1
|
Fu C, Wen X, Huang T, Wang Y, Liu X, Jiang N, Wang R, Zhao J. Comparison of GARP and MaxEnt in Modeling Current and Future Geographic Distribution of Ceracris nigricornis Walker (Acrididae, Orthoptera) in China. Ecol Evol 2024; 14:e70439. [PMID: 39445185 PMCID: PMC11496565 DOI: 10.1002/ece3.70439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Ceracris nigricornis Walker is an insect of the Acrididae, which can harm bamboo, rice, corn, sorghum and other crops, and can cause serious economic losses. In this study, based on 234 occurrence sites of C. nigricornis obtained from the Global Biodiversity Information Facility and literature, and data of three future climate scenarios presented by CMIP6, two niche models (GARP, MaxEnt) were used to predict the suitable area of C. nigricornis in China. The result shows that the main environmental factors affecting the distribution of C. nigricornis are min temperature of coldest month (bio6), mean temperature of coldest quarter (bio11), precipitation of driest month (bio14) and precipitation of wettest quarter (bio16). From the result of MaxEnt model, it can be seen that the suitable area of C. nigricornis in China is 128.91 × 104 km2 under current scenario. It will decrease by 3.19% in the 2050s and then increase by 12.04% in the 2090s under the SSP1-2.6 scenario, increase by 5.79% in the 2050s and then decrease by 7.53% in the 2090s under the SSP2-4.5 scenario, and increase by 33.03% in 2050s and then decrease by 23.31% in the 2090s under SSP5-8.5 scenario. From the result of GARP model, it can be seen that the suitable area of C. nigricornis in China is 166.09 × 104 km2 under current scenario. It will increase by 8.41% in 2050s and then continue to increase by 6.11% in 2090s under SSP1-2.6 scenario, increase by 23.84% in the 2050s and then decrease by 0.88% in the 2090s under the SSP2-4.5 scenario, and increase by 34.37% in 2050s and then decrease by 1.75% in 2090s under SSP5-8.5 scenario. The boundaries of suitable areas will expand to the north and southwest of China under future climate change scenarios, specially in Sichuan, Chongqing and Yunnan. Local forestry authorities should strengthen the monitoring of bamboo forests to prevent the damage caused by the introduction of C. nigricornis.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource DevelopmentLeshan Normal UniversityLeshanPeople's Republic of China
| | - Xuanye Wen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland AdministrationShenyangPeople's Republic of China
| | - Tingting Huang
- Chengdu Agricultural Technology Extension StationChengduPeople's Republic of China
| | - Yanli Wang
- Sichuan Provincial Rural Economic Information CenterChengduPeople's Republic of China
| | - Xiu Liu
- Fushun Meteorological BureauZigongPeople's Republic of China
| | - Na Jiang
- College of Tourism and Geographical ScienceLeshan Normal UniversityLeshanPeople's Republic of China
| | - Rulin Wang
- Sichuan Provincial Rural Economic Information CenterChengduPeople's Republic of China
| | - Jinpeng Zhao
- Sichuan Provincial Rural Economic Information CenterChengduPeople's Republic of China
| |
Collapse
|
2
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
3
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
4
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
Nakano M, Morgan-Richards M, Trewick SA, Clavijo-McCormick A. Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). J Chem Ecol 2022; 48:121-140. [PMID: 35001201 DOI: 10.1007/s10886-021-01333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/26/2023]
Abstract
Chemoreception plays a crucial role in the reproduction and survival of insects, which often rely on their sense of smell and taste to find partners, suitable habitats, and food sources, and to avoid predators and noxious substances. There is a substantial body of work investigating the chemoreception and chemical ecology of Diptera (flies) and Lepidoptera (moths and butterflies); but less is known about the Orthoptera (grasshoppers, locusts, crickets, and wēta). Within the Orthoptera, the family Acrididae contains about 6700 species of short-horned grasshoppers. Grasshoppers are fascinating organisms to study due to their significant taxonomic and ecological divergence, however, most chemoreception and chemical ecology studies have focused on locusts because they are agricultural pests (e.g., Schistocerca gregaria and Locusta migratoria). Here we review studies of chemosensory systems and chemical ecology of all short-horned grasshoppers. Applications of genome editing tools and entomopathogenic microorganism to control locusts in association with their chemical ecology are also discussed. Finally, we identify gaps in the current knowledge and suggest topics of interest for future studies.
