1
|
Cheng G, An X, Dai Y, Li C, Li Y. Genomic Insights into Cobweb Disease Resistance in Agaricus bisporus: A Comparative Analysis of Resistant and Susceptible Strains. J Fungi (Basel) 2025; 11:200. [PMID: 40137238 PMCID: PMC11942895 DOI: 10.3390/jof11030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Agaricus bisporus, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by Cladobotryum mycophilum, which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in A. bisporus by comparing the genomes of a susceptible strain (AB7) and a resistant strain (AB58). Whole-genome sequencing of AB7 was performed using PacBio Sequel SMRT technology, and comparative genomic analyses were conducted alongside AB58 and other fungal hosts of C. mycophilum. Comparative genomic analyses revealed distinct resistance features in AB58, including enriched regulatory elements, specific deletions in AB7 affecting carbohydrate-active enzymes (CAZymes), and unique cytochrome P450 (CYP) profiles. Notably, AB58 harbored more cytochrome P450 genes related to fatty acid metabolism and unique NI-siderophore synthetase genes, contributing to its enhanced environmental adaptability and disease resistance. Pan-genome analysis highlighted significant genetic diversity, with strain-specific genes enriched in pathways like aflatoxin biosynthesis and ether lipid metabolism, suggesting distinct evolutionary adaptations. These findings provide valuable insights into the genetic basis underlying disease resistance in A. bisporus, offering a foundation for future breeding strategies to improve fungal crop resilience.
Collapse
Affiliation(s)
- Guohui Cheng
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Xiaoya An
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yu Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| |
Collapse
|
2
|
Belinchon-Moreno J, Berard A, Canaguier A, Chovelon V, Cruaud C, Engelen S, Feriche-Linares R, Le-Clainche I, Marande W, Rittener-Ruff V, Lagnel J, Hinsinger D, Boissot N, Faivre-Rampant P. Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.). BMC Genomics 2025; 26:126. [PMID: 39930362 PMCID: PMC11808957 DOI: 10.1186/s12864-025-11295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept. RESULTS Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies. CONCLUSIONS Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.
Collapse
Affiliation(s)
- Javier Belinchon-Moreno
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Aurélie Berard
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Aurélie Canaguier
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Véronique Chovelon
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Stéfan Engelen
- Génomique Métabolique, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ. Evry, Université Paris-Saclay, Genoscope, Evry, 91057, France
| | | | - Isabelle Le-Clainche
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, Castanet-Tolosan, 31326, France
| | | | - Jacques Lagnel
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Damien Hinsinger
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France.
| |
Collapse
|
3
|
Leng Y, Kümmel F, Zhao M, Molnár I, Doležel J, Logemann E, Köchner P, Xi P, Yang S, Moscou MJ, Fiedler JD, Du Y, Steuernagel B, Meinhardt S, Steffenson BJ, Schulze-Lefert P, Zhong S. A barley MLA immune receptor is activated by a fungal nonribosomal peptide effector for disease susceptibility. THE NEW PHYTOLOGIST 2025; 245:1197-1215. [PMID: 39641654 DOI: 10.1111/nph.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
The barley Mla locus contains functionally diversified genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) and confer strain-specific immunity to biotrophic and hemibiotrophic fungal pathogens. In this study, we isolated a barley gene Scs6, which is an allelic variant of Mla genes but confers susceptibility to the isolate ND90Pr (BsND90Pr) of the necrotrophic fungus Bipolaris sorokiniana. We generated Scs6 transgenic barley lines and showed that Scs6 is sufficient to confer susceptibility to BsND90Pr in barley genotypes naturally lacking the receptor. The Scs6-encoded NLR (SCS6) is activated by a nonribosomal peptide (NRP) effector produced by BsND90Pr to induce cell death in barley and Nicotiana benthamiana. Domain swaps between MLAs and SCS6 reveal that the SCS6 leucine-rich repeat domain is a specificity determinant for receptor activation by the NRP effector. Scs6 is maintained in both wild and domesticated barley populations. Our phylogenetic analysis suggests that Scs6 is a Hordeum-specific innovation. We infer that SCS6 is a bona fide immune receptor that is likely directly activated by the nonribosomal peptide effector of BsND90Pr for disease susceptibility in barley. Our study provides a stepping stone for the future development of synthetic NLR receptors in crops that are less vulnerable to modification by necrotrophic pathogens.
