1
|
Bernard A, Dirlewanger E, Delmas M, Racofier D, Greil ML, Lainé AL, Porte C, Gennetay D, Keller M, Chemineau P. Genome-wide association study dissects the genetic architecture of progesterone content in Persian walnut leaves (Juglans regia L.). BMC Genomics 2025; 26:145. [PMID: 39955526 PMCID: PMC11829387 DOI: 10.1186/s12864-025-11341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Progesterone (P4) is an endogenous sex steroid hormone involved in the ovulatory cycle and pregnancy of animal species. In sheep and goats, P4 analogues are used to induce synchronized ovulations and oestrus behavior of the females. In humans, P4 from chemical synthesis is used to treat peri-menopausal disorders. However, such molecules are released into aquatic environment and can be a source of pollution, are prohibited in organic farms and go against the trend of "naturality" in animal production as well as in human health. A natural alternative may consist in the extraction and use of P4 in plants. Mammalian hormones were discovered in an increasing number of plant species, including walnut leaves that contain high levels of P4. We compared the content of P4 in leaves of 170 accessions of Juglans regia from the walnut germplasm collection of INRAE Prunus-Juglans Biological Resources Center previously genotyped using the Axiom™ J. regia 700 K SNP array. We conducted a genome-wide association study (GWAS) using multi-locus models. When collected in October, P4 content goes from 34,1 to 287,5 mg/kg dry weight of leaves. The two laciniate accessions have the largest P4 content. We identified seven significant marker-trait associations on chromosomes 1, 2, 3, 6, 7, 15 and 16, and a candidate gene involved in the metabolism of sterols, precursors of plant steroid hormones. Our results raise the huge variability of P4 content within J. regia and propose a candidate gene which may have a role in the control of this variability, opening the way to a potential use of walnut P4 by the pharmaceutical industry towards more natural source of chemical compounds.
Collapse
Affiliation(s)
- Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon, France.
| | | | - Marine Delmas
- INRAE, Unité Expérimentale Arboricole, Domaine de La Tour de Rance, 47320, Bourran, France
| | - Delphine Racofier
- INRAE, Unité Expérimentale Arboricole, Domaine Des Jarres, 33210, Toulenne, France
| | - Marie-Laure Greil
- INRAE, Unité Expérimentale Arboricole, Domaine Des Jarres, 33210, Toulenne, France
| | - Anne-Lyse Lainé
- INRAE, CNRS, Université de Tours, Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Chantal Porte
- INRAE, CNRS, Université de Tours, Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Dominique Gennetay
- INRAE, CNRS, Université de Tours, Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Matthieu Keller
- INRAE, CNRS, Université de Tours, Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Philippe Chemineau
- INRAE, CNRS, Université de Tours, Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| |
Collapse
|
2
|
Groh JS, Vik DC, Davis M, Monroe JG, Stevens KA, Brown PJ, Langley CH, Coop G. Ancient structural variants control sex-specific flowering time morphs in walnuts and hickories. Science 2025; 387:eado5578. [PMID: 39745948 DOI: 10.1126/science.ado5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Balanced mating type polymorphisms offer a distinct window into the forces shaping sexual reproduction strategies. Multiple hermaphroditic genera in Juglandaceae, including walnuts (Juglans) and hickories (Carya), show a 1:1 genetic dimorphism for male versus female flowering order (heterodichogamy). We map two distinct Mendelian inheritance mechanisms to ancient (>37 million years old) genus-wide structural DNA polymorphisms. The dominant haplotype for female-first flowering in Juglans contains tandem repeats of the 3' untranslated region of a gene putatively involved in trehalose-6-phosphate metabolism and is associated with increased cis gene expression in developing male flowers, possibly mediated by small RNAs. The Carya locus contains ~20 syntenic genes and shows molecular signatures of sex chromosome-like evolution. Inheritance mechanisms for heterodichogamy are deeply conserved, yet may occasionally turn over, as in sex determination.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Diane C Vik
