1
|
Mohan V, Strepis N, Mitsakakis K, Becker K, Chindelevitch L, Shivaperumal N, Swe-Han KS, Hays JP. Antimicrobial resistance in Campylobacter spp. focussing on C. jejuni and C. coli - A Narrative Review. J Glob Antimicrob Resist 2025:S2213-7165(25)00111-0. [PMID: 40354998 DOI: 10.1016/j.jgar.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVES Campylobacter species represent one of the leading causes of human foodborne infections, including gastroenteritis and bloody diarrhoea. Overuse of antibiotics in veterinary, agriculture, and humans has led to an increase in multidrug antimicrobial resistance (AMR). Fluoroquinolones and macrolides resistant Campylobacters are WHO and CDC priority pathogens, with fluoroquinolone resistance doubling in the past 20 years, complicating treatment. METHODS Published studies relating to AMR and associated molecular mechanisms in both Campylobacter jejuni and C. coli from animals, humans and environment (1981 - 2024), were retrieved from PubMed and Google Scholar using relevant keywords. In addition, genomic analyses of publicly available C. jejuni and C. coli genomes along with multi-locus sequence typing results from the PubMLST database were used to analyse these AMR determinants and their phylogenomic relationships. Review articles were excluded from the analyses. RESULTS A total of 429 research papers were reviewed to get insights into multidrug resistance in C. jejuni and C. coli. Fluroquinolone resistance has been predominantly associated with international travel. The gyrA subunits were associated with ecological niches and overall, it is suggestive that C. coli might be the donor. A positive synergism was observed between cmeA gene expression and quinolone resistance. Additionally, the results speculated the possibility of horizontal gene transfers in chromosomal resistance clusters between C. coli and C. jejuni. CONCLUSION This review indicated significant concern of multidrug resistance in C. jejuni and C. coli. This requires continent-wide surveillance and research for standard practices to achieve effective antimicrobial stewardship.
Collapse
Affiliation(s)
- Vathsala Mohan
- School of Biomedical and Health Sciences, University of Western Australia, Australia; Commonwealth Science and Industrial Research Organisation, Australia.
| | - Nikolaos Strepis
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 GD, Rotterdam, The Netherlands
| | - Konstantinos Mitsakakis
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475 Greifswald, Germany
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Praed Street, London, W2 1NY, England, UK
| | | | - Khine Swe Swe-Han
- Department of Medical Microbiology, National Health Laboratory Services, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Ghielmetti G, Seth-Smith HMB, Roloff T, Cernela N, Biggel M, Stephan R, Egli A. Whole-genome-based characterization of Campylobacter jejuni from human patients with gastroenteritis collected over an 18 year period reveals increasing prevalence of antimicrobial resistance. Microb Genom 2023; 9:mgen000941. [PMID: 36809179 PMCID: PMC9997746 DOI: 10.1099/mgen.0.000941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/04/2022] [Indexed: 02/23/2023] Open
Abstract
Campylobacteriosis is the most common cause of acute gastrointestinal bacterial infection in Europe, with most infections linked to the consumption of contaminated food. While previous studies found an increasing rate of antimicrobial resistance (AMR) in Campylobacter spp. over the past decades, the investigation of additional clinical isolates is likely to provide novel insights into the population structure and mechanisms of virulence and drug resistance of this important human pathogen. Therefore, we combined whole-genome sequencing and antimicrobial-susceptibility testing of 340 randomly selected Campylobacter jejuni isolates from humans with gastroenteritis, collected in Switzerland over an 18 year period. In our collection, the most common multilocus sequence types (STs) were ST-257 (n=44), ST-21 (n=36) and ST-50 (n=35); the most common clonal complexes (CCs) were CC-21 (n=102), CC-257 (n=49) and CC-48 (n=33). High heterogeneity was observed among STs, with the most abundant STs recurring over the entire study period, while others were observed only sporadically. Source attribution based on ST assigned more than half of the strains to the 'generalist' category (n=188), 25 % as 'poultry specialist' (n=83), and only a few to 'ruminant specialist' (n=11) or 'wild bird' origin (n=9). The isolates displayed an increased frequency of AMR from 2003 to 2020, with the highest rates of resistance observed for ciprofloxacin and nalidixic acid (49.8 %), followed by tetracycline (36.9 %). Quinolone-resistant isolates carried chromosomal gyrA mutations T86I (99.4 %) and T86A (0.6 %), whereas tetracycline-resistant isolates carried tet(O) (79.8 %) or mosaic tetO/32/O (20.2 %) genes. A novel chromosomal cassette carrying several resistance genes, including aph(3')-III, satA and aad(6), and flanked by insertion sequence elements was detected in one isolate. Collectively, our data revealed an increasing prevalence of resistance to quinolones and tetracycline in C. jejuni isolates from Swiss patients over time, linked to clonal expansion of gyrA mutants and acquisition of the tet(O) gene. Investigation of source attribution suggests that infections are most likely related to isolates from poultry or generalist backgrounds. These findings are relevant to guide future infection prevention and control strategies.
