach for epidemiological and drug susceptibility predictions. Smear-positive sputum samples (n = 100) were subjected to the SureSelectXT HS Target Enrichment protocol (Agilent Technologies, Santa Clara, CA, USA) and whole-genome sequencing analysis. A higher number of reads on target were obtained for higher smear grades samples (i.e., 3+ followed by 2+). Moreover, 37 out of 100 samples showed ≥90% of the reference genome covered with at least 10-fold depth of coverage (27, 9, and 1 samples were 3+, 2+, and 1+, respectively). Regarding drug-resistance/susceptibility prediction, for 42 samples, ≥90% of the >9000 hits that are surveyed by TB-profiler were detected. Our results demonstrated that M. tuberculosis genome capture and sequencing directly from clinical samples constitute a potential valid backup approach for phylogenetic inferences and resistance prediction, essentially in settings when culture is not routinely performed or for samples that fail to grow.
Collapse
Affiliation(s)
- Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Joana Isidro
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Rita Ferreira
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Sílvia Duarte
- Innovation and Technology Unit, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), 1649-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
19
|
Ness TE, DiNardo A, Farhat MR. High Throughput Sequencing for Clinical Tuberculosis: An Overview. Pathogens 2022; 11:pathogens11111343. [PMID: 36422596 PMCID: PMC9695813 DOI: 10.3390/pathogens11111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
High throughput sequencing (HTS) can identify the presence of Mycobacterium tuberculosis DNA in a clinical sample while also providing information on drug susceptibility. Multiple studies have provided a context for exploring the clinical application of HTS for TB diagnosis. The workflow challenges, strengths and limitations of the various sequencing platforms, and tools used for analysis are presented to provide a framework for further innovations in the field.
Collapse
Affiliation(s)
- Tara E. Ness
- Division of Pediatric Infectious Diseases, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX 77030, USA
- Global TB Program, Baylor College of Medicine/Texas Childrens Hospital, Houston, TX 77030, USA
- Correspondence:
| | - Andrew DiNardo
- Global TB Program, Baylor College of Medicine/Texas Childrens Hospital, Houston, TX 77030, USA
| | - Maha R. Farhat
- Harvard Medical School Biomedical Informatics and Pulmonary and Critical Care Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Rapid Identification of Drug Resistance and Phylogeny in M. tuberculosis, Directly from Sputum Samples. Microbiol Spectr 2022; 10:e0125222. [PMID: 36102651 PMCID: PMC9602270 DOI: 10.1128/spectrum.01252-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.
Collapse
|
21
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Akkerman OW, Duarte R, Tiberi S, Schaaf HS, Lange C, Alffenaar JWC, Denholm J, Carvalho ACC, Bolhuis MS, Borisov S, Bruchfeld J, Cabibbe AM, Caminero JA, Carvalho I, Chakaya J, Centis R, Dalcomo MP, D Ambrosio L, Dedicoat M, Dheda K, Dooley KE, Furin J, García-García JM, van Hest NAH, de Jong BC, Kurhasani X, Märtson AG, Mpagama S, Torrico MM, Nunes E, Ong CWM, Palmero DJ, Ruslami R, Saktiawati AMI, Semuto C, Silva DR, Singla R, Solovic I, Srivastava S, de Steenwinkel JEM, Story A, Sturkenboom MGG, Tadolini M, Udwadia ZF, Verhage AR, Zellweger JP, Migliori GB. Clinical standards for drug-susceptible pulmonary TB. Int J Tuberc Lung Dis 2022; 26:592-604. [PMID: 35768923 PMCID: PMC9272737 DOI: 10.5588/ijtld.22.0228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: The aim of these clinical standards is to provide guidance on 'best practice´ for diagnosis, treatment and management of drug-susceptible pulmonary TB (PTB).METHODS: A panel of 54 global experts in the field of TB care, public health, microbiology, and pharmacology were identified; 46 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all 46 participants.RESULTS: Seven clinical standards were defined: Standard 1, all patients (adult or child) who have symptoms and signs compatible with PTB should undergo investigations to reach a diagnosis; Standard 2, adequate bacteriological tests should be conducted to exclude drug-resistant TB; Standard 3, an appropriate regimen recommended by WHO and national guidelines for the treatment of PTB should be identified; Standard 4, health education and counselling should be provided for each patient starting treatment; Standard 5, treatment monitoring should be conducted to assess adherence, follow patient progress, identify and manage adverse events, and detect development of resistance; Standard 6, a recommended series of patient examinations should be performed at the end of treatment; Standard 7, necessary public health actions should be conducted for each patient. We also identified priorities for future research into PTB.CONCLUSION: These consensus-based clinical standards will help to improve patient care by guiding clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment for PTB.