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Matthew Davis
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Graham Coop
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Ye H, Liu H, Li H, Lei D, Gao Z, Zhou H, Zhao P. Complete mitochondrial genome assembly of Juglans regia unveiled its molecular characteristics, genome evolution, and phylogenetic implications. BMC Genomics 2024; 25:894. [PMID: 39342114 PMCID: PMC11439326 DOI: 10.1186/s12864-024-10818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Persian walnut (Juglans regia), an economically vital species within the Juglandaceae family, has seen its mitochondrial genome sequenced and assembled in the current study using advanced Illumina and Nanopore sequencing technology. RESULTS The 1,007,576 bp mitogenome of J. regia consisted of three circular chromosomes with a 44.52% GC content encoding 39 PCGs, 47 tRNA, and five rRNA genes. Extensive repetitive sequences, including 320 SSRs, 512 interspersed, and 83 tandem repeats, were identified, contributing to genomic complexity. The protein-coding sequences (PCGs) favored A/T-ending codons, and the codon usage bias was primarily shaped by selective pressure. Intracellular gene transfer occurred among the mitogenome, chloroplast, and nuclear genomes. Comparative genomic analysis unveiled abundant structure and sequence variation among J. regia and related species. The results of selective pressure analysis indicated that most PCGs underwent purifying selection, whereas the atp4 and ccmB genes had experienced positive selection between many species pairs. In addition, the phylogenetic examination, grounded in mitochondrial genome data, precisely delineated the evolutionary and taxonomic relationships of J. regia and its relatives. We identified a total of 539 RNA editing sites, among which 288 were corroborated by transcriptome sequencing data. Furthermore, expression profiling under temperature stress highlighted the complex regulation pattern of 28 differently expressed PCGs, wherein NADH dehydrogenase and ATP synthase genes might be critical in the mitochondria response to cold stress. CONCLUSIONS Our results provided valuable molecular resources for understanding the genetic characteristics of J. regia and offered novel perspectives for population genetics and evolutionary studies in Juglans and related woody species.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Manthos I, Sotiropoulos T, Karapetsi L, Ganopoulos I, Pratsinakis ED, Maloupa E, Madesis P. Molecular Characterization of Local Walnut ( Juglans regia) Genotypes in the North-East Parnon Mountain Region of Greece. Int J Mol Sci 2023; 24:17230. [PMID: 38139058 PMCID: PMC10743642 DOI: 10.3390/ijms242417230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Walnut is one of the most important nuts regarding their production and consumption. The available but uncharacterized genetic resources of walnut are important for the development and breeding of local varieties. Greece holds an important number of genetically uncharacterized walnut landraces, especially within the area of Parnon, which is considered to play a significant role as an in situ gene bank, due to its unique location traits. However, the genetic characterization and further use of these resources has been insufficient, due to the absence of genetic studies. In this study, we implemented SSR molecular markers, both to genetically characterize the walnut tree genetic diversity of the Parnon area and to identify its unique genetic structure, which will form the starting material for subsequent breeding programs. Overall, high levels of genetic variation were found among the individual walnut accessions that were collected in the Parnon mountain region.
Collapse
Affiliation(s)
- Ioannis Manthos
- Department of Nut Trees, Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization (ELGO)-DIMITRA, Neo Krikello, 35100 Lamia, Greece;
| | - Thomas Sotiropoulos
- Department of Deciduous Fruit Trees, Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization (ELGO)-DIMITRA, 59200 Naousa, Greece;
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece;
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; (I.G.); (E.M.)
| | - Emmanouil D. Pratsinakis
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Eleni Maloupa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; (I.G.); (E.M.)