Collapse
Affiliation(s)
- Mari Nakano
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand.
| | - Mary Morgan-Richards
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | - Steven A Trewick
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | | |
Collapse
|
6
|
Zhao L, Wang H, Li P, Sun K, Guan DL, Xu SQ. Genome Size Estimation and Full-Length Transcriptome of Sphingonotus tsinlingensis: Genetic Background of a Drought-Adapted Grasshopper. Front Genet 2021; 12:678625. [PMID: 34322153 PMCID: PMC8313316 DOI: 10.3389/fgene.2021.678625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Sphingonotus Fieber, 1852 (Orthoptera: Acrididae), is a grasshopper genus comprising approximately 170 species, all of which prefer dry environments such as deserts, steppes, and stony benchlands. In this study, we aimed to examine the adaptation of grasshopper species to arid environments. The genome size of Sphingonotus tsinlingensis was estimated using flow cytometry, and the first high-quality full-length transcriptome of this species was produced. The genome size of S. tsinlingensis is approximately 12.8 Gb. Based on 146.98 Gb of PacBio sequencing data, 221.47 Mb full-length transcripts were assembled. Among these, 88,693 non-redundant isoforms were identified with an N50 value of 2,726 bp, which was markedly longer than previous grasshopper transcriptome assemblies. In total, 48,502 protein-coding sequences were identified, and 37,569 were annotated using public gene function databases. Moreover, 36,488 simple tandem repeats, 12,765 long non-coding RNAs, and 414 transcription factors were identified. According to gene functions, 61 cytochrome P450 (CYP450) and 66 heat shock protein (HSP) genes, which may be associated with drought adaptation of S. tsinlingensis, were identified. We compared the transcriptomes of S. tsinlingensis and two other grasshopper species which were less tolerant to drought, namely Mongolotettix japonicus and Gomphocerus licenti. We observed the expression of CYP450 and HSP genes in S. tsinlingensis were higher. We produced the first full-length transcriptome of a Sphingonotus species that has an ultra-large genome. The assembly characteristics were better than those of all known grasshopper transcriptomes. This full-length transcriptome may thus be used to understand the genetic background and evolution of grasshoppers.
Collapse
Affiliation(s)
- Lu Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ping Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kuo Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
7
|
Asai M, Sheehan G, Li Y, Robertson BD, Kavanagh K, Langford PR, Newton SM. Innate Immune Responses of Galleria mellonella to Mycobacterium bovis BCG Challenge Identified Using Proteomic and Molecular Approaches. Front Cell Infect Microbiol 2021; 11:619981. [PMID: 33634038 PMCID: PMC7900627 DOI: 10.3389/fcimb.2021.619981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023] Open
Abstract
The larvae of the insect Galleria mellonella, have recently been established as a non-mammalian infection model for the Mycobacterium tuberculosis complex (MTBC). To gain further insight into the potential of this model, we applied proteomic (label-free quantification) and transcriptomic (gene expression) approaches to characterise the innate immune response of G. mellonella to infection with Mycobacterium bovis BCG lux over a 168 h time course. Proteomic analysis of the haemolymph from infected larvae revealed distinct changes in the proteome at all time points (4, 48, 168 h). Reverse transcriptase quantitative PCR confirmed induction of five genes (gloverin, cecropin, IMPI, hemolin, and Hdd11), which encoded proteins found to be differentially abundant from the proteomic analysis. However, the trend between gene expression and protein abundance were largely inconsistent (20%). Overall, the data are in agreement with previous phenotypic observations such as haemocyte internalization of mycobacterial bacilli (hemolin/β-actin), formation of granuloma-like structures (Hdd11), and melanization (phenoloxidase activating enzyme 3 and serpins). Furthermore, similarities in immune expression in G. mellonella, mouse, zebrafish and in vitro cell-line models of tuberculosis infection were also identified for the mechanism of phagocytosis (β-actin). Cecropins (antimicrobial peptides), which share the same α-helical motif as a highly potent peptide expressed in humans (h-CAP-18), were induced in G. mellonella in response to infection, giving insight into a potential starting point for novel antimycobacterial agents. We believe that these novel insights into the innate immune response further contribute to the validation of this cost-effective and ethically acceptable insect model to study members of the MTBC.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Han H, Liu Z, Meng F, Jiang Y, Cai J. Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). PeerJ 2020; 8:e9581. [PMID: 32844056 PMCID: PMC7414772 DOI: 10.7717/peerj.9581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.