Collapse
Affiliation(s)
- O W Akkerman
- TB Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, the Netherlands, Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R Duarte
- Centro Hospitalar de Vila Nova de Gaia/Espinho; Instituto de Ciencias Biomédicas de Abel Saalazar, Universidade do Porto, Instituto de Saúde Publica da Universidade do Porto, Unidade de Investigação Clínica, ARS Norte, Porto, Portugal
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Division of Infection, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany, German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany, Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany, The Global Tuberculosis Program, Texas Children´s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - J Denholm
- Victorian Tuberculosis Program, Melbourne Health, Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - M S Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Borisov
- Moscow Research and Clinical Center for Tuberculosis Control, Moscow, Russia
| | - J Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden, Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - J A Caminero
- Department of Pneumology, University General Hospital of Gran Canaria "Dr Negrin", Las Palmas, Spain, ALOSA (Active Learning over Sanitary Aspects) TB Academy, Spain
| | - I Carvalho
- Pediatric Department, Vila Nova de Gaia Outpatient Tuberculosis Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - J Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences. Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - M P Dalcomo
- Reference Center Helio Fraga, FIOCRUZ, Brazil
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K E Dooley
- Center for Tuberculosis Research, Johns Hopkins, Baltimore, MD
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - N A H van Hest
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, Municipal Public Health Service Groningen, Groningen, The Netherlands
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - X Kurhasani
- UBT-Higher Education Institution Prishtina, Kosovo
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - S Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzani, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, México City, Mexico
| | - E Nunes
- Department of Pulmonology of Central Hospital of Maputo, Maputo, Mozambique, Faculty of Medicine of Eduardo Mondlane University, Maputo, Mozambique
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, National University of Singapore Institute for Health Innovation & Technology (iHealthtech), Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - D J Palmero
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Research Center for Care and Control of Infectious Disease (RC3iD), Universitas Padjadjaran, Bandung, Indonesia
| | - A M I Saktiawati
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - C Semuto
- Research, Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - D R Silva
- Instituto Vaccarezza, Hospital Muñiz, Buenos Aires, Argentina
| | - R Singla
- National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | - I Solovic
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Faculty of Health, Catholic University, Ružomberok, Vyšné Hágy, Slovakia
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - J E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - A Story
- Institute of Epidemiology and Healthcare, University College London, London, UK, Find and Treat, University College Hospitals NHS Foundation Trust, London, UK
| | - M G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - A R Verhage
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J P Zellweger
- TB Competence Center, Swiss Lung Association, Berne, Switzerland
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
23
|
Carney T, Rooney JA, Niemand N, Myers B, Theron D, Wood R, White LF, Meade CS, Chegou NN, Ragan E, Walzl G, Horsburgh R, Warren RM, Jacobson KR. Transmission Of Tuberculosis Among illicit drug use Linkages (TOTAL): A cross-sectional observational study protocol using respondent driven sampling. PLoS One 2022; 17:e0262440. [PMID: 35167586 PMCID: PMC8846525 DOI: 10.1371/journal.pone.0262440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
People who use illicit drugs (PWUDs) have been identified as a key at-risk group for tuberculosis (TB). Examination of illicit drug use networks has potential to assess the risk of TB exposure and disease progression. Research also is needed to assess mechanisms for accelerated TB transmission in this population. This study aims to 1) assess the rate of TB exposure, risk of disease progression, and disease burden among PWUD; 2) estimate the proportion of active TB cases resulting from recent transmission within this network; and 3) evaluate whether PWUD with TB disease have physiologic characteristics associated with more efficient TB transmission. Our cross-sectional, observational study aims to assess TB transmission through illicit drug use networks, focusing on methamphetamine and Mandrax (methaqualone) use, in a high TB burden setting and identify mechanisms underlying accelerated transmission. We will recruit and enroll 750 PWUD (living with and without HIV) through respondent driven sampling in Worcester, South Africa. Drug use will be measured through self-report and biological measures, with sputum specimens collected to identify TB disease by Xpert Ultra (Cepheid) and mycobacterial culture. We will co-enroll those with microbiologic evidence of TB disease in Aim 2 for molecular and social network study. Whole genome sequencing of Mycobacteria tuberculosis (Mtb) specimens and social contact surveys will be done for those diagnosed with TB. For Aim 3, aerosolized Mtb will be compared in individuals with newly diagnosed TB who do and do not smoke illicit drug. Knowledge from this study will provide the basis for a strategy to interrupt TB transmission in PWUD and provide insight into how this fuels overall community transmission. Results have potential for informing interventions to reduce TB spread applicable to high TB and HIV burden settings. Trial registration: Clinicaltrials.gov Registration Number: NCT041515602. Date of Registration: 5 November 2019.
Collapse
Affiliation(s)
- Tara Carney
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Division of Addiction Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Jennifer A. Rooney
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Nandi Niemand
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bronwyn Myers
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Division of Addiction Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, South Africa
- Curtin enAble Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | | | - Robin Wood
- Desmond Tutu Health Foundation, UCT Faculty of Health Sciences, Observatory, Cape Town, South Africa
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Christina S. Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States of America
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth Ragan
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert Horsburgh
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Department of Epidemiology, Biostatistics and Global Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen R. Jacobson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
24
|
Ventolero MF, Wang S, Hu H, Li X. Computational analyses of bacterial strains from shotgun reads. Brief Bioinform 2022; 23:6524011. [PMID: 35136954 DOI: 10.1093/bib/bbac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Shotgun sequencing is routinely employed to study bacteria in microbial communities. With the vast amount of shotgun sequencing reads generated in a metagenomic project, it is crucial to determine the microbial composition at the strain level. This study investigated 20 computational tools that attempt to infer bacterial strain genomes from shotgun reads. For the first time, we discussed the methodology behind these tools. We also systematically evaluated six novel-strain-targeting tools on the same datasets and found that BHap, mixtureS and StrainFinder performed better than other tools. Because the performance of the best tools is still suboptimal, we discussed future directions that may address the limitations.
Collapse
Affiliation(s)
| | - Saidi Wang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA.,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
25
|
Lozano N, Lanza VF, Suárez-González J, Herranz M, Sola-Campoy PJ, Rodríguez-Grande C, Buenestado-Serrano S, Ruiz-Serrano MJ, Tudó G, Alcaide F, Muñoz P, García de Viedma D, Pérez-Lago L. Detection of Minority Variants and Mixed Infections in Mycobacterium tuberculosis by Direct Whole-Genome Sequencing on Noncultured Specimens Using a Specific-DNA Capture Strategy. mSphere 2021; 6:e0074421. [PMID: 34908457 PMCID: PMC8673255 DOI: 10.1128/msphere.00744-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 12/01/2022] Open
Abstract
Detection of mixed Mycobacterium tuberculosis (MTB) infections is essential, particularly when resistance mutations are present in minority bacterial populations that may affect patients' disease evolution and treatment. Whole-genome sequencing (WGS) has extended the amount of key information available for the diagnosis of MTB infection, including the identification of mixed infections. Having genomic information at diagnosis for early intervention requires carrying out WGS directly on the clinical samples. However, few studies have been successful with this approach due to the low representation of MTB DNA in sputa. In this study, we evaluated the ability of a strategy based on specific MTB DNA enrichment by using a newly designed capture platform (MycoCap) to detect minority variants and mixed infections by WGS on controlled mixtures of MTB DNAs in a simulated sputum genetic background. A pilot study was carried out with 12 samples containing 98% of a DNA pool from sputa of patients without MTB infection and 2% of MTB DNA mixtures at different proportions. Our strategy allowed us to generate sequences with a quality equivalent to those obtained from culture: 62.5× depth coverage and 95% breadth coverage (for at least 20× reads). Assessment of minority variant detection was carried out by manual analysis and allowed us to identify heterozygous positions up to a 95:5 ratio. The strategy also automatically distinguished mixed infections up to a 90:10 proportion. Our strategy efficiently captures MTB DNA in a nonspecific genetic background, allows detection of minority variants and mixed infections, and is a promising tool for performing WGS directly on clinical samples. IMPORTANCE We present a new strategy to identify mixed infections and minority variants in Mycobacterium tuberculosis by whole-genome sequencing. The objective of the strategy is the direct detection in patient sputum; in this way, minority populations of resistant strains can be identified at the time of diagnosis, facilitating identification of the most appropriate treatment for the patient from the first moment. For this, a platform for capturing M. tuberculosis-specific DNA was designed to enrich the clinical sample and obtain quality sequences.