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece;
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| |
Collapse
|
5
|
Plugatar YV, Suprun II, Khokhlov SY, Stepanov IV, Al-Nakib EA. Comprehensive agrobiological assessment and analysis of genetic relationships of promising walnut varieties of the Nikitsky Botanical Gardens. Vavilovskii Zhurnal Genet Selektsii 2023; 27:454-462. [PMID: 37867608 PMCID: PMC10587009 DOI: 10.18699/vjgb-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 10/24/2023] Open
Abstract
Walnut is an important horticultural crop, the production of which ranks second among all nut crops. Despite the significant demand in the domestic market in Russia, the industrial production of walnut fruits in Russia is currently underdeveloped. At the same time, there is a need to update the assortment with new highly productive varieties adapted to local agro-climatic conditions and having high quality nuts that are competitive at the world level. An important issue for the successful implementation of breeding programs is a comprehensive study of the gene pool. In this regard, within the framework of the study, the task was to evaluate promising varieties from the collection of the walnut gene pool of the Nikitsky Botanical Gardens and analyze genetic relationships based on microsatellite genotyping. On the basis of the performed phenotypic assessment, the study sample, which included 31 varieties, was divided into several groups according to the main phenotypic traits, such as frost and drought resistance, the start of the growing season, the ripening period, the weight and type of flowering, the weight of the fruit, and the thickness of the endocarp. Varieties with economically valuable traits that can be recommended as promising as initial parental forms in breeding work for resistance to abiotic stress factors have been identified, as well as varieties with increased productivity and large fruit sizes. Based on the analysis of eight SSR markers (WGA001, WGA376, WGA069, WGA276, WGA009, WGA202, WGA089 and WGA054), an analysis of the level of genetic diversity was performed and genetic relationships were established in the studied sample of varieties. Six (for WGA089) to eleven (for WGA276) alleles per locus have been identified. A total of 70 alleles were identified for the eight DNA markers used, with an average value of 8.75. Analysis of SSR genotyping data using Bayesian analysis established the presence of two main groups of genotypes. Taking into account the fact that all the studied varieties are selections from local seed populations in different regions of the Crimean Peninsula, the revealed level of polymorphism may indirectly reflect the level of genetic diversity of the local walnut populations. Furthermore, the presence of two genetically distant groups indicates the presence of two independently formed pools of the autochthonous gene pool of the species Juglans regia L. on the Crimean Peninsula.
Collapse
Affiliation(s)
- Yu V Plugatar
- The Order of the Red Banner of Labour Nikitsky Botanical Gardens - National Scientific Center of the Russian Academy of Sciences, Yalta, Republic of Crimea, Russia
| | - I I Suprun
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| | - S Yu Khokhlov
- The Order of the Red Banner of Labour Nikitsky Botanical Gardens - National Scientific Center of the Russian Academy of Sciences, Yalta, Republic of Crimea, Russia
| | - I V Stepanov
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| | - E A Al-Nakib
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| |
Collapse
|
6
|
Itoo H, Shah RA, Qurat S, Jeelani A, Khursheed S, Bhat ZA, Mir MA, Rather GH, Zargar SM, Shah MD, Padder BA. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut ( Juglans regia L.). 3 Biotech 2023; 13:136. [PMID: 37124992 PMCID: PMC10130282 DOI: 10.1007/s13205-023-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03563-6.
Collapse
Affiliation(s)
- H. Itoo
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Rafiq Ahmad Shah
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - S. Qurat
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Afnan Jeelani
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Sheikh Khursheed
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Zahoor A. Bhat
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - M. A. Mir
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - G. H. Rather
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - M. D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| |
Collapse
|
7
|
Kabiri G, Laboratory of Biotechnologies and Valorization of Plant Gnetic Resources, University of Sultan Moulay Slimane, Faculty of Sciences and Techniques, P.B. 523, Beni Mellal, Morocco, Bouda S, Ennahli S, Hafida H, Laboratory of Biotechnologies and Valorization of Plant Gnetic Resources, University of Sultan Moulay Slimane, Faculty of Sciences and Techniques, P.B. 523, Beni Mellal, Morocco, Departement of Horticulture and Viticulture, National School of Agriculture, Meknes, Morocco, Laboratory of Development and Safety of Food Products, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane Beni Mellal, Morocco. THE WALNUT - CONSTRAINTS AND ADVANTAGES FOR A SUSTAINABLE DEVELOPMENT. FRUIT GROWING RESEARCH 2022. [DOI: 10.33045/fgr.v38.2022.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Persian walnut or English walnut (Juglans regia L.) is a commonly grown species for nut production and noble wood. The nut is one of the oldest food and traditional medicine sources. The native and commercial walnut genotypes present a large diversity that differ widely in nut productivity and quality. However, genetic erosion poses a serious threat to this tree. Several researches of walnut genetic diversity are being carried out utilizing morphological, biochemical, and molecular approaches in order to select superior walnut cultivars of different agroclimatic areas to increase nut production and quality. Genetic resource evaluation and agrodiversity conservation have a major role in ensuring food security for future generations through a continuous supply of new rootstocks and improved cultivars.