Collapse
Affiliation(s)
- Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena M. B. Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Herold M, Hock L, Penny C, Walczak C, Djabi F, Cauchie HM, Ragimbeau C. Metagenomic Strain-Typing Combined with Isolate Sequencing Provides Increased Resolution of the Genetic Diversity of Campylobacter jejuni Carriage in Wild Birds. Microorganisms 2023; 11:microorganisms11010121. [PMID: 36677413 PMCID: PMC9860660 DOI: 10.3390/microorganisms11010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
As the world's leading cause of human gastro-enteritis, the food- and waterborne pathogen Campylobacter needs to be intensively monitored through a One Health approach. Particularly, wild birds have been hypothesized to contribute to the spread of human clinical recurring C. jejuni genotypes across several countries. A major concern in studying epidemiological dynamics is resolving the large genomic diversity of strains circulating in the environment and various reservoirs, challenging to achieve with isolation techniques. Here, we applied a passive-filtration method to obtain isolates and in parallel recovered genotypes from metagenomic sequencing data from associated filter sweeps. For genotyping mixed strains, a reference-based computational workflow to predict allelic profiles of nine extended-MLST loci was utilized. We validated the pipeline by sequencing artificial mixtures of C. jejuni strains and observed the highest prediction accuracy when including obtained isolates as references. By analyzing metagenomic samples, we were able to detect over 20% additional genetic diversity and observed an over 50% increase in the potential to connect genotypes across wild-bird samples. With an optimized filtration method and a computational approach for genotyping strain mixtures, we provide the foundation for future studies assessing C. jejuni diversity in environmental and clinical settings at improved throughput and resolution.
Collapse
Affiliation(s)
- Malte Herold
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
- Correspondence:
| | - Louise Hock
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Christian Penny
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Fatu Djabi
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
4
|
Nennig M, Clément A, Longueval E, Bernardi T, Ragimbeau C, Tresse O. Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg. Front Microbiol 2022; 13:901192. [PMID: 36160185 PMCID: PMC9490421 DOI: 10.3389/fmicb.2022.901192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
- UMR-1280 PhAN, INRAE, Nantes, France
| | - Arnaud Clément
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Emmanuelle Longueval
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | | |
Collapse
|
5
|
Investigation of MALDI-TOF Mass Spectrometry for Assessing the Molecular Diversity of Campylobacter jejuni and Comparison with MLST and cgMLST: A Luxembourg One-Health Study. Diagnostics (Basel) 2021; 11:diagnostics11111949. [PMID: 34829296 PMCID: PMC8621691 DOI: 10.3390/diagnostics11111949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
There is a need for active molecular surveillance of human and veterinary Campylobacter infections. However, sequencing of all isolates is associated with high costs and a considerable workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen C. jejuni genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per isolate. Concordance and discriminating ability were evaluated based on protein profiles and different cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an AWC of 1.000, 0.933 and 0.851 was obtained for MLSTCC, MLSTST and cgMLST profile, respectively. The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different STs. Protein profiles allowed to predict C. jejuni CCs, STs and CTs at 100%, 93% and 85%, respectively. Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give an early signal of recurrent C. jejuni on a routine basis.
