1
|
Villalba A, Nuño L, Benito-Miguel M, Nieto-Carvalhal B, Monjo I, Novella-Navarro M, Peiteado D, García-Carazo S, Balsa A, Miranda-Carús ME. Transiently increased circulating CD39+FoxP3+ Treg cells predicts the clinical response to methotrexate in early rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:2282-2289. [PMID: 39141491 DOI: 10.1093/rheumatology/keae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES A subset of human circulating FoxP3+ regulatory T cells expresses CD39 (cTreg39+) and hydrolyses pro-inflammatory adenine nucleotides released at inflammatory foci, releasing the anti-inflammatory agent adenosine. Methotrexate (MTX), inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide transformylase, enhances the extrusion of adenine nucleotides and may help Treg39+ cells control inflammation. Therefore, we examined the relation of cTreg39+ cells with the effect of MTX in early rheumatoid arthritis (eRA). METHODS Freshly isolated peripheral blood lymphocytes from 98 untreated eRA patients and 98 healthy controls (HC) were examined by cytometry. Twelve months (12 m) after initiating MTX, 82 patients were clinically re-evaluated and cytometry was repeated in 40 of them. The effect of MTX on Treg cell potency was assessed in Treg/Tresp cocultures. RESULTS The baseline (0 m) cTreg39+ cell frequency was elevated in eRA above HC levels. Patients who reached low disease activity at 12 months (12 m-LDA, DAS28-ESR ≤ 3.2, n = 51) had presented with a significantly higher 0 m cTreg39+ frequency vs those who did not (n = 31). The 0 m cTreg39+ cutoff for attaining 12 m-LDA was 42.0% (sensitivity = 90.4%, specificity = 96.8%). At 12 m, the cTreg39+ frequency was no longer elevated but its association with disease activity remained: it was still significantly higher in patients who had reached LDA vs those who had not. In vitro, MTX augmented the Treg39+ cell potency but had no effect on Treg39- cells. CONCLUSION MTX cooperates with Treg39+ cells and the baseline cTreg39+ frequency predicts the response to MTX in eRA. In addition, the transiently elevated baseline cTreg39+ frequency in eRA may provide a slot for prompt MTX initiation.
Collapse
Affiliation(s)
- Alejandro Villalba
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Laura Nuño
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Marta Benito-Miguel
- Fundación San Juan de Dios, Centro de Ciencias de la Salud San Rafael, Department of Physiology, Universidad de Nebrija, Madrid, Spain
| | | | - Irene Monjo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | | - Diana Peiteado
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Sara García-Carazo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | |
Collapse
|
2
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
3
|
Song S, Sun Y, Yu J. Causal relationship between 731 immune cells and the risk of diabetic nephropathy: a two‑sample bidirectional Mendelian randomization study. Ren Fail 2024; 46:2387208. [PMID: 39091101 PMCID: PMC11299454 DOI: 10.1080/0886022x.2024.2387208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Previous observational studies have indicated associations between various immune cells and diabetic nephropathy (DN). However, the causality remains unclear. We aimed to further evaluate the causal association between immune cells and DN using bidirectional two-sample Mendelian randomization (MR) analysis. METHOD The DN data were retrieved from the IEU OpenGWAS Project database, while the data for 731 immune cells were sourced from GWAS summary statistics by Orru ̀ et al. The investigation into the causal relationship between immune cells and DN employed the inverse variance weighted (IVW), weighted median (WME), and MR-Egger methods. The stability and reliability of the findings underwent evaluation through Cochran's Q test, MR-Egger intercept's P-value, MR-PRESSO, and Leave-One-Out (LOO) method. RESULT The IVW estimates suggested a positive causal effect of CD25 on IgD-CD38dim B cell, CD25 on naive-mature B cell, CD127 on granulocyte, SSC-A on HLA DR + Natural Killer, HLA DR on plasmacytoid Dendritic Cell, and HLA DR on Dendritic Cell on DN. Conversely, the abundance of Myeloid Dendritic Cell, CD62L- Dendritic Cell %Dendritic Cell, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD14- CD16-, CX3CR1 on CD14- CD16-, and SSC-A on CD4+ T cell had negative causal effects on DN. However, after correcting the P value for significant causality results using the FDR method, it was concluded that only Myeloid Dendritic Cells had a causal relationship with DN (FDR-p = 0.041), while the other immune cells showed no significant association with DN, so their relationship was suggestive. The results were stable with no observed horizontal pleiotropy and heterogeneity. Reverse MR analysis indicated no causal relationship between DN and the increased risk of positively identified immune cells. CONCLUSION This study provides an initial insight into the genetic perspective of the causal relationship between immune cells and DN. It establishes a crucial theoretical foundation for future endeavors in precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Siyuan Song