Collapse
Affiliation(s)
- Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Mingxia Zhao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - István Molnár
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Elke Logemann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Petra Köchner
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pinggen Xi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shengming Yang
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Matthew J Moscou
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Jason D Fiedler
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Yang Du
- Department of Computer Systems and Software Engineering, Valley City State University, Valley City, ND, 58072, USA
| | - Burkhard Steuernagel
- John Innes Centre, Computational and Systems Biology, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Meinhardt
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
4
|
Ning W, Wang W, Liu Z, Xie W, Chen H, Hong D, Yang QY, Cheng S, Guo L. The pan-NLRome analysis based on 23 genomes reveals the diversity of NLRs in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:2. [PMID: 39713061 PMCID: PMC11655762 DOI: 10.1007/s11032-024-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Brassica napus, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. B. napus is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (NLRs), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources. Here, we collected the genomes of 23 accessions and established the first comprehensive pan-NLRome in B. napus by leveraging multiple genomic resources. We observe significant variation in the number of NLR genes across different B. napus accessions, ranging from 189 to 474. Notably, TNL (TIR-NBS-LRR) genes constitute approximately half of the total count, indicating their predominant presence in B. napus. The number of NLRs in the C subgenome is significantly higher than that in the A subgenome, and chromosome C09 exhibits the highest density of NLR genes with featuring multiple NLR clusters. Domain analysis reveals that the integrated domains significantly enhance the diversity of NLRs, with B3 DNA binding, VQ, and zinc fingers being the most prevalent integrated domains. Pan-genomic analysis reveals that the core type of NLR genes, which is present in most accessions, constitutes approximately 58% of the total NLRs. Furthermore, we conduct a comparative analysis of the diversity of NLR genes across distinct ecotypes, leading to the identification of ecotype-specific NLRs and their integrated domains. In conclusion, our study effectively addresses the limitations of a single reference genome and provides valuable insights into the diversity of NLR genes in B. napus, thereby contributing to disease resistance breeding.
Collapse
Affiliation(s)
- Weidong Ning
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hanchen Chen
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
| | - Dengfeng Hong
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Liang Guo
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
5
|
Thomas WJW, Amas JC, Dolatabadian A, Huang S, Zhang F, Zandberg JD, Neik TX, Edwards D, Batley J. Recent advances in the improvement of genetic resistance against disease in vegetable crops. PLANT PHYSIOLOGY 2024; 196:32-46. [PMID: 38796840 PMCID: PMC11376385 DOI: 10.1093/plphys/kiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Junrey C Amas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jaco D Zandberg
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Ting Xiang Neik
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
- NUS Agritech Centre, National University of Singapore, Singapore, 118258, Republic of Singapore
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
- Centre for Applied Bioinformatics, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
6
|
Wang Y, Brown LH, Adams TM, Cheung YW, Li J, Young V, Todd DT, Armstrong MR, Neugebauer K, Kaur A, Harrower B, Oome S, Wang X, Bayer M, Hein I. SMRT-AgRenSeq-d in potato ( Solanum tuberosum) as a method to identify candidates for the nematode resistance Gpa5. HORTICULTURE RESEARCH 2023; 10:uhad211. [PMID: 38023472 PMCID: PMC10681002 DOI: 10.1093/hr/uhad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Potato is the third most important food crop in the world. Diverse pathogens threaten sustainable crop production but can be controlled, in many cases, through the deployment of disease resistance genes belonging to the family of nucleotide-binding, leucine-rich-repeat (NLR) genes. To identify effective disease resistance genes in established varieties, we have successfully established SMRT-AgRenSeq in tetraploid potatoes and have further enhanced the methodology by including dRenSeq in an approach that we term SMR-AgRenSeq-d. The inclusion of dRenSeq enables the filtering of candidates after the association analysis by establishing a presence/absence matrix across resistant and susceptible varieties that is translated into an F1 score. Using a SMRT-RenSeq-based sequence representation of the NLRome from the cultivar Innovator, SMRT-AgRenSeq-d analyses reliably identified the late blight resistance benchmark genes Rpi-R1, Rpi-R2-like, Rpi-R3a, and Rpi-R3b in a panel of 117 varieties with variable phenotype penetrations. All benchmark genes were identified with an F1 score of 1, which indicates absolute linkage in the panel. This method also identified nine strong candidates for Gpa5 that controls the potato cyst nematode (PCN) species Globodera pallida (pathotypes Pa2/3). Assuming that NLRs are involved in controlling many types of resistances, SMRT-AgRenSeq-d can readily be applied to diverse crops and pathogen systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Lynn H Brown
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas M Adams
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Yuk Woon Cheung
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Jie Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Vanessa Young
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Drummond T Todd
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Miles R Armstrong
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Konrad Neugebauer
- Biomathematics and Statistics Scotland, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Amanpreet Kaur
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- Crop Research Centre, Teagasc, Oak Park, Carlow R93 XE12, Ireland
| | - Brian Harrower
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Stan Oome
- HZPC Research B.V. HZPC, Edisonweg 5, 8501 XG Joure, Netherlands
