1
|
Li S, An X, Li F, Chen Y, Li X. Construction of cDNA library of Dalbergia odorifera induced by low temperature stress and screening of low temperature tolerant genes. PLoS One 2025; 20:e0318935. [PMID: 40168305 PMCID: PMC11961010 DOI: 10.1371/journal.pone.0318935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 04/03/2025] Open
Abstract
To systematically analyze the gene function of Dalbergia odorifera, the seedlings of D. odorifera were treated with low-temperature stress for 6 h. Total RNA was extracted from a mixture of seedling roots, stems, and leaves, and a low-temperature-induced D. odorifera yeast cDNA expression library was constructed. The library volume was 1.032 × 108 CFU, and the PCR (Polymerase Chain Reaction) identification of the library bacterial fluid showed that the amplification was around 1000 bp, with a single randomly distributed band, indicating that the library had been recombinantly inserted into the pYES2 vector. The GO (Gene Ontology) analysis showed that the library genes were mainly involved in metabolic and stress signaling pathways. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that the genes were primarily related to energy and metabolic pathways. Twenty-one genes were screened or obtained at -20°C for low-temperature tolerance. In addition, the organ expression profiles of the candidate genes were analyzed based on RNA-seq data, and the expression profiles of the candidate genes under low-temperature stress were also examined. The construction of the yeast library provides genetic resources for the analysis of the mechanism of low-temperature tolerance of D. odorifera, which is important for comprehending and utilizing the genetic resources of D. odorifera.
Collapse
Affiliation(s)
- Shaocui Li
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fayong Li
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical-Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yining Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical-Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaowen Li
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical-Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
2
|
Zhang X, Fan R, Yu Z, Huang X, Wang H, Xu W, Yu X. Genome-wide identification and functional analysis of the ARF gene family in tetraploid potato reveal its potential role in anthocyanin biosynthesis. BMC PLANT BIOLOGY 2025; 25:342. [PMID: 40091037 PMCID: PMC11912711 DOI: 10.1186/s12870-025-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Auxin response factors (ARFs) are plant-specific transcription factors that are crucial for flower development, lateral root formation, leaf senescence, and fruit ripening. Information on the ARF family genes in tetraploid potato remains unidentified. RESULTS In this study, we identified 92 StARF genes including alleles in the tetraploid potato genome (C88.v1), classified into four subfamilies, and unevenly distributed across 48 chromosomes. The promoter regions contained numerous light, plant hormones, and stress response elements, including those for low-temperature, drought, and anaerobic-induction cis-elements. Collinearity analysis suggested that StARF family members amplification results from whole genome and segmental duplications. Tissue-specific expression patterns manifested in most StARF family genes. RNA-seq data and WGCNA analysis of two tetraploid potato varieties with different-colored tuber flesh identified 11 differentially expressed StARF genes correlated with key anthocyanin synthesis genes. Protein-protein interaction predictions highlighted StARF23-1 as a potential key regulator of the anthocyanin biosynthesis pathway, warranting further investigation. CONCLUSIONS Overall, our study comprehensively analyzes the StARF gene family in tetraploid potato and identifies candidate genes linked to anthocyanin synthesis, providing a foundation for future research on the regulatory role of StARF transcription factors in colored potato anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Xia Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Rong Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhuo Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xinyue Huang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huiting Wang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Wenfeng Xu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Bulanov AN, Andreeva EA, Tsvetkova NV, Zykin PA. Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals. Int J Mol Sci 2025; 26:734. [PMID: 39859449 PMCID: PMC11765516 DOI: 10.3390/ijms26020734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution.