Collapse
|
8
|
Wang J, Ye H, Zhou H, Chen P, Liu H, Xi R, Wang G, Hou N, Zhao P. Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.). BMC PLANT BIOLOGY 2022; 22:436. [PMID: 36096735 PMCID: PMC9469530 DOI: 10.1186/s12870-022-03824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding the underlying genetic mechanisms that drive phenotypic variations is essential for enhancing the efficacy of crop improvement. Persian walnut (Juglans regia L.), which is grown extensively worldwide, is an important economic tree fruit due to its horticultural, medicinal, and material value. The quality of the walnut fruit is related to the selection of traits such as thinner shells, larger filling rates, and better taste, which is very important for breeding in China. The complex quantitative fruit-related traits are influenced by a variety of physiological and environmental factors, which can vary widely between walnut genotypes. RESULTS For this study, a set of 101 Persian walnut accessions were re-sequenced, which generated a total of 906.2 Gb of Illumina sequence data with an average read depth of 13.8× for each accession. We performed the genome-wide association study (GWAS) using 10.9 Mb of high-quality single-nucleotide polymorphisms (SNPs) and 10 agronomic traits to explore the underlying genetic basis of the walnut fruit. Several candidate genes are proposed to be involved in walnut characteristics, including JrPXC1, JrWAKL8, JrGAMYB, and JrFRK1. Specifically, the JrPXC1 gene was confirmed to participate in the regulation of secondary wall cellulose thickening in the walnut shell. CONCLUSION In addition to providing considerable available genetic resources for walnut trees, this study revealed the underlying genetic basis involved in important walnut agronomic traits, particularly shell thickness, as well as providing clues for the improvement of genetic breeding and domestication in other perennial economic crops.
Collapse
Affiliation(s)
- Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Ruimin Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang, 550005, Guizhou, China
| | - Na Hou
- Guizhou Academy of Forestry, Guiyang, 550005, Guizhou, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
9
|
Ding YM, Cao Y, Zhang WP, Chen J, Liu J, Li P, Renner SS, Zhang DY, Bai WN. Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. Genome Biol 2022; 23:145. [PMID: 35787713 PMCID: PMC9254524 DOI: 10.1186/s13059-022-02720-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background Persian walnut, Juglans regia, occurs naturally from Greece to western China, while its closest relative, the iron walnut, Juglans sigillata, is endemic in southwest China; both species are cultivated for their nuts and wood. Here, we infer their demographic histories and the time and direction of possible hybridization and introgression between them. Results We use whole-genome resequencing data, different population-genetic approaches (PSMC and GONE), and isolation-with-migration models (IMa3) on individuals from Europe, Iran, Kazakhstan, Pakistan, and China. IMa3 analyses indicate that the two species diverged from each other by 0.85 million years ago, with unidirectional gene flow from eastern J. regia and its ancestor into J. sigillata, including the shell-thickness gene. Within J. regia, a western group, located from Europe to Iran, and an eastern group with individuals from northern China, experienced dramatically declining population sizes about 80 generations ago (roughly 2400 to 4000 years), followed by an expansion at about 40 generations, while J. sigillata had a constant population size from about 100 to 20 generations ago, followed by a rapid decline. Conclusions Both J. regia and J. sigillata appear to have suffered sudden population declines during their domestication, suggesting that the bottleneck scenario of plant domestication may well apply in at least some perennial crop species. Introgression from introduced J. regia appears to have played a role in the domestication of J. sigillata. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02720-z.
Collapse
Affiliation(s)
- Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,China National Botanical Garden, Beijing, 100093, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Pan Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, 63130, USA.