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Yuqing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
4
|
Saggau C, Bacher P, Esser D, Rasa M, Meise S, Mohr N, Kohlstedt N, Hutloff A, Schacht SS, Dargvainiene J, Martini GR, Stürner KH, Schröder I, Markewitz R, Hartl J, Hastermann M, Duchow A, Schindler P, Becker M, Bautista C, Gottfreund J, Walter J, Polansky JK, Yang M, Naghavian R, Wendorff M, Schuster EM, Dahl A, Petzold A, Reinhardt S, Franke A, Wieczorek M, Henschel L, Berger D, Heine G, Holtsche M, Häußler V, Peters C, Schmidt E, Fillatreau S, Busch DH, Wandinger KP, Schober K, Martin R, Paul F, Leypoldt F, Scheffold A. Autoantigen-specific CD4 + T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity 2024; 57:2416-2432.e8. [PMID: 39226901 DOI: 10.1016/j.immuni.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Pro-inflammatory autoantigen-specific CD4+ T helper (auto-Th) cells are central orchestrators of autoimmune diseases (AIDs). We aimed to characterize these cells in human AIDs with defined autoantigens by combining human leukocyte antigen (HLA)-tetramer-based and activation-based multidimensional ex vivo analyses. In aquaporin4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) patients, auto-Th cells expressed CD154, but proliferative capacity and pro-inflammatory cytokines were strongly reduced. Instead, exhaustion-associated co-inhibitory receptors were expressed together with FOXP3, the canonical regulatory T cell (Treg) transcription factor. Auto-Th cells responded in vitro to checkpoint inhibition and provided potent B cell help. Cells with the same exhaustion-like (ThEx) phenotype were identified in soluble liver antigen (SLA)-antibody-autoimmune hepatitis and BP180-antibody-positive bullous pemphigoid, AIDs of the liver and skin, respectively. While originally described in cancer and chronic infection, our data point to T cell exhaustion as a common mechanism of adaptation to chronic (self-)stimulation across AID types and link exhausted CD4+ T cells to humoral autoimmune responses, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mahdi Rasa
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nicola Mohr
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nora Kohlstedt
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Andreas Hutloff
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sarah-Sophie Schacht
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes Hartl
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ankelien Duchow
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Becker
- Institute of Experimental Dermatology, Lübeck, Germany; Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Carolin Bautista
- Department of Dermatology, Allergy and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Judith Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany; German Rheumatism Research Centre, a Leibniz Institute (DRFZ), Charité Platz 1, 10117 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Leibniz Institute for Science and Mathematics Education, Kiel, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Lea Henschel
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Daniel Berger
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maike Holtsche
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Vivien Häußler
- Clinic and Polyclinic for Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Enno Schmidt
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland; Institute of Experimental Immunology, University of Zurich, Wintherturerstrasse 191, 8057 Zurich, Switzerland; Department of Clinical Neuroscience, Karolinska Institute, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
5
|
Zhou W, Huang Y, Liu J, Liu Y, Liu Y, Yu C. Identification of ANKRD13D as a potential target in renal cell carcinomas. Int J Biol Markers 2024; 39:149-157. [PMID: 38449090 DOI: 10.1177/03936155241236498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND The correlation of the expression of ankyrin repeat domain (ANKRD) family members with renal cell carcinoma prognosis was investigated. METHODS The GEPIA2, GEO2R, UALCAN, GDC, OncoLnc, TIMER, PanglaoDB, CancerSEA, and Tabula Muris databases were used. Twelve ANKRD family members were identified as having overexpressed renal cell carcinoma samples. The ANKRD13D was identified as a renal cell carcinoma-specific target by cross-referencing the multiple survival databases. To clarify the role of ANKRD13D, the expression of NAKRD13D was analyzed at the single-cell level. RESULTS ANKRD13D was mainly expressed in immune cells and positively correlated with Treg cell infiltration. The expression of ANKRD13D was also positively correlated with PDCD1, CTLA4, LAG3, TNFSF14, and ISG20. The overexpression of ANKRD13D in Treg was confirmed using reverse transcription-quantitative polymerase chain reaction. The structure of ANKRD13D was predicted using AlphaFold. CONCLUSION In conclusion, we identified ANKRD13D as a key immune regulator, and targeting ANKRD13D with immune checkpoints blockade may be a promoting strategy for renal cell carcinoma immunotherapy.