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Micha Bayer
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Ingo Hein
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| |
Collapse
|
7
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Li X, Ma L, Wang Y, Ye C, Guo C, Li Y, Mei X, Du F, Huang H. PlantNLRatlas: a comprehensive dataset of full- and partial-length NLR resistance genes across 100 chromosome-level plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1178069. [PMID: 37123823 PMCID: PMC10146310 DOI: 10.3389/fpls.2023.1178069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Plants have evolved two layers of protection against biotic stress: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). The primary mechanism of ETI involves nucleotide-binding leucine-rich repeat immune receptors (NLRs). Although NLR genes have been studied in several plant species, a comprehensive database of NLRs across a diverse array of species is still lacking. Here, we present a thorough analysis of NLR genes across 100 high-quality plant genomes (PlantNLRatlas). The PlantNLRatlas includes a total of 68,452 NLRs, of which 3,689 are full-length and 64,763 are partial-length NLRs. The majority of NLR groups were phyletically clustered. In addition, the domain sequences were found to be highly conserved within each NLR group. Our PlantNLRatlas dataset is complementary to RefPlantNLR, a collection of NLR genes which have been experimentally confirmed. The PlantNLRatlas should prove helpful for comparative investigations of NLRs across a range of plant groups, including understudied taxa. Finally, the PlantNLRatlas resource is intended to help the field move past a monolithic understanding of NLR structure and function.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Linna Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingmin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingbin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Huichuan Huang,
| |
Collapse
|
9
|
Huh SU. Optimization of immune receptor-related hypersensitive cell death response assay using agrobacterium-mediated transient expression in tobacco plants. PLANT METHODS 2022; 18:57. [PMID: 35501866 PMCID: PMC9063123 DOI: 10.1186/s13007-022-00893-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The study of the regulatory mechanisms of evolutionarily conserved Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins in animals and plants is of increasing importance due to understanding basic immunity and the value of various crop engineering applications of NLR immune receptors. The importance of temperature is also emerging when applying NLR to crops responding to global climate change. In particular, studies of pathogen effector recognition and autoimmune activity of NLRs in plants can quickly and easily determine their function in tobacco using agro-mediated transient assay. However, there are conditions that should not be overlooked in these cell death-related assays in tobacco. RESULTS Environmental conditions play an important role in the immune response of plants. The system used in this study was to establish conditions for optimal hypertensive response (HR) cell death analysis by using the paired NLR RPS4/RRS1 autoimmune and AvrRps4 effector recognition system. The most suitable greenhouse temperature for growing plants was fixed at 22 °C. In this study, RPS4/RRS1-mediated autoimmune activity, RPS4 TIR domain-dependent cell death, and RPS4/RRS1-mediated HR cell death upon AvrRps4 perception significantly inhibited under conditions of 65% humidity. The HR is strongly activated when the humidity is below 10%. Besides, the leaf position of tobacco is important for HR cell death. Position #4 of the leaf from the top in 4-5 weeks old tobacco plants showed the most effective HR cell death. CONCLUSIONS As whole genome sequencing (WGS) or resistance gene enrichment sequencing (RenSeq) of various crops continues, different types of NLRs and their functions will be studied. At this time, if we optimize the conditions for evaluating NLR-mediated HR cell death, it will help to more accurately identify the function of NLRs. In addition, it will be possible to contribute to crop development in response to global climate change through NLR engineering.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biological Science, Kunsan National University, Gunsan, 54150, Republic of Korea.
| |
Collapse
|
10
|
Lee FC, Yeap WC, Appleton DR, Ho CL, Kulaveerasingam H. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments. BMC Genomics 2022; 23:164. [PMID: 35219299 PMCID: PMC8882277 DOI: 10.1186/s12864-022-08378-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their survivability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting factors. However, the roles of WRKY TFs in the drought response of oil palm is unclear. RESULTS Herein, we studied the transcriptome of drought treated oil palm leaf and identified 40 differentially expressed genes (DEGs) of WRKY TFs, of which 32 DEGs were upregulated and 8 DEGs were downregulated in response to drought stress in oil palm. They were categorized into Groups I to IV based on the numbers of WRKY domain and the structural difference in the zinc finger domain. Multiple stress- and hormone-responsive cis-regulatory elements were detected in the drought responsive oil palm EgWRKY (Dro-EgWRKY) genes. Fourteen of the 15 selected oil palm WRKY (EgWRKY) genes demonstrated a tissue-specific expression profile except for EgWRKY28 (Group I), which was expressed in all tissues tested. The expression levels of 15 candidate EgWRKYs were upregulated upon salinity and heat treatments, while several genes were also inducible by abscisic acid, methyl jasmonate, salicylic acid and hydrogen peroxide treatments. Members of the Group III WRKY TFs including EgWRKY07, 26, 40, 52, 59, 73 and 81 displayed multiple roles in drought- and salinity-response under the modulation of phytohormones. CONCLUSIONS EgWRKY TFs of oil palm are involved in phytohormones and abiotic stress responses including drought, salinity and heat. EgWRKY07, 26, 59 and 81 from Group III maybe important regulators in modulating responses of different abiotic stresses. Further functional analysis is required to understand the underlying mechanism of WRKY TFs in the regulatory network of drought stress.
Collapse
Affiliation(s)
- Fong Chin Lee
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Wan Chin Yeap
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia
| | - David Ross Appleton
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | |
Collapse
|