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Ma K, Xu R, Zhao Y, Han L, Xu Y, Li L, Wang J, Li N. Walnut N-Acetylserotonin Methyltransferase Gene Family Genome-Wide Identification and Diverse Functions Characterization During Flower Bud Development. FRONTIERS IN PLANT SCIENCE 2022; 13:861043. [PMID: 35498672 PMCID: PMC9051526 DOI: 10.3389/fpls.2022.861043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
Melatonin widely mediates multiple developmental dynamics in plants as a vital growth stimulator, stress protector, and developmental regulator. N-acetylserotonin methyltransferase (ASMT) is the key enzyme that catalyzes the final step of melatonin biosynthesis in plants and plays an essential role in the plant melatonin regulatory network. Studies of ASMT have contributed to understanding the mechanism of melatonin biosynthesis in plants. However, AMST gene is currently uncharacterized in most plants. In this study, we characterized the JrASMT gene family using bioinformatics in a melatonin-rich plant, walnut. Phylogenetic, gene structure, conserved motifs, promoter elements, interacting proteins and miRNA analyses were also performed. The expansion and differentiation of the ASMT family occurred before the onset of the plant terrestrialization. ASMT genes were more differentiated in dicotyledonous plants. Forty-six ASMT genes were distributed in clusters on 10 chromosomes of walnut. Four JrASMT genes had homologous relationships both within walnut and between species. Cis-regulatory elements showed that JrASMT was mainly induced by light and hormones, and targeted cleavage of miRNA172 and miR399 may be an important pathway to suppress JrASMT expression. Transcriptome data showed that 13 JrASMT were differentially expressed at different periods of walnut bud development. WGCNA showed that JrASMT1/10/13/23 were coexpressed with genes regulating cell fate and epigenetic modifications during early physiological differentiation of walnut female flower buds. JrASMT12/28/37/40 were highly expressed during morphological differentiation of flower buds, associated with altered stress capacity of walnut flower buds, and predicted to be involved in the regulatory network of abscisic acid, salicylic acid, and cytokinin in walnut. The qRT-PCR validated the results of differential expression analysis and further provided three JrASMT genes with different expression profiles in walnut flower bud development. Our study explored the evolutionary relationships of the plant ASMT gene family and the functional characteristics of walnut JrASMT. It provides a valuable perspective for further understanding the complex melatonin mechanisms in plant developmental regulation.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Liqun Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Yuhui Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Lili Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Juan Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ning Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
11
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
12
|
Branchereau C, Quero-García J, Zaracho-Echagüe NH, Lambelin L, Fouché M, Wenden B, Donkpegan A, Le Dantec L, Barreneche T, Alletru D, Parmentier J, Dirlewanger E. New insights into flowering date in Prunus: fine mapping of a major QTL in sweet cherry. HORTICULTURE RESEARCH 2022; 9:uhac042. [PMID: 35184200 PMCID: PMC9070640 DOI: 10.1093/hr/uhac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Flowering date is an important trait in Prunus fruit species, especially for their adaptation in a global warming context. Numerous quantitative trait loci (QTLs) have been identified and a major one was previously located on LG4. The objectives of this study were to fine-map this QTL in sweet cherry, to identify robust candidate genes by using the new sweet cherry genome sequence of the cultivar 'Regina' and to define markers usable in marker-assisted selection (MAS). We performed QTL analyses on two populations derived from crosses using cultivars 'Regina' and 'Garnet' as parents. The first one (n = 117) was phenotyped over ten years, while the second one (n = 1386) was evaluated during three years. Kompetitive allele specific PCR (KASP) markers located within the QTL region on LG4 were developed and mapped within this region, consisting in the first fine mapping in sweet cherry. The QTL interval was narrowed from 380 kb to 68 kb and candidate genes were identified by using the genome sequence of 'Regina'. Their expression was analyzed from bud dormancy period to flowering in cultivars 'Regina' and 'Garnet'. Several genes, such as PavBOI-E3, PavSR45a and PavSAUR71, were differentially expressed in these two cultivars and could be then considered as promising candidate genes. Two KASP markers were validated using a population derived from a cross between cultivars 'Regina' and 'Lapins' and two collections, including landraces and modern cultivars. Thanks to the high synteny within the Prunus genus, these results give new insights into the control of flowering date in Prunus species and pave the way for the development of molecular breeding strategies.
