1
|
Taylor RS, Manseau M, Keobouasone S, Liu P, Mastromonaco G, Solmundson K, Kelly A, Larter NC, Gamberg M, Schwantje H, Thacker C, Polfus J, Andrew L, Hervieux D, Simmons D, Wilson PJ. High genetic load without purging in caribou, a diverse species at risk. Curr Biol 2024; 34:1234-1246.e7. [PMID: 38417444 DOI: 10.1016/j.cub.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Micheline Manseau
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sonesinh Keobouasone
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peng Liu
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Kirsten Solmundson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 1Z8, Canada
| | - Allicia Kelly
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Mary Gamberg
- Gamberg Consulting, Jarvis Street, Whitehorse, YK Y1A 2J2, Canada
| | - Helen Schwantje
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Caeley Thacker
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Jean Polfus
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, 1238 Discovery Avenue, Kelowna, BC V1V 1V9, Canada
| | - Leon Andrew
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Dave Hervieux
- Alberta Ministry of Environment and Protected Areas, Government of Alberta, 10320-99 Street, Grande Prairie, AB T8V 6J4, Canada
| | - Deborah Simmons
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Paul J Wilson
- Biology Department, Trent University, East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
2
|
Kellner FL, Le Moullec M, Ellegaard MR, Rosvold J, Peeters B, Burnett HA, Pedersen ÅØ, Brealey JC, Dussex N, Bieker VC, Hansen BB, Martin MD. A palaeogenomic investigation of overharvest implications in an endemic wild reindeer subspecies. Mol Ecol 2024; 33:e17274. [PMID: 38279681 DOI: 10.1111/mec.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.
Collapse
Affiliation(s)
- Fabian L Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Mammals and Birds, Greenland Institute of Natural Resources (GINR), Nuuk, Greenland
| | - Martin R Ellegaard
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Rosvold
- Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Bart Peeters
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hamish A Burnett
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolas Dussex
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Brage B Hansen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
4
|
Talavera A, Palmada-Flores M, Burriel-Carranza B, Valbuena-Ureña E, Mochales-Riaño G, Adams DC, Tejero-Cicuéndez H, Soler-Membrives A, Amat F, Guinart D, Carbonell F, Obon E, Marquès-Bonet T, Carranza S. Genomic insights into the Montseny brook newt ( Calotriton arnoldi), a Critically Endangered glacial relict. iScience 2024; 27:108665. [PMID: 38226169 PMCID: PMC10788218 DOI: 10.1016/j.isci.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The Montseny brook newt (Calotriton arnoldi), considered the most endangered amphibian in Europe, is a relict salamandrid species endemic to a small massif located in northeastern Spain. Although conservation efforts should always be guided by genomic studies, those are yet scarce among urodeles, hampered by the extreme sizes of their genomes. Here, we present the third available genome assembly for the order Caudata, and the first genomic study of the species and its sister taxon, the Pyrenean brook newt (Calotriton asper), combining whole-genome and ddRADseq data. Our results reveal significant demographic oscillations which accurately mirrored Europe's climatic history. Although severe bottlenecks have led to depauperate genomic diversity and long runs of homozygosity along a gigantic genome, inbreeding might have been avoided by assortative mating strategies. Other life history traits, however, seem to have been less advantageous, and the lack of land dispersal has driven to exceptional levels of population fragmentation.