Collapse
Affiliation(s)
- Andrey N. Bulanov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Elena A. Andreeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia V. Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia;
| |
Collapse
|
4
|
Li H, Yao Y, Li X, Cui Y, An L, Ding B, Yao X, Wu K. Comparative genomics analysis of the MYB gene family in barley: preliminary insights into evolution and biological function in Blue Qingke. PeerJ 2024; 12:e18443. [PMID: 39640562 PMCID: PMC11619697 DOI: 10.7717/peerj.18443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background The Myeloblastosis related (MYB) family is one of the most widely distributed transcription factor families in plants and plays a significant role in plant growth and development, hormone signal transduction, and stress response. There are many reports on MYB family species, but the research on Qingke is still limited. Methods This study used comparative genomics methods to analyze gene and protein structure, protein physicochemical properties, chromosome localization, and evolution. A bioinformatics approach was used to systematically analyze the HvMYB gene family. At the milk stage, soft dough stage, and mature stage, White and Blue Qingke grains were selected for RNA sequencing (RNA-seq), among which two proteins interacted (HvMYB and HvMYC). The expression of this gene family was analyzed through RNA-seq, and the expression levels of HvMYB and HvMYC in the grains of two different color varieties were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Finally, the interaction between HvMYB and HvMYC was verified by bimolecular fluorescence complementation (BiFC) experiments. Results A total of 92 Qingke HvMYB genes were identified and analyzed, and 92 HvMYB proteins were classified into five categories. Cis-acting elements associated with abscisic acid response, light response, and methyl jasmonate (MeJA) response were found in the promoter regions of most MYB genes. Using qRT-PCR combined with RNA-seq analysis showed that MYB gene was highly expressed in the soft dough stage and was varietal specific. Subcellular localization indicated that HvMYB was located in the nucleus and cell membrane, HvMYC was located in the nucleus, cell membrane, and cytoplasm. Through BiFC analysis, it has been proven that HvMYB in the MYB family and HvMYC in the basic helix-loop-helix (bHLH) family can interact. This study provides a preliminary theoretical basis for understanding the function and role of the Qingke MYB gene family and provides a reference for the molecular mechanism of Qingke gene evolution.
Collapse
Affiliation(s)
- Hongyan Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Baojun Ding
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai, China
| |
Collapse
|
5
|
Fu M, Lu M, Guo J, Jiang S, Khan I, Karamat U, Li G. Molecular Functional and Transcriptome Analysis of Arabidopsis thaliana Overexpression BrBBX21 from Zicaitai ( Brassica rapa var. purpuraria). PLANTS (BASEL, SWITZERLAND) 2024; 13:3306. [PMID: 39683099 DOI: 10.3390/plants13233306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
B-box transcription factors (TFs) in plants are essential for circadian rhythm regulation, abiotic stress responses, hormonal signaling pathways, secondary metabolism, photomorphogenesis, and anthocyanin formation. Here, by blasting the AtBBX21 gene sequence, we identified a total of 18 BBX21 genes from five distinct Brassica species (Arabidopsis thaliana, Brassica rapa, Brassica oleracea, Brassica napus, and Brassica juncea). The BrBBX21-1 gene is most closely linked to the AtBBX21 gene based on phylogeny and protein sequence similarities. The BrBBX21-1 gene, which encodes a polypeptide of 319 amino acids, was identified from Zicaitai (Brassica rapa ssp. purpuraria) and functionally characterized. BrBBX21-1 was localized within the nucleus, and its overexpression in Arabidopsis augmented anthocyanin accumulation in both leaves and seeds. We further performed an RNA-seq analysis between the BrBBX21-OE and WT A. thaliana to identify the key regulators involved in anthocyanin accumulation. In detail, a total of 7583 genes demonstrated differential expression, comprising 4351 that were upregulated and 3232 that were downregulated. Out of 7583 DEGs, 81 F-box protein genes and 9 B-box protein genes were either up- or downregulated. Additionally, 7583 differentially expressed genes (DEGs) were associated with 109 KEGG pathways, notably including plant hormone signal transduction, the biosynthesis of secondary metabolites, metabolic pathways, glutathione metabolism, and starch and sucrose metabolism, which were considerably enriched. A transcriptome analysis led us to identify several structural genes, including DFRA, GSTF12, UGT75C1, FLS1, CHI1, 4CL3, and PAL1, and transcription factors, MYB90, TT8, and HY5, that are regulated by the overexpression of the BrBBX21-1 gene and involved in anthocyanin biosynthesis. Altogether, these findings demonstrate the beneficial regulatory function of BrBBX21-1 in anthocyanin accumulation and offer valuable information about the basis for breeding superior Brassica crops.