Collapse
Affiliation(s)
- Camille Branchereau
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - José Quero-García
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - Nathalia Helena Zaracho-Echagüe
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- IRTA, Centre de Recerca en Agrigenómica CSIC-IRTAUAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laurine Lambelin
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - Mathieu Fouché
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - Armel Donkpegan
- SYSAAF-Centre INRAE Val de Loire, UMR BOA, 37380 Nouzilly France
| | - Loïck Le Dantec
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - Teresa Barreneche
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| | - David Alletru
- INRAE, UE 0393, Unité Expérimentale Arboricole, F-33210 Toulenne, France
| | - Julien Parmentier
- INRAE, UE 0393, Unité Expérimentale Arboricole, F-33210 Toulenne, France
| | - Elisabeth Dirlewanger
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon, France
| |
Collapse
|
13
|
Arab MM, Brown PJ, Abdollahi-Arpanahi R, Sohrabi SS, Askari H, Aliniaeifard S, Mokhtassi-Bidgoli A, Mesgaran MB, Leslie CA, Marrano A, Neale DB, Vahdati K. Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut. HORTICULTURE RESEARCH 2022; 9:uhac124. [PMID: 35928405 PMCID: PMC9343916 DOI: 10.1093/hr/uhac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 05/17/2023]
Abstract
Uncovering the genetic basis of photosynthetic trait variation under drought stress is essential for breeding climate-resilient walnut cultivars. To this end, we examined photosynthetic capacity in a diverse panel of 150 walnut families (1500 seedlings) from various agro-climatic zones in their habitats and grown in a common garden experiment. Photosynthetic traits were measured under well-watered (WW), water-stressed (WS) and recovery (WR) conditions. We performed genome-wide association studies (GWAS) using three genomic datasets: genotyping by sequencing data (∼43 K SNPs) on both mother trees (MGBS) and progeny (PGBS) and the Axiom™ Juglans regia 700 K SNP array data (∼295 K SNPs) on mother trees (MArray). We identified 578 unique genomic regions linked with at least one trait in a specific treatment, 874 predicted genes that fell within 20 kb of a significant or suggestive SNP in at least two of the three GWAS datasets (MArray, MGBS, and PGBS), and 67 genes that fell within 20 kb of a significant SNP in all three GWAS datasets. Functional annotation identified several candidate pathways and genes that play crucial roles in photosynthesis, amino acid and carbohydrate metabolism, and signal transduction. Further network analysis identified 15 hub genes under WW, WS and WR conditions including GAPB, PSAN, CRR1, NTRC, DGD1, CYP38, and PETC which are involved in the photosynthetic responses. These findings shed light on possible strategies for improving walnut productivity under drought stress.
Collapse
Affiliation(s)
- Mohammad M Arab
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA 95616
| | | | - Seyed Sajad Sohrabi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA 95616
| | | |
Collapse
|
14
|
Hyten DL. Genotyping Platforms for Genome-Wide Association Studies: Options and Practical Considerations. Methods Mol Biol 2022; 2481:29-42. [PMID: 35641757 DOI: 10.1007/978-1-0716-2237-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) in crops requires genotyping platforms that are capable of producing accurate high density genotyping data on hundreds of plants in a cost-effective manner. Currently there are multiple commercial platforms available that are being effectively used across crops. These platforms include genotyping arrays such as the Illumina Infinium arrays and the Applied Biosystems Axiom Arrays along with a variety of resequencing methods. These methods are being used to genotype tens of thousands of markers up to millions of markers on GWAS panels. They are being used on crops with simple genomes to crops with very complex, large, polyploid genomes. Depending on the crop and the goal of the GWAS, there are several options and practical considerations to take into account when selecting a genotyping technology to ensure that the right coverage, accuracy, and cost for the study is achieved.
Collapse
Affiliation(s)
- David L Hyten
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
15
|
Sandor ME, Aslan CE, Pejchar L, Bronstein JL. A Mechanistic Framework for Understanding the Effects of Climate Change on the Link Between Flowering and Fruiting Phenology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance.