Collapse
|
6
|
Zeinhom MMA, Abdel-Latef GK, Corke H. Prevalence, Characterization, and Control of Campylobacter jejuni Isolated from Raw Milk, Cheese, and Human Stool Samples in Beni-Suef Governorate, Egypt. Foodborne Pathog Dis 2021; 18:322-330. [PMID: 33656913 DOI: 10.1089/fpd.2020.2895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our study aimed to determine the prevalence of Campylobacter jejuni isolated from raw milk, cheese, and human stool samples in Beni-Suef Governorate, Egypt, and to characterize the antibiotic resistance profile and virulence genes of the isolates. An additional objective was to evaluate the effectiveness of cinnamon oil and Lactobacillus acidophilus La5 for controlling C. jejuni in cheese. A total of 200 samples of raw milk and dairy products, including 50 samples of raw milk and 150 samples of three different types of cheese were used. Fifty-three human stool samples were also collected. The samples were tested for the presence of C. jejuni using culture and molecular methods. Campylobacter spp. were isolated from 9.5% (19/200) of the raw milk and cheese samples. The highest prevalence was observed in milk samples (18%), followed by Kareish cheese (14%) and Talaga cheese (6%). In contrast, C. jejuni was not found in any of the Feta cheese samples. Of the human stool samples, 21 (39.6%) were positive for C. jejuni. Of the isolates, 60-90% were highly resistant to the antimicrobial agents tested, that is, nalidixic acid, ciprofloxacin, and tetracycline. Virulent cadF and cdtA genes were detected in all isolates. As milk and dairy products are important sources of contamination, reducing the level of C. jejuni in them will lower the risk to consumers. We showed that L. acidophilus La5 was able to control C. jejuni in Kareish cheese, but cinnamon oil was less effective.
Collapse
Affiliation(s)
- Mohamed M A Zeinhom
- Food Hygiene and Control Department and Zoonoses and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gihan K Abdel-Latef
- Hygiene, Zoonoses and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Nennig M, Llarena AK, Herold M, Mossong J, Penny C, Losch S, Tresse O, Ragimbeau C. Investigating Major Recurring Campylobacter jejuni Lineages in Luxembourg Using Four Core or Whole Genome Sequencing Typing Schemes. Front Cell Infect Microbiol 2021; 10:608020. [PMID: 33489938 PMCID: PMC7819963 DOI: 10.3389/fcimb.2020.608020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasizing the need to investigate their survival strategy in greater depth.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg.,INRAE, Oniris, SECALIM, Nantes, France
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malte Herold
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Joël Mossong
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Christian Penny
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux, Luxembourg
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat, Veterinary Services Administration, Dudelange, Luxembourg
| | | | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| |
Collapse
|
8
|
Core Genome Multilocus Sequence Typing for Food Animal Source Attribution of Human Campylobacter jejuni Infections. Pathogens 2020; 9:pathogens9070532. [PMID: 32630646 PMCID: PMC7400327 DOI: 10.3390/pathogens9070532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and common cause of bacterial enteritis worldwide. A total of 622 C. jejuni isolates recovered from food animals and retail meats in the United States through the National Antimicrobial Resistance Monitoring System between 2013 and 2017 were sequenced using an Illumina MiSeq. Sequences were combined with WGS data of 222 human isolates downloaded from NCBI and analyzed by core genome multilocus sequence typing (cgMLST) and traditional MLST. cgMLST allelic difference (AD) thresholds of 0, 5, 10, 25, 50, 100 and 200 identified 828, 734, 652, 543, 422, 298 and 197 cgMLST types among the 844 isolates, respectively, and traditional MLST identified 174 ST. The cgMLST scheme allowing an AD of 200 (cgMLST200) revealed strong correlation with MLST. cgMLST200 showed 40.5% retail chicken isolates, 56.5% swine, 77.4% dairy cattle and 78.9% beef cattle isolates shared cgMLST sequence type with human isolates. All ST-8 had the same cgMLST200 type (cgMLST200-12) and 74.3% of ST-8 and 75% cgMLST200-12 were confirmed as sheep abortion virulence clones by PorA analysis. Twenty-nine acquired resistance genes, including 21 alleles of blaOXA, tetO, aph(3′)-IIIa, ant(6)-Ia, aadE, aad9, aph(2′)-Ig, aph(2′)-Ih, sat4 plus mutations in gyrA, 23SrRNA and L22 were identified. Resistance genotypes were strongly linked with cgMLST200 type for certain groups including 12/12 cgMLST200-510 with the A103V substitution in L22 and 10/11 cgMLST200-608 with the T86I GyrA substitution associated with macrolide and quinolone resistance, respectively. In summary, the cgMLST200 threshold scheme combined with resistance genotype information could provide an excellent subtyping scheme for source attribution of human C. jejuni infections.