Collapse
Affiliation(s)
- Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mengting Lu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Zheng X, Mo W, Zuo Z, Shi Q, Chen X, Zhao X, Han J. From Regulation to Application: The Role of Abscisic Acid in Seed and Fruit Development and Agronomic Production Strategies. Int J Mol Sci 2024; 25:12024. [PMID: 39596092 PMCID: PMC11593364 DOI: 10.3390/ijms252212024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Abscisic acid (ABA) is a crucial plant hormone that plays a decisive role in regulating seed and fruit development and is becoming increasingly important in agricultural applications. This article delves into ABA's regulatory functions in plant growth, particularly during the stages of seed and fruit development. In the seed phase, elevated ABA levels help maintain seed dormancy, aiding seed survival under unfavorable conditions. During fruit development, ABA regulates pigment synthesis and sugar accumulation, influencing the nutritional value and market quality of the fruit. This article highlights three main strategies for applying ABA in agricultural production: the use of ABA analogs, the development of ABA signal modulators, and breeding techniques based on ABA signaling. ABA analogs can mimic the natural functions of ABA, while ABA signal modulators, including enhancers and inhibitors, are used to finely tune plant responses to ABA, optimizing crop performance under specific growth conditions. Furthermore, breeding strategies based on ABA signaling aim to select crop varieties that effectively utilize ABA pathways through genetic engineering and other technologies. ABA is not only a key regulator of plant growth and development but also holds great potential for modern agricultural practices.
Collapse
Affiliation(s)
- Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| |
Collapse
|
7
|
Xie L, Wang Y, Tao Y, Chen L, Lin H, Qi Z, Li J. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla. BMC Genomics 2024; 25:952. [PMID: 39396954 PMCID: PMC11472487 DOI: 10.1186/s12864-024-10882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.
Collapse
Affiliation(s)
- Liangmu Xie
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yinuo Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yutian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Hanyang Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- School of Advanced Study, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
8
|
Zhang X, Cheng L, Shang H, Chen Q, Lu M, Mu D, Li X, Meng X, Wu Y, Han X, Liu D, Xu Y. Research advances of coloring mechanism regulated by MicroRNAs in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109036. [PMID: 39128404 DOI: 10.1016/j.plaphy.2024.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In plants, microRNAs (miRNAs) are a class of important small RNAs involved in their growth and development, and play a very significant role in regulating their tissue coloring. In this paper, the mechanisms on miRNA regulation of plant coloring are mainly reviewed from three aspects: macroscopic physiological and molecular foundations related to tissue coloring, miRNA biosynthesis and function, and specific analysis of miRNA regulation studies on leaf color, flower color, fruit color, and other tissue color formation in plants. Furthermore, we also systematically summarize the miRNA regulatory mechanisms identified on pigments biosynthesis and color formation in plants, and the regulatory mechanisms of these miRNAs mentioned on the existing researches can be divided into four main categories: directly targeting the related transcription factors, directly targeting the related structural genes, directly targeting the related long noncoding RNAs (LncRNAs) and miRNA-mediated production of trans-acting small interfering RNAs (ta-siRNAs). Together, these research results aim to provide a theoretical reference for the in-depth study of plant coloring mechanism and molecular breeding study of related plants in the future.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Lizhen Cheng
- Qilu Pharmaceutical Co., Ltd., Jinan, 250101, China
| | - Hong Shang
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Qiang Chen
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Mei Lu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Deyu Mu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiaoyan Li
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiang Meng
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Yawei Wu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xin Han
- Kyungpook National University, Daegu, 41566, South Korea
| | - Daliang Liu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China.