Collapse
|
16
|
Ji F, Ma Q, Zhang W, Liu J, Feng Y, Zhao P, Song X, Chen J, Zhang J, Wei X, Zhou Y, Chang Y, Zhang P, Huang X, Qiu J, Pei D. A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits. Genome Biol 2021; 22:300. [PMID: 34706738 PMCID: PMC8554829 DOI: 10.1186/s13059-021-02517-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common walnut (Juglans regia L.) is one of the top four most consumed nuts in the world due to its health benefits and pleasant taste. Despite its economic importance, the evolutionary history and genetic control of its adaptation and agronomic traits remain largely unexplored. RESULTS We report a comprehensive walnut genomic variation map based on whole-genome resequencing of 815 walnut accessions. Evolutionary analyses suggest that Chinese J. regia diverged from J. sigillata with extensive hybridizations after the split of the two species. In contrast to annual crops, the genetic diversity and heterozygous deleterious mutations of Chinese common walnut trees have continued to increase during the improvement process. Selective sweep analyses identify 902 genes uniquely selected in the improved common walnut compared to its progenitor population. Five major-effect loci are identified to be involved in walnut adaptations to temperature, precipitation, and altitude. Genome-wide association studies reveal 27 genomic loci responsible for 18 important agronomic traits, among which JrFAD2 and JrANR are the potentially major-effect causative genes controlling linoleic acid content and color of the endopleura of the nut, respectively. CONCLUSIONS The largest genomic resource for walnuts to date has been generated and explored in this study, unveiling their evolutionary history and cracking the genetic code for agronomic traits and environmental adaptation of this economically crucial crop tree.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenting Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Feng
- Systematic & Evolutionary Botany and Biodiversity group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yingying Chang
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan Province, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs of Colleges and Universities in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
17
|
Fang H, Liu X, Dong Y, Feng S, Zhou R, Wang C, Ma X, Liu J, Yang KQ. Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC PLANT BIOLOGY 2021; 21:249. [PMID: 34059002 PMCID: PMC8166054 DOI: 10.1186/s12870-021-03042-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease affecting walnut production. The resistance of walnut fruit to C. gloeosporioides is a highly complicated and genetically programmed process. However, the underlying mechanisms have not yet been elucidated. RESULTS To understand the molecular mechanism underlying the defense of walnut to C. gloeosporioides, we used RNA sequencing and label-free quantitation technologies to generate transcriptomic and proteomic profiles of tissues at various lifestyle transitions of C. gloeosporioides, including 0 hpi, pathological tissues at 24 hpi, 48 hpi, and 72 hpi, and distal uninoculated tissues at 120 hpi, in anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts, which were defined through scanning electron microscopy. A total of 21,798 differentially expressed genes (DEGs) and 1929 differentially expressed proteins (DEPs) were identified in F26 vs. F423 at five time points, and the numbers of DEGs and DEPs were significantly higher in the early infection stage. Using pairwise comparisons and weighted gene co-expression network analysis of the transcriptome, we identified two modules significantly related to disease resistance and nine hub genes in the transcription expression gene networks. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the DEGs and DEPs revealed that many genes were mainly related to immune response, plant hormone signal transduction, and secondary metabolites, and many DEPs were involved in carbon metabolism and photosynthesis. Correlation analysis between the transcriptome data and proteome data also showed that the consistency of the differential expression of the mRNA and corresponding proteins was relatively higher in the early stage of infection. CONCLUSIONS Collectively, these results help elucidate the molecular response of walnut fruit to C. gloeosporioides and provide a basis for the genetic improvement of walnut disease resistance.
Collapse
Affiliation(s)
- Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xia Liu
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China.
