1
|
Ripoll L, Iserte J, Cerrudo CS, Presti D, Serrat JH, Poma R, Mangione FAJ, Micheloud GA, Gioria VV, Berrón CI, Zago MP, Borio C, Bilen M. Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology. PLoS Negl Trop Dis 2025; 19:e0012792. [PMID: 39792957 PMCID: PMC11756794 DOI: 10.1371/journal.pntd.0012792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/23/2025] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks. In this study, we address the implementation of a sequencing and analysis pipeline based on the Oxford Nanopore Technologies MinION Mk1b system, for arboviral detection in field-caught mosquitoes from Argentina. Full genome of Humaita Tubiacanga Virus (HTV), Phasi Charoen-like Phasivirus (PCLV), Aedes aegypti totivirus (AaeTV) has been sequenced in three distinct regions of Argentina comprising Buenos Aires province, Santa Fe province and the northern province of Salta. Viral sequences enriched by SISPA and coupled with Nanopore sequencing can be a useful tool for viral surveillance, not only for detecting viruses that have a high impact on human and animal health, but also for detecting insect-specific viruses that could promote the transmission of arboviruses.
Collapse
Affiliation(s)
- Lucas Ripoll
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Javier Iserte
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Damian Presti
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - José Humberto Serrat
- Programa de Zoonosis, Dirección General de Coordinación Epidemiológica-Ministerio de Salud Pública de Salta, Salta, Salta, Argentina
| | - Ramiro Poma
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | | | - Gabriela Analía Micheloud
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Verónica Viviana Gioria
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Clara Inés Berrón
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - M. Paola Zago
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| |
Collapse
|
2
|
Gauthier NPG, Chan W, Locher K, Smailus D, Coope R, Charles M, Jassem A, Kopetzky J, Chorlton SD, Manges AR. Validation of an Automated, End-to-End Metagenomic Sequencing Assay for Agnostic Detection of Respiratory Viruses. J Infect Dis 2024; 230:e1245-e1253. [PMID: 38696336 PMCID: PMC11646614 DOI: 10.1093/infdis/jiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next-generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories. We validate an end-to-end mNGS assay for detection of respiratory viruses. Our assay is optimized to reduce turnaround time, lower cost per sample, increase throughput, and deploy secure and actionable bioinformatic results. METHODS We validated our assay using residual nasopharyngeal swab specimens from Vancouver General Hospital (n = 359), which were reverse-transcription polymerase chain reaction positive, or negative for influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus. We quantified sample stability, assay precision, the effect of background nucleic acid levels, and analytical limits of detection. Diagnostic performance metrics were estimated. RESULTS We report that our mNGS assay is highly precise and semiquantitative, with analytical limits of detection ranging from 103 to 104 copies/mL. Our assay is highly specific (100%) and sensitive (61.9% overall: 86.8%; reverse-transcription polymerase chain reaction cycle threshold < 30). Multiplexing capabilities enable processing of up to 55 specimens simultaneously on an Oxford Nanopore GridION device, with results reported within 12 hours. CONCLUSIONS This study report outlines the diagnostic performance and feasibility of mNGS for respiratory viral diagnostics, infection control, and public health surveillance. We addressed translational barriers to widespread mNGS adoption.
Collapse
Affiliation(s)
- Nick P G Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilson Chan
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kerstin Locher
- Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Duane Smailus
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Robin Coope
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Marthe Charles
- Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Jennifer Kopetzky
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | | | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Zhang Y, Kong W, Wu Y, Chen Z, Zhao X, Liu M. Reducing amplification cycles to improve the coverage of influenza A virus genome sequencing in heterosubtypic co-infection. J Virol Methods 2024; 330:115036. [PMID: 39307248 DOI: 10.1016/j.jviromet.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study delineates the enhancement of a Reverse Transcription Polymerase Chain Reaction (RT-PCR) method for the amplification of the complete genome of the influenza A virus during heterosubtypic co-infection, relying on the amplification of intact gene segments. The precision of the method was assessed using all amplicons, which underwent both capillary electrophoresis and DNA sequencing. Five samples featuring co-infection of Influenza A viruses with H1N1 and H3N2 subtypes were evaluated. The improved strategy successfully amplified all eight segments of H3N2 strains in four samples, and the entire genome of H1N1 strains in three samples.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Pathogen, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, China.
| | - Wenhua Kong
- Department of Pathogen, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, China.
| | - Yixuan Wu
- Department of Pathogen, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, China.
| | - Zhi Chen
- Department of Pathogen, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, China.
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Manqing Liu
- Department of Pathogen, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, China.
| |
Collapse
|
4
|
Bialy D, Richardson S, Chrzastek K, Bhat S, Polo N, Freimanis G, Iqbal M, Shelton H. Recombinant A(H6N1)-H274Y avian influenza virus with dual drug resistance does not require permissive mutations to retain the replicative fitness in vitro and in ovo. Virology 2024; 590:109954. [PMID: 38086284 DOI: 10.1016/j.virol.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The possible emergence of drug-resistant avian flu raises concerns over the limited effectiveness of currently approved antivirals (neuraminidase inhibitors - NAIs) in the hypothetical event of a zoonotic spillover. Our study demonstrated that the recombinant avian A(H6N1) viruses showed reduced inhibition (RI) by multiple NAI drugs following the introduction of point mutations found predominantly in the neuraminidase gene (NA) of NAI-resistant human influenza strains (E119V, R292K and H274Y; N2 numbering). Moreover, A(H6N1)-H274Y showed increased replication efficiency in vitro, and a fitness advantage over wild-type (WT) when co-inoculated into embryonated hen's eggs. The results presented in our study together with the zoonotic potential of the A(H6N1) virus as evidenced by the human infection from 2013, highlight the need for enhanced monitoring of NAI resistance-associated signatures in circulating LPAI (low pathogenic avian influenza) globally.