Collapse
Affiliation(s)
- Nuria Lozano
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Val F. Lanza
- Bioinformatics Unit IRYCIS, University Hospital Ramón y Cajal, Madrid, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Julia Suárez-González
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Genómica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marta Herranz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Pedro J. Sola-Campoy
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Cristina Rodríguez-Grande
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sergio Buenestado-Serrano
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Jesús Ruiz-Serrano
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Griselda Tudó
- Servei de Microbiologia, Hospital Clinic-CDB, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Fernando Alcaide
- Servicio de Microbiología, Hospital Universitario de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Pathology and Experimental Therapy, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Madrid, Spain
- Departmento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Laura Pérez-Lago
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
26
|
Bonnet I, Enouf V, Morel F, Ok V, Jaffré J, Jarlier V, Aubry A, Robert J, Sougakoff W. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB ® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Front Cell Infect Microbiol 2021; 11:707244. [PMID: 34778100 PMCID: PMC8586210 DOI: 10.3389/fcimb.2021.707244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The GeneLEAD VIII (Diagenode, Belgium) is a new, fully automated, sample-to-result precision instrument for the extraction of DNA and PCR detection of Mycobacterium tuberculosis complex (MTBC) directly from clinical samples. The Deeplex Myc-TB® assay (Genoscreen, France) is a diagnostic kit based on the deep sequencing of a 24-plexed amplicon mix allowing simultaneously the detection of resistance to 13 antituberculous (antiTB) drugs and the determination of spoligotype. We evaluated the performance of a strategy combining the both mentioned tools to detect directly from clinical samples, in 8 days, MTBC and its resistance to 13 antiTB drugs, and identify potential transmission of strains from patient-to-patient. Using this approach, we screened 112 clinical samples (65 smear-negative) and 94 MTBC cultured strains. The sensitivity and the specificity of the GeneLEAD/Deeplex Myc-TB approach for MTBC detection were 79.3% and 100%, respectively. One hundred forty successful Deeplex Myc-TB results were obtained for 46 clinical samples and 94 strains, a total of 85.4% of which had a Deeplex Myc-TB susceptibility and resistance prediction consistent with phenotypic drug susceptibility testing (DST). Importantly, the Deeplex Myc-TB assay was able to detect 100% of the multidrug-resistant (MDR) MTBC tested. The lowest concordance rates were for pyrazinamide, ethambutol, streptomycin, and ethionamide (84.5%, 81.5%, 73%, and 55%, respectively) for which the determination of susceptibility or resistance is generally difficult with current tools. One of the main difficulties of Deeplex Myc-TB is to interpret the non-synonymous uncharacterized variants that can represent up to 30% of the detected single nucleotide variants. We observed a good level of concordance between Deeplex Myc-TB-spoligotyping and MIRU-VNTR despite a lower discriminatory power for spoligotyping. The median time to obtain complete results from clinical samples was 8 days (IQR 7–13) provided a high-throughput NGS sequencing platform was available. Our results highlight that the GeneLEAD/Deeplex Myc-TB approach could be a breakthrough in rapid diagnosis of MDR TB in routine practice.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Enouf
- Plateforme de Microbiologie Mutualisée (P2M), Pasteur International Bioresources network (PIBnet), Institut Pasteur, Paris, France
| | - Florence Morel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vichita Ok
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérémy Jaffré
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Jarlier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France
| | - Alexandra Aubry
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérôme Robert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Wladimir Sougakoff
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| |
Collapse
|
27
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
28
|
Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. J Clin Med 2021; 10:jcm10153249. [PMID: 34362035 PMCID: PMC8348819 DOI: 10.3390/jcm10153249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/12/2023] Open
Abstract
An estimated 15–20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after “lipid-resuscitation”, and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein–Jensen or 7H9 media, which is consistent with Mtb’s known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.
Collapse
|
29
|
Thannesberger J, Rascovan N, Eisenmann A, Klymiuk I, Zittra C, Fuehrer HP, Scantlebury-Manning T, Gittens-St Hilaire M, Austin S, Landis RC, Steininger C. Viral metagenomics reveals the presence of novel Zika virus variants in Aedes mosquitoes from Barbados. Parasit Vectors 2021; 14:343. [PMID: 34187544 PMCID: PMC8244189 DOI: 10.1186/s13071-021-04840-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background The Zika virus (ZIKV) epidemic of 2015/2016 spread throughout numerous countries. It emerged in mainland Latin America and spread to neighboring islands, including the Caribbean island of Barbados. Recent studies have indicated that the virus must have already been circulating in local mosquito populations in Brazil for almost 2 years before it was identified by the World Health Organization in 2015. Metagenomic detection assays have the potential to detect emerging pathogens without prior knowledge of their genomic nucleic acid sequence. Yet their applicability as vector surveillance tools has been widely limited by the complexity of DNA populations from field-collected mosquito preparations. The aim of this study was to investigate local vector biology and characterize metagenomic arbovirus diversity in Aedes mosquitoes during the ongoing 2015/2016 ZIKV epidemic. Methods We performed a short-term vector screening study on the island of Barbados during the ongoing 2015/2016 ZIKV epidemic, where we sampled local Aedes mosquitoes. We reanalyzed mosquito viral microbiome data derived from standard Illumina MiSeq sequencing to detect arbovirus sequences. Additionally, we employed deep sequencing techniques (Illumina HiSeq) and designed a novel bait capture enrichment assay to increase sequencing efficiency for arbovirus sequences from complex DNA samples. Results We found that Aedes aegypti seemed to be the most likely vector of ZIKV, although it prevailed at a low density during the observed time period. The number of detected viruses increased with sequencing depth. Arbovirus sequence enrichment of metagenomic DNA preparations allowed the detection of arbovirus sequences of two different ZIKV genotypes, including a novel one. To our knowledge, this is the first report of the S3116W mutation in the NS5 gene region of ZIKV polyprotein. Conclusions The metagenomic arbovirus detection approach presented here may serve as a useful tool for the identification of epidemic-causing arboviruses with the additional benefit of enabling the collection of phylogenetic information on the source. Apart from detecting more than 88 viruses using this approach, we also found evidence of novel ZIKV variants circulating in the local mosquito population during the observed time period. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04840-0.