Collapse
Affiliation(s)
- Han Han
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuoying Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Departments of Anesthesiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Fanming Meng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yangshuai Jiang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Yuan H, Zhang X, Zhao L, Chang H, Yang C, Qiu Z, Huang Y. Characterization and analysis of full-length transcriptomes from two grasshoppers, Gomphocerus licenti and Mongolotettix japonicus. Sci Rep 2020; 10:14228. [PMID: 32848169 PMCID: PMC7450073 DOI: 10.1038/s41598-020-71178-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Acrididae are diverse in size, body shape, behavior, ecology and life history; widely distributed; easy to collect; and important to agriculture. They represent promising model candidates for functional genomics, but their extremely large genomes have hindered this research; establishing a reference transcriptome for a species is the primary means of obtaining genetic information. Here, two Acrididae species, Gomphocerus licenti and Mongolotettix japonicus, were selected for full-length (FL) PacBio transcriptome sequencing. For G. licenti and M. japonicus, respectively, 590,112 and 566,165 circular consensus sequences (CCS) were generated, which identified 458,131 and 428,979 full-length nonchimeric (FLNC) reads. After isoform-level clustering, next-generation sequencing (NGS) short sequences were used for error correction, and remove redundant sequences with CD-HIT, 17,970 and 16,766 unigenes were generated for G. licenti and M. japonicus. In addition, we obtained 17,495 and 16,373 coding sequences, 1,082 and 813 transcription factors, 11,840 and 10,814 simple sequence repeats, and 905 and 706 long noncoding RNAs by analyzing the transcriptomes of G. licenti and M. japonicus, respectively, and 15,803 and 14,846 unigenes were annotated in eight functional databases. This is the first study to sequence FL transcriptomes of G. licenti and M. japonicus, providing valuable genetic resources for further functional genomics research.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Huihui Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Zhongying Qiu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
10
|
Liu P, Zhang X, Meng R, Liu C, Li M, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Semiothisa cinerearia. PLoS One 2020; 15:e0237134. [PMID: 32764791 PMCID: PMC7413487 DOI: 10.1371/journal.pone.0237134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Olfaction plays vital roles in the survival and reproduction of insects. The completion of olfactory recognition requires the participation of various complex protein families. However, little is known about the olfactory-related proteins in Semiothisa cinerearia Bremer et Grey, an important pest of Chinese scholar tree. In this study, we sequenced the antennal transcriptome of S. cinerearia and identified 125 olfactory-related genes, including 25 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), 52 odorant receptors (ORs), eight gustatory receptors (GRs) and 23 ionotropic receptors (IRs). BLASTX best hit results and phylogenetic analyses indicated that these genes were most identical to their respective orthologs from Ectropis obliqua. Further quantitative real-time PCR (qRT-PCR) analysis revealed that three ScinOBPs and three ScinORs were highly expressed in male antennae, while seven ScinOBPs and twelve ScinORs were female-specifically expressed. Our study will be useful for the elucidation of olfactory mechanisms in S. cinerearia.
Collapse
Affiliation(s)
- Panjing Liu
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Runjie Meng
- Baoding Vocational and Technical College, Baoding, P. R. China
| | - Chang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Li
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| |
Collapse
|