| | - Yanfang Xu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
9
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
10
|
Chen L, Yao Y, Cui Y, Li X, An L, Bai Y, Yao X, Wu K. Understanding the molecular regulation of flavonoid 3'-hydroxylase in anthocyanin synthesis: insights from purple qingke. BMC Genomics 2024; 25:823. [PMID: 39223495 PMCID: PMC11367858 DOI: 10.1186/s12864-024-10738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The Flavonoid 3'-hydroxylase gene(F3'H) is an important structural gene in the anthocyanin synthesis pathway of plants, which has been proven to be involved in the color formation of organs such as leaves, flowers, and fruits in many plants. However, the mechanism and function in barley are still unclear. RESULTS In order to explore the molecular mechanism of the grain color formation of purple qingke, we used the cultivated qingke variety Nierumzha (purple grain) and the selected qingke variety Kunlun 10 (white grain) to conduct transcriptomic sequencing at the early milk, late milk and soft dough stage. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct weighted gene co-expression network related to grain color formation, and three key modules (brown, yellow, and turquoise modules) related to purple grain of qingke were selected. F3'H (HORVU1Hr1G094880) was selected from the hub gene of the module for the yeast library, yeast two-hybrid (Y2H), subcellular localization and other studies. It was found that in purple qingke, HvnF3'H mainly distributed in the cytoplasm and cell membrane and interacted with several stress proteins such as methyltransferase protein and zinc finger protein. CONCLUSIONS The results of this study provide reference for the regulation mechanism of anthocyanin-related genes in purple grain qingke.
Collapse
Affiliation(s)
- Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, 810016, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, 810016, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, 810016, China.
| |
Collapse
|
11
|
Mao J, Gao Z, Wang X, Yao D, Lin M, Chen L. Integrated transcriptome and targeted metabolome analyses provide insights into flavonoid biosynthesis in kiwifruit (Actinidia chinensis). Sci Rep 2024; 14:19417. [PMID: 39169238 PMCID: PMC11339322 DOI: 10.1038/s41598-024-70600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
So far, a variety of metabolite components of kiwifruit have been elucidated. However, the identification and analysis of flavonoids in different tissues of kiwifruit are rarely carried out. In this study, we performed transcriptome and metabolome analyses of roots (Gkf_R), stems (Gkf_T), leaves (Gkf_L), and fruits (Gkf_F) to provide insights into the differential accumulation and regulation mechanisms of flavonoids in kiwifruit. Results showed that a total of 301 flavonoids were identified, in four tissues with different accumulation trends, and a large proportion of flavonoids had high accumulation in Gkf_L and Gkf_R. A total of 84 genes have been identified involved in the flavonoid biosynthesis pathway, and the expression levels of five LAR, two DFR, and one HCT were significantly correlated with the accumulation of 16 flavonoids and co-localized in the flavonoid biosynthesis pathway. In addition, a total of 2362 transcription factor genes were identified, mainly MYBs, bHLHs, ERFs, bZIPs and WRKYs, among which the expression level of bHLH74, RAP2.3L/4L/10L, MYB1R1, and WRKY33 were significantly correlated with 25, 56, 43, and 24 kinds of flavonoids. Our research will enrich the metabolomic data and provide useful information for the directed genetic improvement and application in the pharmaceutical industry of kiwifruit.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Zhu Gao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China.
