1
|
Kang KR, Kim JA, Cho GW, Kang HU, Kang HM, Kang JH, Seong BL, Lee SY. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines (Basel) 2024; 12:108. [PMID: 38276680 PMCID: PMC10818713 DOI: 10.3390/vaccines12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Since the 2000s, sporadic outbreaks of whooping cough have been reported in advanced countries, where the acellular pertussis vaccination rate is relatively high, and in developing countries. Small-scale whooping cough has also continued in many countries, due in part to the waning of immune protection after childhood vaccination, necessitating the development of an improved pertussis vaccine and vaccination program. Currently, two different production platforms are being actively pursued in Korea; one is based on the aP (acellular pertussis) vaccine purified from B. pertussis containing pertussis toxoid (PT), filamentous hemagglutin (FHA) and pertactin (PRN), and the other is based on the recombinant aP (raP), containing genetically detoxified pertussis toxin ADP-ribosyltransferase subunit 1 (PtxS1), FHA, and PRN domain, expressed and purified from recombinant E. coli. aP components were further combined with diphtheria and tetanus vaccine components as a prototype DTaP vaccine by GC Pharma (GC DTaP vaccine). We evaluated and compared the immunogenicity and the protective efficacy of aP and raP vaccines in an experimental murine challenge model: humoral immunity in serum, IgA secretion in nasal lavage, bacterial clearance after challenge, PTx (pertussis toxin) CHO cell neutralization titer, cytokine secretion in spleen single cell, and tissue resident memory CD4+ T cell (CD4+ TRM cell) in lung tissues. In humoral immunogenicity, GC DTaP vaccines showed high titers for PT and PRN and showed similar patterns in nasal lavage and IL-5 cytokine secretions. The GC DTaP vaccine and the control vaccine showed equivalent results in bacterial clearance after challenge, PTx CHO cell neutralization assay, and CD4+ TRM cell. In contrast, the recombinant raP vaccine exhibited strong antibody responses for FHA and PRN, albeit with low antibody level of PT and low titer in PTx CHO neutralization assay, as compared to control and GC DTaP vaccines. The raP vaccine provided a sterile lung bacterial clearance comparable to a commercial control vaccine after the experimental challenge in murine model. Moreover, raP exhibited a strong cytokine response and CD4+ TRM cell in lung tissue, comparable or superior to the experimental and commercial DTaP vaccinated groups. Contingent on improving the biophysical stability and humoral response to PT, the raP vaccine warrants further development as an effective alternative to aP vaccines for the control of a pertussis outbreak.
Collapse
Affiliation(s)
- Kyu-Ri Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Ji-Ahn Kim
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Gyu-Won Cho
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Han-Ul Kang
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyun-Mi Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Han Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Young Lee
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon 14647, Republic of Korea
| |
Collapse
|
2
|
Cimolai N. Non-primate animal models for pertussis: back to the drawing board? Appl Microbiol Biotechnol 2022; 106:1383-1398. [PMID: 35103810 PMCID: PMC8803574 DOI: 10.1007/s00253-022-11798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Despite considerable progress in the understanding of clinical pertussis, the contemporary emergence of antimicrobial resistance for Bordetella pertussis and an evolution of concerns with acellular component vaccination have both sparked a renewed interest. Although simian models of infection best correlate with the observed attributes of human infection, several animal models have been used for decades and have positively contributed in many ways to the related science. Nevertheless, there is yet the lack of a reliable small animal model system that mimics the combination of infection genesis, variable upper and lower respiratory infection, systemic effects, infection resolution, and vaccine responses. This narrative review examines the history and attributes of non-primate animal models for pertussis and places context with the current use and needs. Emerging from the latter is the necessity for further such study to better create the optimal model of infection and vaccination with use of current molecular tools and a broader range of animal systems. KEY POINTS: • Currently used and past non-primate animal models of B. pertussis infection often have unique and focused applications. • A non-primate animal model that consistently mimics human pertussis for the majority of key infection characteristics is lacking. • There remains ample opportunity for an improved non-primate animal model of pertussis with the use of current molecular biology tools and with further exploration of species not previously considered.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
- Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C., V6H3V4, Canada.
| |
Collapse
|