Collapse
Affiliation(s)
- Wenqian Zhou
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiguo Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
7
|
Borna Š, Lee E, Nideffer J, Ramachandran A, Wang B, Baker J, Mavers M, Lakshmanan U, Narula M, Garrett AKH, Schulze J, Olek S, Marois L, Gernez Y, Bhatia M, Chong HJ, Walter J, Kitcharoensakkul M, Lang A, Cooper MA, Bertaina A, Roncarolo MG, Meffre E, Bacchetta R. Identification of unstable regulatory and autoreactive effector T cells that are expanded in patients with FOXP3 mutations. Sci Transl Med 2023; 15:eadg6822. [PMID: 38117899 PMCID: PMC11070150 DOI: 10.1126/scitranslmed.adg6822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Studies of the monogenic autoimmune disease immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) have elucidated the essential function of the transcription factor FOXP3 and thymic-derived regulatory T cells (Tregs) in controlling peripheral tolerance. However, the presence and the source of autoreactive T cells in IPEX remain undetermined. Here, we investigated how FOXP3 deficiency affects the T cell receptor (TCR) repertoire and Treg stability in vivo and compared T cell abnormalities in patients with IPEX with those in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED). To study Tregs independently of their phenotype and to analyze T cell autoreactivity, we combined Treg-specific demethylation region analyses, single-cell multiomic profiling, and bulk TCR sequencing. We found that patients with IPEX, unlike patients with APECED, have expanded autoreactive T cells originating from both autoreactive effector T cells (Teffs) and Tregs. In addition, a fraction of the expanded Tregs from patients with IPEX lost their phenotypic and functional markers, including CD25 and FOXP3. Functional experiments with CRISPR-Cas9-mediated FOXP3 knockout Tregs and Tregs from patients with IPEX indicated that the patients' Tregs gain a TH2-skewed Teff-like function, which is consistent with immune dysregulation observed in these patients. Analyses of FOXP3 mutation-carrier mothers and a patient with IPEX after hematopoietic stem cell transplantation indicated that Tregs expressing nonmutated FOXP3 prevent the accumulation of autoreactive Teffs and unstable Tregs. These findings could be directly used for diagnostic and prognostic purposes and for monitoring the effects of immunomodulatory treatments.
Collapse
Affiliation(s)
- Šimon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Nideffer
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akshaya Ramachandran
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa Mavers
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Uma Lakshmanan
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mansi Narula
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Kang-hee Garrett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sven Olek
- Ivana Turbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, 12489, Germany
| | - Louis Marois
- Department of Medicine, Immunology and Allergy Service, CHU de Québec – Laval University, Quebec, G1V 4G2, Canada
| | - Yael Gernez
- Department of Pediatrics, Division of Allergy, Rheumatology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monica Bhatia
- Columbia University Irving Medical Center, NY, NY 10032, USA
| | - Hey Jin Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, 15224, Pa, USA
| | - Jolan Walter
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, University of South Florida, St. Petersburg, 33701, FL, USA
| | - Maleewan Kitcharoensakkul
- Divisions of Rheumatology/Immunology, and Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Abigail Lang
- Department of Pediatrics, Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan A. Cooper
- Department of pediatrics, division of Rheumatology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Alice Bertaina
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, 269 Campus Drive West, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Luo H, Zhu Y, Guo B, Ruan Z, Liu Z, Fan Z, Zhao S. Causal relationships between CD25 on immune cells and hip osteoarthritis. Front Immunol 2023; 14:1247710. [PMID: 37731506 PMCID: PMC10507251 DOI: 10.3389/fimmu.2023.1247710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Objectives Previous research has indicated a potential association between immune factors and osteoarthritis (OA), but the causal relationship between CD25 expression on immune cells and hip OA remains enigmatic. To shed light on this relationship, this study utilized the two-sample Mendelian Randomization (MR) method. Methods Leveraging genome-wide association studies (GWAS) data from the UK Biobank and arcOGEN, the investigation encompasses a substantial European cohort comprising 15,704 hip OA cases and 378,169 controls. Genetic insights into CD25 stem from a subgroup of 3,757 individuals with European ancestry, encompassing 77 CD25-related traits. Several MR methods were applied, and robustness was assessed through heterogeneity and sensitivity analysis. Results Among the 77 traits examined, 66 shared the same single nucleotide polymorphisms (SNPs) with hip OA. Of these, 7 CD25-related traits were found to be causally associated with hip OA (adjusted P><0.05), with F-statistics ranging from 33 to 122. These traits are specifically related to CD4+CD25+ T cells, exhibiting odds ratios (OR) and 95% confidence intervals (CI) less than 1. Notably, no causal link was discerned with the CD8+CD25+ T cell subset. Within absolute count (AC) and relative count (RC) trait types, a significant causal relationship was observed solely between CD4+CD25+ T cells and hip OA, without subtype localization. A more intricate examination of CD25 expression levels within the CD4+CD25+ T cell subset revealed a correlation with the CD39+ regulatory T (Treg) subset and hip OA, particularly within the CD39+ activated Treg subset. Furthermore, a notable causal relationship emerged between CD25 expression levels in the CD45RA- not Treg subset and hip OA. However, no significant causal link was established with any subsets of B cells. Conclusion The genetic prediction suggests that CD25, particularly within the realm of CD4+CD25+ T cells, may exert a protective influence against the development of hip OA. These findings provide a novel therapeutic approach for the prevention and treatment of hip OA.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|