Collapse
Affiliation(s)
- Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Marc Palmada-Flores
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Pº Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | | | | | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fèlix Amat
- Àrea d’Herpetologia, BiBIO, Museu de Granollers – Ciències Naturals. Palaudàries 102, Granollers, Barcelona, Spain
| | - Daniel Guinart
- Servei de Gestió de Parcs Naturals, Diputació de Barcelona, Spain
| | - Francesc Carbonell
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Elena Obon
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
5
|
Xiao B, Rey-lglesia A, Yuan J, Hu J, Song S, Hou Y, Chen X, Germonpré M, Bao L, Wang S, Taogetongqimuge, Valentinovna LL, Lister AM, Lai X, Sheng G. Relationships of Late Pleistocene giant deer as revealed by Sinomegaceros mitogenomes from East Asia. iScience 2023; 26:108406. [PMID: 38047074 PMCID: PMC10690636 DOI: 10.1016/j.isci.2023.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The giant deer, widespread in northern Eurasia during the Late Pleistocene, have been classified as western Megaloceros and eastern Sinomegaceros through morphological studies. While Megaloceros's evolutionary history has been unveiled through mitogenomes, Sinomegaceros remains molecularly unexplored. Herein, we generated mitogenomes of giant deer from East Asia. We find that, in contrast to the morphological differences between Megaloceros and Sinomegaceros, they are mixed in the mitochondrial phylogeny, and Siberian specimens suggest a range contact or overlap between these two groups. Meanwhile, one deep divergent clade and another surviving until 20.1 thousand years ago (ka) were detected in northeastern China, the latter implying this area as a potential refugium during the Last Glacial Maximum (LGM). Moreover, stable isotope analyses indicate correlations between climate-introduced vegetation changes and giant deer extinction. Our study demonstrates the genetic relationship between eastern and western giant deer and explores the promoters of their extirpation in northern East Asia.
Collapse
Affiliation(s)
- Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Alba Rey-lglesia
- Globe Institute, University of Copenhagen, Copenhagen, 1350 Copenhagen K, Denmark
| | - Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shiwen Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xi Chen
- Department of Cultural Heritage and Museology, Nanjing Normal University, Nanjing 210046, China
| | - Mietje Germonpré
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Lei Bao
- Ordos Institute of Cultural Relics and Archaeology, Ordos 017010, China
| | | | | | - Lbova Liudmila Valentinovna
- Graduate School of International Relations, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Grazhdansky Av., 28, Russia
| | | | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
6
|
Dussex N, Kurland S, Olsen RA, Spong G, Ericsson G, Ekblom R, Ryman N, Dalén L, Laikre L. Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose. Commun Biol 2023; 6:1035. [PMID: 37848497 PMCID: PMC10582009 DOI: 10.1038/s42003-023-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.
- Norwegian University of Science and Technology, University Museum, Trondheim, NO-7491, Norway.
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
7
|
Kyriazis CC, Beichman AC, Brzeski KE, Hoy SR, Peterson RO, Vucetich JA, Vucetich LM, Lohmueller KE, Wayne RK. Genomic Underpinnings of Population Persistence in Isle Royale Moose. Mol Biol Evol 2023; 40:msad021. [PMID: 36729989 PMCID: PMC9927576 DOI: 10.1093/molbev/msad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Island ecosystems provide natural laboratories to assess the impacts of isolation on population persistence. However, most studies of persistence have focused on a single species, without comparisons to other organisms they interact with in the ecosystem. The case study of moose and gray wolves on Isle Royale allows for a direct contrast of genetic variation in isolated populations that have experienced dramatically differing population trajectories over the past decade. Whereas the Isle Royale wolf population recently declined nearly to extinction due to severe inbreeding depression, the moose population has thrived and continues to persist, despite having low genetic diversity and being isolated for ∼120 years. Here, we examine the patterns of genomic variation underlying the continued persistence of the Isle Royale moose population. We document high levels of inbreeding in the population, roughly as high as the wolf population at the time of its decline. However, inbreeding in the moose population manifests in the form of intermediate-length runs of homozygosity suggestive of historical inbreeding and purging, contrasting with the long runs of homozygosity observed in the smaller wolf population. Using simulations, we confirm that substantial purging has likely occurred in the moose population. However, we also document notable increases in genetic load, which could eventually threaten population viability over the long term. Overall, our results demonstrate a complex relationship between inbreeding, genetic diversity, and population viability that highlights the use of genomic datasets and computational simulation tools for understanding the factors enabling persistence in isolated populations.