Collapse
Affiliation(s)
- J Thannesberger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - N Rascovan
- Department of Genomes & Genetics, Institut Pasteur, Paris, France
| | - A Eisenmann
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - I Klymiuk
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - C Zittra
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - H P Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - T Scantlebury-Manning
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | | | - S Austin
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Cave Hill, Barbados
| | - R C Landis
- Edmund Cohen Laboratory for Vascular Research, George Alleyne Chronic Disease Research Centre, The University of the West Indies, Bridgetown, Barbados
| | - C Steininger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Vargas R, Freschi L, Marin M, Epperson LE, Smith M, Oussenko I, Durbin D, Strong M, Salfinger M, Farhat MR. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 2021; 10:61805. [PMID: 33522489 PMCID: PMC7884073 DOI: 10.7554/elife.61805] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death globally. Understanding the population dynamics of TB’s causative agent Mycobacterium tuberculosis complex (Mtbc) in-host is vital for understanding the efficacy of antibiotic treatment. We use longitudinally collected clinical Mtbc isolates that underwent Whole-Genome Sequencing from the sputa of 200 patients to investigate Mtbc diversity during the course of active TB disease after excluding 107 cases suspected of reinfection, mixed infection or contamination. Of the 178/200 patients with persistent clonal infection >2 months, 27 developed new resistance mutations between sampling with 20/27 occurring in patients with pre-existing resistance. Low abundance resistance variants at a purity of ≥19% in the first isolate predict fixation in the subsequent sample. We identify significant in-host variation in 27 genes, including antibiotic resistance genes, metabolic genes and genes known to modulate host innate immunity and confirm several to be under positive selection by assessing phylogenetic convergence across a genetically diverse sample of 20,352 isolates.
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Maximillian Marin
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - L Elaine Epperson
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - Irina Oussenko
- Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - David Durbin
- Mycobacteriology Reference Laboratory, Advanced Diagnostic Laboratories, National Jewish Health, Denver, United States
| | - Michael Strong
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, United States.,Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States.,Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
31
|
Dinkele R, Gessner S, McKerry A, Leonard B, Seldon R, Koch AS, Morrow C, Gqada M, Kamariza M, Bertozzi CR, Smith B, McLoud C, Kamholz A, Bryden W, Call C, Kaplan G, Mizrahi V, Wood R, Warner DF. Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathog 2021; 17:e1009262. [PMID: 33524021 PMCID: PMC7877778 DOI: 10.1371/journal.ppat.1009262] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/11/2021] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Interrupting transmission is an attractive anti-tuberculosis (TB) strategy but it remains underexplored owing to our poor understanding of the events surrounding transfer of Mycobacterium tuberculosis (Mtb) between hosts. Determining when live, infectious Mtb bacilli are released and by whom has proven especially challenging. Consequently, transmission chains are inferred only retrospectively, when new cases are diagnosed. This process, which relies on molecular analyses of Mtb isolates for epidemiological fingerprinting, is confounded by the prolonged infectious period of TB and the potential for transmission from transient exposures. We developed a Respiratory Aerosol Sampling Chamber (RASC) equipped with high-efficiency filtration and sampling technologies for liquid-capture of all particulate matter (including Mtb) released during respiration and non-induced cough. Combining the mycobacterial cell wall probe, DMN-trehalose, with fluorescence microscopy of RASC-captured bioaerosols, we detected and quantified putative live Mtb bacilli in bioaerosol samples arrayed in nanowell devices. The RASC enabled non-invasive capture and isolation of viable Mtb from bioaerosol within 24 hours of collection. A median 14 live Mtb bacilli (range 0-36) were isolated in single-cell format from 90% of confirmed TB patients following 60 minutes bioaerosol sampling. This represented a significant increase over previous estimates of transmission potential, implying that many more organisms might be released daily than commonly assumed. Moreover, variations in DMN-trehalose incorporation profiles suggested metabolic heterogeneity in aerosolized Mtb. Finally, preliminary analyses indicated the capacity for serial image capture and analysis of nanowell-arrayed bacilli for periods extending into weeks. These observations support the application of this technology to longstanding questions in TB transmission including the propensity for asymptomatic transmission, the impact of TB treatment on Mtb bioaerosol release, and the physiological state of aerosolized bacilli.
Collapse
Affiliation(s)
- Ryan Dinkele
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sophia Gessner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrea McKerry
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Bryan Leonard
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anastasia S. Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carl Morrow
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Melitta Gqada
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Brian Smith
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Courtney McLoud
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Andrew Kamholz
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Wayne Bryden
- Zeteo Tech, Sykesville, Maryland, United States of America
| | - Charles Call
- Zeteo Tech, Sykesville, Maryland, United States of America
| | - Gilla Kaplan
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Srinivasan V, Ha VTN, Vinh DN, Thai PVK, Ha DTM, Lan NH, Hai HT, Walker TM, Thu DDA, Dunstan SJ, Thwaites GE, Ashton PM, Caws M, Thuong NTT. Sources of Multidrug Resistance in Patients With Previous Isoniazid-Resistant Tuberculosis Identified Using Whole Genome Sequencing: A Longitudinal Cohort Study. Clin Infect Dis 2020; 71:e532-e539. [PMID: 32166306 PMCID: PMC7744982 DOI: 10.1093/cid/ciaa254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Meta-analysis of patients with isoniazid-resistant tuberculosis (TB) given standard first-line anti-TB treatment indicated an increased risk of multidrug-resistant TB (MDR-TB) emerging (8%), compared to drug-sensitive TB (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of patients with preexisting isoniazid-resistant disease with first-line anti-TB therapy risks selecting for rifampicin resistance, and hence MDR-TB. METHODS Patients with isoniazid-resistant pulmonary TB were recruited and followed up for 24 months. Drug susceptibility testing was performed by microscopic observation drug susceptibility assay, mycobacterial growth indicator tube, and by WGS on isolates at first presentation and in the case of re-presentation. Where MDR-TB was diagnosed, WGS was used to determine the genomic relatedness between initial and subsequent isolates. De novo emergence of MDR-TB was assumed where the genomic distance was 5 or fewer single-nucleotide polymorphisms (SNPs), whereas reinfection with a different MDR-TB strain was assumed where the distance was 10 or more SNPs. RESULTS Two hundred thirty-nine patients with isoniazid-resistant pulmonary TB were recruited. Fourteen (14/239 [5.9%]) patients were diagnosed with a second episode of TB that was multidrug resistant. Six (6/239 [2.5%]) were identified as having evolved MDR-TB de novo and 6 as having been reinfected with a different strain. In 2 cases, the genomic distance was between 5 and 10 SNPs and therefore indeterminate. CONCLUSIONS In isoniazid-resistant TB, de novo emergence and reinfection of MDR-TB strains equally contributed to MDR development. Early diagnosis and optimal treatment of isoniazid-resistant TB are urgently needed to avert the de novo emergence of MDR-TB during treatment.