Collapse
Affiliation(s)
- Dagmara Bialy
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom.
| | - Samuel Richardson
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Klaudia Chrzastek
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Sushant Bhat
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Graham Freimanis
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| |
Collapse
|
5
|
Terrazos Miani MA, Borcard L, Gempeler S, Baumann C, Bittel P, Leib SL, Neuenschwander S, Ramette A. NASCarD (Nanopore Adaptive Sampling with Carrier DNA): A Rapid, PCR-Free Method for SARS-CoV-2 Whole-Genome Sequencing in Clinical Samples. Pathogens 2024; 13:61. [PMID: 38251368 PMCID: PMC10818518 DOI: 10.3390/pathogens13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Whole-genome sequencing (WGS) represents the main technology for SARS-CoV-2 lineage characterization in diagnostic laboratories worldwide. The rapid, near-full-length sequencing of the viral genome is commonly enabled by high-throughput sequencing of PCR amplicons derived from cDNA molecules. Here, we present a new approach called NASCarD (Nanopore Adaptive Sampling with Carrier DNA), which allows a low amount of nucleic acids to be sequenced while selectively enriching for sequences of interest, hence limiting the production of non-target sequences. Using COVID-19 positive samples available during the omicron wave, we demonstrate how the method may lead to >99% genome completeness of the SARS-CoV-2 genome sequences within 7 h of sequencing at a competitive cost. The new approach may have applications beyond SARS-CoV-2 sequencing for other DNA or RNA pathogens in clinical samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 25, 3001 Bern, Switzerland
| |
Collapse
|
6
|
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic Sequencing for Detection of Viral Pathogens. Clin Microbiol Rev 2023; 36:e0011922. [PMID: 36847515 PMCID: PMC10035330 DOI: 10.1128/cmr.00119-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The advent of next-generation sequencing (NGS) technologies has expanded our ability to detect and analyze microbial genomes and has yielded novel molecular approaches for infectious disease diagnostics. While several targeted multiplex PCR and NGS-based assays have been widely used in public health settings in recent years, these targeted approaches are limited in that they still rely on a priori knowledge of a pathogen's genome, and an untargeted or unknown pathogen will not be detected. Recent public health crises have emphasized the need to prepare for a wide and rapid deployment of an agnostic diagnostic assay at the start of an outbreak to ensure an effective response to emerging viral pathogens. Metagenomic techniques can nonspecifically sequence all detectable nucleic acids in a sample and therefore do not rely on prior knowledge of a pathogen's genome. While this technology has been reviewed for bacterial diagnostics and adopted in research settings for the detection and characterization of viruses, viral metagenomics has yet to be widely deployed as a diagnostic tool in clinical laboratories. In this review, we highlight recent improvements to the performance of metagenomic viral sequencing, the current applications of metagenomic sequencing in clinical laboratories, as well as the challenges that impede the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nick P. G. Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Amee R. Manges
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Eid AAM, Hussein A, Hassanin O, Elbakrey RM, Daines R, Sadeyen JR, Abdien HMF, Chrzastek K, Iqbal M. Newcastle Disease Genotype VII Prevalence in Poultry and Wild Birds in Egypt. Viruses 2022; 14:v14102244. [PMID: 36298799 PMCID: PMC9607356 DOI: 10.3390/v14102244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII is a highly pathogenic Orthoavulavirus that has caused multiple outbreaks among poultry in Egypt since 2011. This study aimed to observe the prevalence and genetic diversity of NDV prevailing in domestic and wild birds in Egyptian governorates. A total of 37 oropharyngeal swabs from wild birds and 101 swabs from domestic bird flocks including chickens, ducks, turkeys, and pelicans, were collected from different geographic regions within 13 governorates during 2019–2020. Virus isolation and propagation via embryonated eggs revealed 91 swab samples produced allantoic fluid containing haemagglutination activity, suggestive of virus presence. The use of RT-PCR targeted to the F gene successfully detected NDV in 85 samples. The geographical prevalence of NDV was isolated in 12 governorates in domestic birds, migratory, and non-migratory wild birds. Following whole genome sequencing, we assembled six NDV genome sequences (70–99% of genome coverage), including five full F gene sequences. All NDV strains carried high virulence, with phylogenetic analysis revealing that the strains belonged to class II within genotype VII.1.1. The genetically similar yet geographically distinct virulent NDV isolates in poultry and a wild bird may allude to an external role contributing to the dissemination of NDV in poultry populations across Egypt. One such contribution may be the migratory behaviour of wild birds; however further investigation must be implemented to support the findings of this study. Additionally, continued genomic surveillance in both wild birds and poultry would be necessary for monitoring NDV dissemination and genetic diversification across Egypt, with the aim of controlling the disease and protecting poultry production.
Collapse
Affiliation(s)
- Amal A. M. Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ashraf Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham M. Elbakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rebecca Daines
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | | | - Hanan M. F. Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41622, Egypt
| | | | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Correspondence:
| |
Collapse
|