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China.
| |
Collapse
|
18
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
19
|
The phenology of the endangered Nogal (Juglans neotropica Diels) in Bogota and its conservation implications in the urban forest. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01117-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards. WATER 2021. [DOI: 10.3390/w13060829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed seagrass environments has become a worldwide priority to reverse ecosystem degradation and to recover ecosystem functionality and associated services. Despite the proven importance of genetic research to perform successful restoration projects, this aspect has often been overlooked in seagrass restoration. Here, we aimed to provide a comprehensive perspective of genetic aspects related to seagrass restoration. To this end, we first reviewed the importance of studying the genetic diversity and population structure of target seagrass populations; then, we discussed the pros and cons of different approaches used to restore and/or reinforce degraded populations. In general, the collection of genetic information and the development of connectivity maps are critical steps for any seagrass restoration activity. Traditionally, the selection of donor population preferred the use of local gene pools, thought to be the best adapted to current conditions. However, in the face of rapid ocean changes, alternative approaches such as the use of climate-adjusted or admixture genotypes might provide more sustainable options to secure the survival of restored meadows. Also, we discussed different transplantation strategies applied in seagrasses and emphasized the importance of long-term seagrass monitoring in restoration. The newly developed information on epigenetics as well as the application of assisted evolution strategies were also explored. Finally, a view of legal and ethical issues related to national and international restoration management is included, highlighting improvements and potential new directions to integrate with the genetic assessment. We concluded that a good restoration effort should incorporate: (1) a good understanding of the genetic structure of both donors and populations being restored; (2) the analysis of local environmental conditions and disturbances that affect the site to be restored; (3) the analysis of local adaptation constraints influencing the performances of donor populations and native plants; (4) the integration of distribution/connectivity maps with genetic information and environmental factors relative to the target seagrass populations; (5) the planning of long-term monitoring programs to assess the performance of the restored populations. The inclusion of epigenetic knowledge and the development of assisted evolution programs are strongly hoped for the future.
Collapse
|
21
|
Bükücü ŞB, Sütyemez M, Kefayati S, Paizila A, Jighly A, Kafkas S. Major QTL with pleiotropic effects controlling time of leaf budburst and flowering-related traits in walnut (Juglans regia L.). Sci Rep 2020; 10:15207. [PMID: 32938965 PMCID: PMC7495441 DOI: 10.1038/s41598-020-71809-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Breeding studies in walnut (Juglans regia L.) are usually time consuming due to the long juvenile period and therefore, this study aimed to determine markers associated with time of leaf budburst and flowering-related traits by performing a genome-wide association study (GWAS). We investigated genotypic variation and its association with time of leaf budburst and flowering-related traits in 188 walnut accessions. Phenotypic data was obtained from 13 different traits during 3 consecutive years. We used DArT-seq for genotyping with a total of 33,519 (14,761 SNP and 18,758 DArT) markers for genome-wide associations to identify marker underlying these traits. Significant correlations were determined among the 13 different traits. Linkage disequilibrium decayed very quickly in walnut in comparison with other plants. Sixteen quantitative trait loci (QTL) with major effects (R2 between 0.08 and 0.23) were found to be associated with a minimum of two phenotypic traits each. Of these QTL, QTL05 had the maximum number of associated traits (seven). Our study is GWAS for time of leaf budburst and flowering-related traits in Juglans regia L. and has a strong potential to efficiently implement the identified QTL in walnut breeding programs.
Collapse
Affiliation(s)
- Şakir Burak Bükücü
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Mehmet Sütyemez
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Sina Kefayati
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey.
| |
Collapse
|
22
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020; 9:giaa050. [PMID: 32432329 PMCID: PMC7238675 DOI: 10.1093/gigascience/giaa050] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
23
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020. [PMID: 32432329 DOI: 10.1101/80979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
24
|
Bernard A, Crabier J, Donkpegan ASL, Marrano A, Lheureux F, Dirlewanger E. Genome-Wide Association Study Reveals Candidate Genes Involved in Fruit Trait Variation in Persian Walnut ( Juglans regia L.). FRONTIERS IN PLANT SCIENCE 2020; 11:607213. [PMID: 33584750 PMCID: PMC7873874 DOI: 10.3389/fpls.2020.607213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 05/08/2023]
Abstract
Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers' needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTM J. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.
Collapse
Affiliation(s)
- Anthony Bernard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- CTIFL, Centre Opérationnel de Lanxade, Prigonrieux, France
| | - Julie Crabier
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Armel S. L. Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- *Correspondence: Elisabeth Dirlewanger,
| |
Collapse
|