Collapse
Affiliation(s)
- Vijay Srinivasan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vu T N Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dao N Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phan V K Thai
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Dang T M Ha
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen H Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Timothy M Walker
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sarah J Dunstan
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip M Ashton
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
33
|
Chao L, Li J, Zhang Y, Pu H, Yan X. Application of next generation sequencing-based rapid detection platform for microbiological diagnosis and drug resistance prediction in acute lower respiratory infection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1644. [PMID: 33490156 PMCID: PMC7812213 DOI: 10.21037/atm-20-7081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Acute lower respiratory infections (ALRIs) have a high mortality rate. We aimed to apply a platform that rapidly detects 36 microorganisms and 49 antibiotic resistance markers in the clinical diagnosis of ALRI and drug resistance prediction. Methods Multicenter collection of clinical samples from patients with ALRIs was carried out from 2017 to 2018. Sputum culture (SC) was performed, which provided two outcomes: the detected pathogens and the resistance to different antibiotics. Additionally, each sputum sample was used to extract deoxyribonucleic acids (DNAs) followed by high-throughput sequencing. Results Eleven commonly observed pathogens were surveyed, and for all samples with positive SC results (137 cases), the overall coverage was 95.62% according to the sequencing results. The receiver operating characteristic (ROC) curve was drawn, and cutoff reads of the most frequently detected pathogens were acquired. Overall, sequencing exhibited significantly higher sensitivity in the detection of pathogens compared with the traditional SC method, with a generally satisfactory specificity. Furthermore, we investigated the correlation between antibiotic resistance gene phenotypes and the actual outcomes of the drug sensitivity test, and some significant correlations were found, especially for the resistance to Amikacin in the presence of blaOXA7. Conclusions Sequencing-based sputum metagenomics can reveal a profile of the lung pathogen microbiome. The sequencing method offers both sufficient accuracy and significantly higher sensitivity in the detection of pathogens, and can be at least a complementary approach to traditional SC reporting. The sequencing technique also revealed some novel potential correlations between the presence of different pathogens, as well as new antimicrobial-resistant genes.
Collapse
Affiliation(s)
- Lingshan Chao
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jihong Li
- Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya'nan Zhang
- Department of Science and Technology, Shanghai Pathogeno Medical Technology Co., Ltd., Shanghai, China
| | - Hao Pu
- Department of Science and Technology, Shanghai Pathogeno Medical Technology Co., Ltd., Shanghai, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Morales-Arce AY, Sabin SJ, Stone AC, Jensen JD. The population genomics of within-host Mycobacterium tuberculosis. Heredity (Edinb) 2020; 126:1-9. [PMID: 33060846 DOI: 10.1038/s41437-020-00377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/09/2022] Open
Abstract
Recent progress in genomic sequencing from patient samples has allowed for the first detailed insight into the within-host genetic diversity of Mycobacterium tuberculosis (M.TB), revealing remarkably low levels of variation. While this has often been attributed to low mutation rates, other factors have been described, including resistance evolution (i.e., selective sweeps), widespread purifying and background selection, and, more recently, progeny skew. Here we review recent findings pertaining to the processes governing the evolutionary dynamics of M.TB, discuss their implications for improving our understanding of this important human pathogen, and make recommendations for future work. Significantly, this emerging evolutionary framework involving the joint estimation of demographic, selective, and reproductive processes is forming a new paradigm for the study of within-host pathogen evolution that will be widely applicable across organisms.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Susanna J Sabin
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
35
|
Pediatric Tuberculosis: The Impact of "Omics" on Diagnostics Development. Int J Mol Sci 2020; 21:ijms21196979. [PMID: 32977381 PMCID: PMC7582311 DOI: 10.3390/ijms21196979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a major public health concern for all ages. However, the disease presents a larger challenge in pediatric populations, partially owing to the lack of reliable diagnostic standards for the early identification of infection. Currently, there are no biomarkers that have been clinically validated for use in pediatric TB diagnosis. Identification and validation of biomarkers could provide critical information on prognosis of disease, and response to treatment. In this review, we discuss how the “omics” approach has influenced biomarker discovery and the advancement of a next generation rapid point-of-care diagnostic for TB, with special emphasis on pediatric disease. Limitations of current published studies and the barriers to their implementation into the field will be thoroughly reviewed within this article in hopes of highlighting future avenues and needs for combating the problem of pediatric tuberculosis.
Collapse
|
36
|
DNA Thermo-Protection Facilitates Whole-Genome Sequencing of Mycobacteria Direct from Clinical Samples. J Clin Microbiol 2020; 58:JCM.00670-20. [PMID: 32719032 PMCID: PMC7512152 DOI: 10.1128/jcm.00670-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/15/2020] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis is the leading cause of death from bacterial infection. Improved rapid diagnosis and antimicrobial resistance determination, such as by whole-genome sequencing, are required. Our aim was to develop a simple, low-cost method of preparing DNA for sequencing direct from M. tuberculosis-positive clinical samples (without culture). Simultaneous sputum liquefaction, bacteria heat inactivation (99°C/30 min), and enrichment for mycobacteria DNA were achieved using an equal volume of thermo-protection buffer (4 M KCl, 0. Mycobacterium tuberculosis is the leading cause of death from bacterial infection. Improved rapid diagnosis and antimicrobial resistance determination, such as by whole-genome sequencing, are required. Our aim was to develop a simple, low-cost method of preparing DNA for sequencing direct from M. tuberculosis-positive clinical samples (without culture). Simultaneous sputum liquefaction, bacteria heat inactivation (99°C/30 min), and enrichment for mycobacteria DNA were achieved using an equal volume of thermo-protection buffer (4 M KCl, 0.05 M HEPES buffer, pH 7.5, 0.1% dithiothreitol [DTT]). The buffer emulated intracellular conditions found in hyperthermophiles, thus protecting DNA from rapid thermodegradation, which renders it a poor template for sequencing. Initial validation experiments employed mycobacteria DNA, either extracted or intracellular. Next, mock clinical samples (infection-negative human sputum spiked with 0 to 105Mycobacterium bovis BCG cells/ml) underwent liquefaction in thermo-protection buffer and heat inactivation. DNA was extracted and sequenced. Human DNA degraded faster than mycobacteria DNA, resulting in target enrichment. Four replicate experiments achieved M. tuberculosis detection at 101 BCG cells/ml, with 31 to 59 M. tuberculosis complex reads. Maximal genome coverage (>97% at 5× depth) occurred at 104 BCG cells/ml; >91% coverage (1× depth) occurred at 103 BCG cells/ml. Final validation employed M. tuberculosis-positive clinical samples (n = 20), revealing that initial sample volumes of ≥1 ml typically yielded higher mean depths of M. tuberculosis genome coverage, with an overall range of 0.55 to 81.02. A mean depth of 3 gave >96% 1-fold tuberculosis (TB) genome coverage (in 15/20 clinical samples). A mean depth of 15 achieved >99% 5-fold genome coverage (in 9/20 clinical samples). In summary, direct-from-sample sequencing of M. tuberculosis genomes was facilitated by a low-cost thermo-protection buffer.