| | - Dongliang Yao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, China
| |
Collapse
|
12
|
Wang Y, Chen L, Yao Y, Chen L, Cui Y, An L, Li X, Bai Y, Yao X, Wu K. Investigating the regulatory role of HvANT2 in anthocyanin biosynthesis through protein-motif interaction in Qingke. PeerJ 2024; 12:e17736. [PMID: 39006012 PMCID: PMC11246018 DOI: 10.7717/peerj.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yan Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| |
Collapse
|
13
|
Wang Y, Yao Y, Cui Y, An L, Li X, Bai Y, Ding B, Yao X, Wu K. Unveiling the mysteries of HvANS: a study on anthocyanin biosynthesis in qingke (hordeum vulgare L. var. Nudum hook. f.) seeds. BMC PLANT BIOLOGY 2024; 24:637. [PMID: 38971739 PMCID: PMC11227189 DOI: 10.1186/s12870-024-05364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Based on our previous research, a full-length cDNA sequence of HvANS gene was isolated from purple and white Qingke. The open reading frame (ORF) in the purple variety Nierumuzha was 1320 base pairs (bp), encoding 439 amino acids, while the ORF in the white variety Kunlun 10 was 1197 bp, encoding 398 amino acids. A nonsynonymous mutation was found at the position of 1195 bp (T/C) in the coding sequence (CDS) of the HvANS gene. We carried out a series of studies to further clarify the relationship between the HvANS gene and anthocyanin synthesis in Qingke. RESULTS The conservative structural domain prediction results showed that the encoded protein belonged to the PLN03178 superfamily. Multiple comparisons showed that this protein had the highest homology with Hordeum vulgare, at 88.61%. The approximately 2000 bp promoter sequence of the HvANS gene was identical in both varieties. The real-time fluorescence PCR (qRT-PCR) results revealed that HvANS expression was either absent or very low in the roots, stems, leaves, and awns of Nierumuzha. In contrast, the HvANS expression was high in the seed coats and seeds of Nierumuzha. Likewise, in Kunlun 10, HvANS expression was either absent or very low, indicating a tissue-specific and variety-specific pattern for HvANS expression. The subcellular localization results indicated that HvANS was in the cell membrane. Metabolomic results indicated that the HvANS gene is closely related to the synthesis of three anthocyanin substances (Idaein chloride, Kinetin 9-riboside, and Cyanidin O-syringic acid). Yeast single hybridization experiments showed that the HvANS promoter interacted with HvANT1, which is the key anthocyanin regulatory protein. In a yeast two-hybrid experiment, we obtained two significantly different proteins (ZWY2020 and POMGNT2-like) and verified the results by qRT-PCR. CONCLUSIONS These results provide a basis for further studies on the regulatory mechanism of HvANS in the synthesis of anthocyanins in Qingke purple grains.
Collapse
Affiliation(s)
- Yan Wang
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Youhua Yao
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yongmei Cui
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Likun An
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xin Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yixiong Bai
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Baojun Ding
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xiaohua Yao
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| | - Kunlun Wu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| |
Collapse
|
14
|
Tian Y, Liu X, Chen X, Wang B, Dong M, Chen L, Yang Z, Li Y, Sun H. Integrated Untargeted Metabolome, Full-Length Sequencing and Transcriptome Analyses Reveal the Mechanism of Flavonoid Biosynthesis in Blueberry ( Vaccinium spp.) Fruit. Int J Mol Sci 2024; 25:4137. [PMID: 38673724 PMCID: PMC11050320 DOI: 10.3390/ijms25084137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
As a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.
Collapse
Affiliation(s)
- Youwen Tian
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
| | - Xinlei Liu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Xuyang Chen
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Bowei Wang
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Mei Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
| | - Li Chen
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Zhengsong Yang
- High Mountain Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang 674110, China;
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| |
Collapse
|
15
|
Meng L, Su H, Qu Z, Lu P, Tao J, Li H, Zhang J, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification and analysis of WD40 proteins reveal that NtTTG1 enhances drought tolerance in tobacco (Nicotiana tabacum). BMC Genomics 2024; 25:133. [PMID: 38302866 PMCID: PMC10835901 DOI: 10.1186/s12864-024-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.