Collapse
Affiliation(s)
- Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | | | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI
| | - Sarah R Hoy
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI
| | - Rolf O Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI
| | - John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI
| | - Leah M Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Groves P, Mann DH, Kunz ML. Prehistoric perspectives can help interpret the present: 14,000 years of moose (Alces alces L) in the Western Arctic. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapidly changing climate at high latitudes has triggered a search for bellwethers of ecological change there. If the initial signs of change can be identified, perhaps we can predict where these changes will lead. Large-bodied, terrestrial, herbivores are potential candidates for bellwether taxa because of the key roles they play in some ecological communities. Here we assemble historical, archaeological and paleontological records of moose (<i>Alces alces</i> Linnaeus, 1758.) from the western Arctic and Subarctic. Results show that rather than having recently invaded tundra regions in response to post-Little Ice Age warming, moose have inhabited river corridors several hundred kilometers north of the closed, boreal forest since they first colonized North America across the Bering Land Bridge ca. 14,000 years ago. The combination of high mobility, fluctuation-prone metapopulations, and reliance on early successional vegetation makes changes in the northern range limits of moose undependable bellwethers for other biotic responses to changing climate. The history of moose at high latitudes illustrates how understanding what happened in prehistory is useful for correctly assigning significance and cause to present-day ecological changes.
Collapse
Affiliation(s)
- Pamela Groves
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, United States
| | - Daniel H Mann
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, Alaska, United States
| | - Mike L Kunz
- University of Alaska Fairbanks, Museum of the North, Fairbanks, Alaska, United States
| |
Collapse
|
9
|
Ramos-Gonzalez D, Saenko SV, Davison A. Deep structure, long-distance migration and admixture in the colour polymorphic land snail Cepaea nemoralis. J Evol Biol 2022; 35:1110-1125. [PMID: 35830483 PMCID: PMC9541890 DOI: 10.1111/jeb.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022]
Abstract
Although snails of the genus Cepaea have historically been important in studying colour polymorphism, an ongoing issue is that there is a lack of knowledge of the underlying genetics of the polymorphism, as well as an absence of genomic data to put findings in context. We, therefore, used phylogenomic methods to begin to investigate the post‐glacial history of Cepaea nemoralis, with a long‐term aim to understand the roles that selection and drift have in determining both European‐wide and local patterns of colour polymorphism. By combining prior and new mitochondrial DNA data from over 1500 individuals with ddRAD genomic data from representative individuals across Europe, we show that patterns of differentiation are primarily due to multiple deeply diverged populations of snails. Minimally, there is a widespread Central European population and additional diverged groups in Northern Spain, the Pyrenees, as well as likely Italy and South Eastern Europe. The genomic analysis showed that the present‐day snails in Ireland and possibly some other locations are likely descendants of admixture between snails from the Pyrenees and the Central European group, an observation that is consistent with prior inferences from mitochondrial DNA alone. The interpretation is that C. nemoralis may have arrived in Ireland via long‐distance migration from the Pyrenean region, subsequently admixing with arrivals from elsewhere. This work, therefore, provides a baseline expectation for future studies on the genetics of the colour polymorphism, as well as providing a comparator for similar species.