Collapse
|
37
|
He Y, Gong Z, Zhao X, Zhang D, Zhang Z. Comprehensive Determination of Mycobacterium tuberculosis and Nontuberculous Mycobacteria From Targeted Capture Sequencing. Front Cell Infect Microbiol 2020; 10:449. [PMID: 32984073 PMCID: PMC7491257 DOI: 10.3389/fcimb.2020.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infection of Mycobacterium tuberculosis (MTB) and nontuberculous mycobacteria (NTM) challenges effective pulmonary infectious disease control. Current phenotypic and molecular assays could not comprehensively and accurately diagnose MTB, NTM, and drug resistance. Next-generation sequencing allows an “all-in-one” approach providing results on expected drug susceptibility testing (DST) and the genotype of NTM strains. In this study, targeted capture sequencing was used to analyze the genetic backgrounds of 4 MTB strains and 32 NTM pathogenic strains in 30 clinical samples, including 14 sputum specimens and 16 bronchoalveolar lavage fluid samples. Through comparing with other TB diagnostic tests, we proved that targeted capture sequencing could be used as a highly sensitive (91.3%) and accurate (83.3%) method to diagnose TB, as well as MGIT 960. Also, we identified 7 NTM strains in 11 patients; among them, seven patients were MTB/NTM co-affected, which indicated that it was a meaningful tool for the diagnosis and treatment of NTM infection diseases in clinic. However, based on a drug-resistant mutation library (1,325 drug resistance loci), only 9 drug resistance strains and 22 drug resistance loci were discovered, having considerable discordance with the drug-resistant results of MGIT 960. Our finding indicated that targeted capture sequencing approach was applicable for the comprehensive and accurate diagnosis of MTB and NTM. However, from data presented here, the DST results identified by next-generation sequencing (NGS) showed a relatively low consistency with MGIT 960, especially in sputum samples. Further work should be done to explore the reasons for low drug-resistance detection rate of NGS.
Collapse
Affiliation(s)
- Ya He
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziying Gong
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Xiaokai Zhao
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Daoyun Zhang
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Zhongshun Zhang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Nimmo C, Millard J, van Dorp L, Brien K, Moodley S, Wolf A, Grant AD, Padayatchi N, Pym AS, Balloux F, O'Donnell M. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. THE LANCET. MICROBE 2020; 1:e165-e174. [PMID: 32803174 PMCID: PMC7416634 DOI: 10.1016/s2666-5247(20)30031-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Bedaquiline and clofazimine are important drugs in the treatment of drug-resistant tuberculosis and are commonly used across southern Africa, although drug susceptibility testing is not routinely performed. In this study, we did a genotypic and phenotypic analysis of drug-resistant Mycobacterium tuberculosis isolates from cohort studies in hospitals in KwaZulu-Natal, South Africa, to identify resistance-associated variants (RAVs) and assess the extent of clofazimine and bedaquiline cross-resistance. We also used a comprehensive dataset of whole-genome sequences to investigate the phylogenetic and geographical distribution of bedaquiline and clofazimine RAVs in southern Africa. METHODS In this study, we included M tuberculosis isolates reported from the PRAXIS study of patients with drug-resistant tuberculosis treated with bedaquiline (King Dinuzulu Hospital, Durban) and three other cohort studies of drug-resistant tuberculosis in other KwaZulu-Natal hospitals, and sequential isolates from six persistently culture-positive patients with extensively drug-resistant tuberculosis at the KwaZulu-Natal provincial referral laboratory. Samples were collected between 2013 and 2019. Microbiological cultures were done as part of all parent studies. We sequenced whole genomes of included isolates and measured bedaquiline and clofazimine minimum inhibitory concentrations (MICs) for isolates identified as carrying any Rv0678 variant or previously published atpE, pepQ, and Rv1979c RAVs, which were the subject of the phenotypic study. We combined all whole-genome sequences of M tuberculosis obtained in this study with publicly available sequence data from other tuberculosis studies in southern Africa (defined as the countries of the Southern African Development Community), including isolates with Rv0678 variants identified by screening public genomic databases. We used this extended dataset to reconstruct phylogenetic relationships across lineage 2 and 4 M tuberculosis isolates. FINDINGS We sequenced the whole genome of 648 isolates from 385 patients with drug-resistant tuberculosis recruited into cohort studies in KwaZulu-Natal, and 28 isolates from six patients from the KwaZulu-Natal referral laboratory. We identified 30 isolates with Rv0678 RAVs from 16 (4%) of 391 patients. We did not identify any atpE, pepQ, or Rv1979c RAVs. MICs were measured for 21 isolates with Rv0678 RAVs. MICs were above the critical concentration for bedaquiline resistance in nine (43%) of 21 isolates, in the intermediate category in nine (43%) isolates, and within the wild-type range in three (14%) isolates. Clofazimine MICs in genetically wild-type isolates ranged from 0·12-0·5 μg/mL, and in isolates with RAVs from 0·25-4·0 μg/mL. Phylogenetic analysis of the extended dataset including M tuberculosis isolates from southern Africa resolved multiple emergences of Rv0678 variants in lineages 2 and 4, documented two likely nosocomial transmission events, and identified the spread of a possibly bedaquiline and clofazimine cross-resistant clone in eSwatini. We also identified four patients with pepQ frameshift mutations that may confer resistance. INTERPRETATION Bedaquiline and clofazimine cross-resistance in southern Africa is emerging repeatedly, with evidence of onward transmission largely due to Rv0678 mutations in M tuberculosis. Roll-out of bedaquiline and clofazimine treatment in the setting of limited drug susceptibility testing could allow further spread of resistance. Designing strong regimens would help reduce the emergence of resistance. Drug susceptibility testing is required to identify where resistance does emerge. FUNDING Wellcome Trust, National Institute of Allergy and Infectious Diseases and National Center for Advancing Translational Sciences of the National Institutes of Health.