Collapse
Grants
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
Collapse
Affiliation(s)
- Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Huan Su
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
16
|
Mao J, Gao Z, Wang X, Lin M, Chen L, Ning X. Combined Widely Targeted Metabolomic, Transcriptomic, and Spatial Metabolomic Analysis Reveals the Potential Mechanism of Coloration and Fruit Quality Formation in Actinidia chinensis cv. Hongyang. Foods 2024; 13:233. [PMID: 38254533 PMCID: PMC10814455 DOI: 10.3390/foods13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Zhu Gao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Xiaoling Wang
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Mengfei Lin
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an 343009, China;
| | - Xinyi Ning
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
17
|
Rao X, Qian Z, Xie L, Wu H, Luo Q, Zhang Q, He L, Li F. Genome-Wide Identification and Expression Pattern of MYB Family Transcription Factors in Erianthus fulvus. Genes (Basel) 2023; 14:2128. [PMID: 38136950 PMCID: PMC10743048 DOI: 10.3390/genes14122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
MYB family genes have many functions and are widely involved in plant abiotic-stress responses. Erianthus fulvus is an important donor material for stress-resistance genes in sugarcane breeding. However, the MYB family genes in E. fulvus have not been systematically investigated. In this study, 133 EfMYB genes, including 48 Ef1R-MYB, 84 EfR2R3-MYB and 1 Ef3R-MYB genes, were identified in the E. fulvus genome. Among them, the EfR2R3-MYB genes were classified into 20 subgroups. In addition, these EfMYB genes were unevenly distributed across 10 chromosomes. A total of 4 pairs of tandemly duplicated EfMYB genes and 21 pairs of segmentally duplicated EfMYB genes were identified in the E. fulvus genome. Protein-interaction analysis predicted that 24 EfMYB proteins had potential interactions with 14 other family proteins. The EfMYB promoter mainly contains cis-acting elements related to the hormone response, stress response, and light response. Expression analysis showed that EfMYB39, EfMYB84, and EfMYB124 could be significantly induced using low-temperature stress. EfMYB30, EfMYB70, EfMYB81, and EfMYB101 responded positively to drought stress. ABA treatment significantly induced EfMYB1, EfMYB30, EfMYB39, EfMYB84, and EfMYB130. All nine genes were induced using MeJA treatment. These results provide comprehensive information on EfMYB genes and can serve as a reference for further studies of gene function.
Collapse
Affiliation(s)
- Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Linyan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Huaying Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Quan Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Qiyue Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
18
|
Kang JE, Jun JH, Kwon JH, Lee JH, Hwang K, Kim S, Jeong N. Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-Liquid/Liquid Phase Separation, Oligomerization, GO Analysis: A Toolkit for Interaction Data-Based Domain Analysis. Genes (Basel) 2023; 14:1476. [PMID: 37510380 PMCID: PMC10379056 DOI: 10.3390/genes14071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although a large number of databases are available for regulatory elements, a bottleneck has been created by the lack of bioinformatics tools to predict the interaction modes of regulatory elements. To reduce this gap, we developed the Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-liquid/liquid phase separation (LLPS), oligomerization, GO analysis (ART FOUNDATION-LOG), a useful toolkit for protein-nucleic acid interaction (PNI) and protein-protein interaction (PPI) analysis based on domain-domain interactions (DDIs). LLPS, protein oligomerization, the structural properties of protein domains, and protein modifications are major components in the orchestration of the spatiotemporal dynamics of PPIs and PNIs. Our goal is to integrate PPI/PNI information into the development of a prediction model for identifying important genetic variants in peaches. Our program unified interdatabase relational keys based on protein domains to facilitate inference from the model species. A key advantage of this program lies in the integrated information of related features, such as protein oligomerization, LOG analysis, structural characterizations of domains (e.g., domain linkers, intrinsically disordered regions, DDIs, domain-motif (peptide) interactions, beta sheets, and transmembrane helices), and post-translational modification. We provided simple tests to demonstrate how to use this program, which can be applied to other eukaryotic organisms.
Collapse
Affiliation(s)
- Jee Eun Kang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ji Hae Jun
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Jung Hyun Kwon
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ju-Hyun Lee
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Kidong Hwang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Sungjong Kim
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Namhee Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| |
Collapse
|
19
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|