Collapse
Affiliation(s)
| | - Suzanne V Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Verry AJF, Mitchell KJ, Rawlence NJ. Genetic evidence for post-glacial expansion from a southern refugium in the eastern moa ( Emeus crassus). Biol Lett 2022; 18:20220013. [PMID: 35538842 PMCID: PMC9091836 DOI: 10.1098/rsbl.2022.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cycles of glacial expansion and contraction throughout the Pleistocene drove increases and decreases, respectively, in the geographical range and population size of many animal species. Genetic data have revealed that during glacial maxima the distribution of many Eurasian animals was restricted to small refugial areas, from which species expanded to reoccupy parts of their former range as the climate warmed. It has been suggested that the extinct eastern moa (Emeus crassus)-a large, flightless bird from New Zealand-behaved analogously during glacial maxima, possibly surviving only in a restricted area of lowland habitat in the southern South Island of New Zealand during the Last Glacial Maximum (LGM). However, previous studies have lacked the power and geographical sampling to explicitly test this hypothesis using genetic data. Here we analyse 46 ancient mitochondrial genomes from Late Pleistocene and Holocene bones of the eastern moa from across their post-LGM distribution. Our results are consistent with a post-LGM increase in the population size and genetic diversity of eastern moa. We also demonstrate that genetic diversity was higher in eastern moa from the southern extent of their range, supporting the hypothesis that they expanded from a single glacial refugium following the LGM.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
12
|
Gu Q, Wang S, Zhong H, Yuan H, Yang J, Yang C, Huang X, Xu X, Wang Y, Wei Z, Wang J, Liu S. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC). BMC Genomics 2022; 23:242. [PMID: 35350975 PMCID: PMC8962218 DOI: 10.1186/s12864-022-08468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
An important aspect of studying evolution is to understand how new species are formed and their uniqueness is maintained. Hybridization can lead to the formation of new species through reorganization of the adaptive system and significant changes in phenotype. Interestingly, eight stable strains of 2nNCRC derived from interspecies hybridization have been established in our laboratory. To examine the phylogeographical pattern of the widely distributed genus Carassius across Eurasia and investigate the possible homoploid hybrid origin of the Carassius auratus complex lineage in light of past climatic events, the mitochondrial genome (mtDNA) and one nuclear DNA were used to reconstruct the phylogenetic relationship between the C. auratus complex and 2nNCRC and to assess how demographic history, dispersal and barriers to gene flow have led to the current distribution of the C. auratus complex.
Results
As expected, 2nNCRC had a very close relationship with the C. auratus complex and similar morphological characteristics to those of the C. auratus complex, which is genetically distinct from the other three species of Carassius. The estimation of divergence time and ancestral state demonstrated that the C. auratus complex possibly originated from the Yangtze River basin in China. There were seven sublineages of the C. auratus complex across Eurasia and at least four mtDNA lineages endemic to particular geographical regions in China. The primary colonization route from China to Mongolia and the Far East (Russia) occurred during the Late Pliocene, and the diversification of other sublineages of the C. auratus complex specifically coincided with the interglacial stage during the Early and Mid-Pleistocene in China.
Conclusion
Our results support the origin of the C. auratus complex in China, and its wide distribution across Eurasia was mainly due to natural Pleistocene dispersal and recent anthropogenic translocation. The sympatric distribution of the ancestral area for both parents of 2nNCRC and the C. auratus complex, as well as the significant changes in the structure of pharyngeal teeth and morphological characteristics between 2nNCRC and its parents, imply that homoploid hybrid speciation (HHS) for C. auratus could likely have occurred in nature. The diversification pattern indicated an independent evolutionary history of the C. auratus complex, which was not separated from the most recent common ancestor of C. carassius or C. cuvieri. Considering that the paleoclimate oscillation and the development of an eastward-flowing drainage system during the Pliocene and Pleistocene in China provided an opportunity for hybridization between divergent lineages, the formation of 2nNCRC in our laboratory could be a good candidate for explaining the HHS of C. auratus in nature.
Collapse
|
13
|
Deng MX, Xiao B, Yuan JX, Hu JM, Kim KS, Westbury MV, Lai XL, Sheng GL. Ancient Mitogenomes Suggest Stable Mitochondrial Clades of the Siberian Roe Deer. Genes (Basel) 2022; 13:genes13010114. [PMID: 35052455 PMCID: PMC8774404 DOI: 10.3390/genes13010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
The roe deer (Capreolus spp.) has been present in China since the early Pleistocene. Despite abundant fossils available for detailed morphological analyses, little is known about the phylogenetic relationships of the fossil individuals to contemporary roe deer. We generated near-complete mitochondrial genomes for four roe deer remains from Northeastern China to explore the genetic connection of the ancient roe deer to the extant populations and to investigate the evolutionary history and population dynamics of this species. Phylogenetic analyses indicated the four ancient samples fall into three out of four different haplogroups of the Siberian roe deer. Haplogroup C, distributed throughout Eurasia, have existed in Northeastern China since at least the Late Pleistocene, while haplogroup A and D, found in the east of Lake Baikal, emerged in Northeastern China after the Mid Holocene. The Bayesian estimation suggested that the first split within the Siberian roe deer occurred approximately 0.34 million years ago (Ma). Moreover, Bayesian skyline plot analyses suggested that the Siberian roe deer had a population increase between 325 and 225 thousand years ago (Kya) and suffered a transient decline between 50 and 18 Kya. This study provides novel insights into the evolutionary history and population dynamics of the roe deer.