Collapse
Affiliation(s)
- Camus Nimmo
- Division of Infection and Immunity, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
- Africa Health Research Institute, Durban, South Africa
| | - James Millard
- Africa Health Research Institute, Durban, South Africa
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | - Kayleen Brien
- Africa Health Research Institute, Durban, South Africa
| | | | - Allison Wolf
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- CAPRISA-MRC HIV-TB Pathogenesis and Treatment Research Unit, Centre for the Aids Programme of Research in South Africa (CAPRISA), Durban, KwaZulu-Natal, South Africa
| | | | | | - Max O'Donnell
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
- CAPRISA-MRC HIV-TB Pathogenesis and Treatment Research Unit, Centre for the Aids Programme of Research in South Africa (CAPRISA), Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
39
|
Kone B, Somboro AM, Holl JL, Baya B, Togo AACG, Sarro YDS, Diarra B, Kodio O, Murphy RL, Bishai W, Maiga M, Doumbia S. Exploring the usefulness of molecular epidemiology of tuberculosis in Africa: a systematic review. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:1-15. [PMID: 32714498 PMCID: PMC7373718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC) and remains a serious global public health threat, especially in resource-limited settings such as the African region. Recent developments in molecular epidemiology tools have significantly improved our understanding of TB transmission patterns and revealed the high genetic diversity of TB isolates across geographical entities in Africa. This study reports the results of a systematic review of current knowledge about MTBC strain diversity and geographical distribution in African regions. METHODS Search tools (PubMed, Embase, Popline, OVID and Africa Wide Information) were employed to identify the relevant literature about prevalence, strain diversity, and geographic distribution of MTBC infection in Africa. RESULTS A total of 59 articles from 739 citations met our inclusion criteria. Most articles reported about patients with presumptive pulmonary TB (73%), fewer reports were on retreatment and treatment failure cases (12%), and presumptive drug resistance cases (3%). Spoligotyping was the most used, alone in 21 studies and in parallel with either the Mycobacterial Interspersed Repetitive Units Variable Number of Tandem Repeats or the Restriction Fragment Length Polymorphism. Various TB lineages were observed across the African continent, with the originally European lineage 4 spotted in all countries studied. CONCLUSION TB molecular epidemiology tools have substantially improved our understanding of the MTBC circulating isolates, their evolution, and diversity in this highly endemic region of Africa. We found that only TB lineage 4 is present throughout all the continent and the clusters identified provides an extended insight into the disease transmission dynamics.
Collapse
Affiliation(s)
- Bourahima Kone
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| | | | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Antieme ACG Togo
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| |
Collapse
|
40
|
Kargarpour Kamakoli M, Farmanfarmaei G, Masoumi M, Khanipour S, Gharibzadeh S, Sola C, Fateh A, Siadat SD, Refregier G, Vaziri F. Prediction of the hidden genotype of mixed infection strains in Iranian tuberculosis patients. Int J Infect Dis 2020; 95:22-27. [PMID: 32251801 DOI: 10.1016/j.ijid.2020.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patients with mixed-strain Mycobacterium tuberculosis infections may be at a high risk of poor treatment outcomes. However, the mechanisms through which mixed infections affect the clinical manifestations are not well recognized. Evidence suggests that failure to detect the pathogen diversity within the host can influence the clinical results. We aimed to investigate the effects of different genotypes in mixed infections and determine their relationship with heteroresistance in the treatment of Iranian tuberculosis patients. METHODS One of the genotypes was identified in the culture and another genotype pattern in the mixed infection was predicted by comparing the pattern of MIRU-VNTR between the clinical specimens and their respective cultures in each patient. For all patients, the drug susceptibility testing was carried out on three single colonies from each clinical sample. The follow-up of patients was carried out during six months of treatment. RESULTS Based on MIRU-VNTR profiles of clinical samples, we showed that 55.6% (25/45) of the Iranian patients included in the study had mixed infections. Patients with mixed infections had a higher rate of treatment failure, compared to others (P=0.03). By comparing clinical sample profiles to profiles obtained after culture, we were able to distinguish between major and hidden genotypes. Among hidden genotypes, Haarlem (L4.1.2) and Beijing (L2) were associated to treatment failure (6/8 patients). CONCLUSIONS To conclude, we propose a procedure using the MIRU-VNTR method to identify the different genotypes in mixed infections. The present findings suggest that genotypes with potentially higher pathogenicity may not be detected when performing experimental culture in patients with mixed infections.
Collapse
Affiliation(s)
- Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ghazaleh Farmanfarmaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Christophe Sola
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Guislaine Refregier
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
41
|
Nimmo C, Brien K, Millard J, Grant AD, Padayatchi N, Pym AS, O'Donnell M, Goldstein R, Breuer J, Balloux F. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 2020; 55:102747. [PMID: 32361247 PMCID: PMC7195533 DOI: 10.1016/j.ebiom.2020.102747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING Wellcome Trust, NIH/NIAID.
Collapse
MESH Headings
- Adult
- Antitubercular Agents/therapeutic use
- Cohort Studies
- Diarylquinolines/therapeutic use
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Fluoroquinolones/therapeutic use
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Humans
- Male
- Metabolic Networks and Pathways/genetics
- Microbial Sensitivity Tests
- Middle Aged
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Rifampin/therapeutic use
- South Africa
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Camus Nimmo
- Division of Infection and Immunity, University College London, London, UK; UCL Genetics Institute, University College London, London, UK; Africa Health Research Institute, Durban, South Africa.
| | - Kayleen Brien
- Africa Health Research Institute, Durban, South Africa
| | - James Millard
- Africa Health Research Institute, Durban, South Africa; Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa; London School of Hygiene & Tropical Medicine, London, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | | | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa; Department of Medicine & Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
42
|
Kukhtin AV, Norville R, Bueno A, Qu P, Parrish N, Murray M, Chandler DP, Holmberg RC, Cooney CG. A Benchtop Automated Sputum-to-Genotype System Using a Lab-on-a-Film Assembly for Detection of Multidrug-Resistant Mycobacterium tuberculosis. Anal Chem 2020; 92:5311-5318. [PMID: 32142258 PMCID: PMC7354060 DOI: 10.1021/acs.analchem.9b05853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Automated genotyping of drug-resistant Mycobacterium tuberculosis (MTB) directly from sputum is challenging for three primary reasons. First, the sample matrix, sputum, is highly viscous and heterogeneous, posing a challenge for sample processing. Second, acid-fast MTB bacilli are difficult to lyse. And third, there are hundreds of MTB mutations that confer drug resistance. An additional constraint is that MTB is most prevalent where test affordability is paramount. We address the challenge of sample homogenization and cell lysis using magnetic rotation of an external magnet, at high (5000) rpm, to induce the rotation of a disposable stir disc that causes chaotic mixing of glass beads ("MagVor"). Nucleic acid is purified using a pipet tip with an embedded matrix that isolates nucleic acid ("TruTip"). We address the challenge of cost and genotyping multiple mutations using 203 porous three-dimensional gel elements printed on a film substrate and enclosed in a microfluidic laminate assembly ("Lab-on-a-Film"). This Lab-on-a-Film assembly (LFA) serves as a platform for amplification, hybridization, washing, and fluorescent imaging, while maintaining a closed format to prevent amplicon contamination of the workspace. We integrated and automated MagVor homogenization, TruTip purification, and LFA amplification in a multisample, sputum-to-genotype system. Using this system, we report detection down to 43 cfu/mL of MTB bacilli from raw sputum.
Collapse
Affiliation(s)
- Alexander V Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Ryan Norville
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Arial Bueno
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Peter Qu
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Nicole Parrish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Rebecca C Holmberg
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| |
Collapse
|
43
|
Whole genome enrichment approach for rapid detection of Mycobacterium tuberculosis and drug resistance-associated mutations from direct sputum sequencing. Tuberculosis (Edinb) 2020; 121:101915. [PMID: 32279871 DOI: 10.1016/j.tube.2020.101915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 11/24/2022]
Abstract
Tuberculosis is the leading cause of death among infectious diseases worldwide. Detection of Mycobacterium tuberculosis (Mtb), using routine culture-based methods is time consuming resulting in delayed diagnosis and poor treatment outcomes. Currently available molecular tests provide faster diagnosis but are able to screen only limited hot-spot mutations. Whole genome sequencing from direct sputum offers a potential solution, however, due to the presence of other microbes and host DNA its use in diagnostic testing remains challenging. In this study, we present a targeted Mtb-enrichment assay for lineage-4 coupled with an improved analysis pipeline that uses 1657 bacterial taxa as background for reducing non-Mtb genome from sputum DNA. This method drastically improved the recovery of Mtb DNA from sputum (Mtb alignment increased from 3% to >65%) as compared to non-enrichment-based sequencing. We obtained >99% Mtb genome coverage as compared to 49% in non-enriched sputum sequencing. We were able to identify Mtb positive samples from controls with 100% accuracy using Mpt64 gene coverage. Our method not only achieved 100% sensitivity to resistance variants profiled by line probe assay (LPA), but also outperformed LPA in determining drug resistance based on phenotypic drug susceptibility tests for 6 anti-tuberculosis drugs (accuracy of 97.7% and 92.8% by enriched WGS and LPA, respectively).
Collapse
|
44
|
Antibiotic treatment and selection for glpK mutations in patients with active tuberculosis disease. Proc Natl Acad Sci U S A 2020; 117:3910-3912. [PMID: 32075922 DOI: 10.1073/pnas.1920788117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Lee RS, Proulx JF, McIntosh F, Behr MA, Hanage WP. Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing. eLife 2020; 9:e53245. [PMID: 32014110 PMCID: PMC7012596 DOI: 10.7554/elife.53245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis disproportionately affects the Canadian Inuit. To address this, it is imperative we understand transmission dynamics in this population. We investigate whether 'deep' sequencing can provide additional resolution compared to standard sequencing, using a well-characterized outbreak from the Arctic (2011-2012, 50 cases). Samples were sequenced to ~500-1000x and reads were aligned to a novel local reference genome generated with PacBio SMRT sequencing. Consensus and heterogeneous variants were identified and compared across genomes. In contrast with previous genomic analyses using ~50x depth, deep sequencing allowed us to identify a novel super-spreader who likely transmitted to up to 17 other cases during the outbreak (35% of the remaining cases that year). It is increasingly evident that within-host diversity should be incorporated into transmission analyses; deep sequencing may facilitate more accurate detection of super-spreaders and transmission clusters. This has implications not only for TB, but all genomic studies of transmission - regardless of pathogen.
Collapse
Affiliation(s)
- Robyn S Lee
- Epidemiology Division, Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
- Center for Communicable Disease DynamicsHarvard TH Chan School of Public HealthBostonUnited States
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
| | | | - Fiona McIntosh
- The Research Institute of McGill University Health CentreMontréalCanada
| | - Marcel A Behr
- The Research Institute of McGill University Health CentreMontréalCanada
| | - William P Hanage
- Center for Communicable Disease DynamicsHarvard TH Chan School of Public HealthBostonUnited States
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
| |
Collapse
|
46
|
Spitaleri A, Ghodousi A, Miotto P, Cirillo DM. Whole genome sequencing in Mycobacterium tuberculosis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S197. [PMID: 31656776 DOI: 10.21037/atm.2019.07.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Shockey AC, Dabney J, Pepperell CS. Effects of Host, Sample, and in vitro Culture on Genomic Diversity of Pathogenic Mycobacteria. Front Genet 2019; 10:477. [PMID: 31214242 PMCID: PMC6558051 DOI: 10.3389/fgene.2019.00477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb), an obligate human pathogen and the etiological agent of tuberculosis (TB), remains a major threat to global public health. Comparative genomics has been invaluable for monitoring the emergence and spread of TB and for gaining insight into adaptation of M. tb. Most genomic studies of M. tb are based on single bacterial isolates that have been cultured for several weeks in vitro. However, in its natural human host, M. tb comprises complex, in some cases massive bacterial populations that diversify over the course of infection and cannot be wholly represented by a single genome. Recently, enrichment via hybridization capture has been used as a rapid diagnostic tool for TB, circumventing culturing protocols and enabling the recovery of M. tb genomes directly from sputum. This method has further applicability to the study of M. tb adaptation, as it enables a higher resolution and more direct analysis of M. tb genetic diversity within hosts with TB. Here we analyzed genomic material from M. tb and Mycobacterium bovis populations captured directly from sputum and from cultured samples using metagenomic and Pool-Seq approaches. We identified effects of sampling, patient, and sample type on bacterial genetic diversity. Bacterial genetic diversity was more variable and on average higher in sputum than in culture samples, suggesting that manipulation in the laboratory reshapes the bacterial population. Using outlier analyses, we identified candidate bacterial genetic loci mediating adaptation to these distinct environments. The study of M. tb in its natural human host is a powerful tool for illuminating host pathogen interactions and understanding the bacterial genetic underpinnings of virulence.
Collapse
Affiliation(s)
- Abigail C. Shockey
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
48
|
Nimmo C, Shaw LP, Doyle R, Williams R, Brien K, Burgess C, Breuer J, Balloux F, Pym AS. Correction to: Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genomics 2019; 20:433. [PMID: 31142261 PMCID: PMC6540368 DOI: 10.1186/s12864-019-5841-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
He authors reported that one of the authors' names was typeset incorrectly in the authorship list.
Collapse
Affiliation(s)
- Camus Nimmo
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
- Africa Health Research Institute, Durban, South Africa.
| | - Liam P Shaw
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
- Nuffield Department of Clinical Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Ronan Doyle
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Rachel Williams
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Kayleen Brien
- Africa Health Research Institute, Durban, South Africa
| | - Carrie Burgess
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|