Collapse
Affiliation(s)
- Miao-Xuan Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
| | - Bo Xiao
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
| | - Jun-Xia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jia-Ming Hu
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
| | - Kyung Seok Kim
- Department of Ecology, Evolution, and Organismal Biology, lowa State University, Ames, IA 77575, USA;
| | - Michael V. Westbury
- GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Voldgade 5-7, 1353 Copenhagen, Denmark;
| | - Xu-Long Lai
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
| | - Gui-Lian Sheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
- Correspondence: ; Tel.: +86-27-6788-3022
| |
Collapse
|
14
|
Prunier J, Carrier A, Gilbert I, Poisson W, Albert V, Taillon J, Bourret V, Côté SD, Droit A, Robert C. CNVs with adaptive potential in Rangifer tarandus: genome architecture and new annotated assembly. Life Sci Alliance 2021; 5:5/3/e202101207. [PMID: 34911809 PMCID: PMC8711850 DOI: 10.26508/lsa.202101207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
Rangifer tarandus has experienced recent drastic population size reductions throughout its circumpolar distribution and preserving the species implies genetic diversity conservation. To facilitate genomic studies of the species populations, we improved the genome assembly by combining long read and linked read and obtained a new highly accurate and contiguous genome assembly made of 13,994 scaffolds (L90 = 131 scaffolds). Using de novo transcriptome assembly of RNA-sequencing reads and similarity with annotated human gene sequences, 17,394 robust gene models were identified. As copy number variations (CNVs) likely play a role in adaptation, we additionally investigated these variations among 20 genomes representing three caribou ecotypes (migratory, boreal and mountain). A total of 1,698 large CNVs (length > 1 kb) showing a genome distribution including hotspots were identified. 43 large CNVs were particularly distinctive of the migratory and sedentary ecotypes and included genes annotated for functions likely related to the expected adaptations. This work includes the first publicly available annotation of the caribou genome and the first assembly allowing genome architecture analyses, including the likely adaptive CNVs reported here.
Collapse
Affiliation(s)
- Julien Prunier
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - William Poisson
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Steeve D Côté
- Caribou Ungava, département de biologie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| |
Collapse
|
15
|
Ferrante JA, Smith CH, Thompson LM, Hunter ME. Genome-wide SNP analysis of three moose subspecies at the southern range limit in the contiguous United States. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractGenome-wide evaluations of genetic diversity and population structure are important for informing management and conservation of trailing-edge populations. North American moose (Alces alces) are declining along portions of the southern edge of their range due to disease, species interactions, and marginal habitat, all of which may be exacerbated by climate change. We employed a genotyping by sequencing (GBS) approach in an effort to collect baseline information on the genetic variation of moose inhabiting the species’ southern range periphery in the contiguous United States. We identified 1920 single nucleotide polymorphisms (SNPs) from 155 moose representing three subspecies from five states: A. a. americana (New Hampshire), A. a. andersoni (Minnesota), and A. a. shirasi (Idaho, Montana, and Wyoming). Molecular analyses supported three geographically isolated clusters, congruent with currently recognized subspecies. Additionally, while moderately low genetic diversity was observed, there was little evidence of inbreeding. Results also indicated > 20% shared ancestry proportions between A. a. shirasi samples from northern Montana and A. a. andersoni samples from Minnesota, indicating a putative hybrid zone warranting further investigation. GBS has proven to be a simple and effective method for genome-wide SNP discovery in moose and provides robust data for informing herd management and conservation priorities. With increasing disease, predation, and climate related pressure on range edge moose populations in the United States, the use of SNP data to identify gene flow between subspecies may prove a powerful tool for moose management and recovery, particularly if hybrid moose are more able to adapt.
Collapse
|