Collapse
|
9
|
Lynch CT, Lynch H, Burke S, Hawkins K, Buttimer C, Mc Carthy C, Egan J, Whyte P, Bolton D, Coffey A, Lucey B. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland Over a One-Year Period. Antibiotics (Basel) 2020; 9:E308. [PMID: 32521746 PMCID: PMC7344827 DOI: 10.3390/antibiotics9060308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.
Collapse
Affiliation(s)
- Caoimhe T. Lynch
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Helen Lynch
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Sarah Burke
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Kayleigh Hawkins
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Conor Mc Carthy
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - John Egan
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| |
Collapse
|
10
|
Haldenby S, Bronowski C, Nelson C, Kenny J, Martinez-Rodriguez C, Chaudhuri R, Williams NJ, Forbes K, Strachan NJ, Pulman J, Winstanley IN, Corless CE, Humphrey TJ, Bolton FJ, O’Brien SJ, Hall N, Hertz-Fowler C, Winstanley C. Increasing prevalence of a fluoroquinolone resistance mutation amongst Campylobacter jejuni isolates from four human infectious intestinal disease studies in the United Kingdom. PLoS One 2020; 15:e0227535. [PMID: 31999701 PMCID: PMC6992184 DOI: 10.1371/journal.pone.0227535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most common bacterial cause of human infectious intestinal disease. METHODS We genome sequenced 601 human C. jejuni isolates, obtained from two large prospective studies of infectious intestinal disease (IID1 [isolates from 1993-1996; n = 293] and IID2 [isolates from 2008-2009; n = 93]), the INTEGRATE project [isolates from 2016-2017; n = 52] and the ENIGMA project [isolates from 2017; n = 163]. RESULTS There was a significant increase in the prevalence of the T86I mutation conferring resistance to fluoroquinolone between each of the three later studies (IID2, INTEGRATE and ENIGMA) and IID1. Although the distribution of major multilocus sequence types (STs) was similar between the studies, there were changes in both the abundance of minority STs associated with the T86I mutation, and the abundance of clones within single STs associated with the T86I mutation. DISCUSSION Four population-based studies of community diarrhoea over a 25 year period revealed an increase over time in the prevalence of the T86I amongst isolates of C. jejuni associated with human gastrointestinal disease in the UK. Although associated with many STs, much of the increase is due to the expansion of clones associated with the resistance mutation.
Collapse
Affiliation(s)
- Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Nelson
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - John Kenny
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | | | - Roy Chaudhuri
- Department of Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J. Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ken Forbes
- School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Norval J. Strachan
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jane Pulman
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Ian N. Winstanley
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Caroline E. Corless
- Infection and Immunity, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Tom J. Humphrey
- Medical Microbiology and Infectious Diseases, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Frederick J. Bolton
- Department of Public Health and Policy, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J. O’Brien
- Department of Public Health and Policy, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Reddy S, Zishiri OT. Genetic characterisation of virulence genes associated with adherence, invasion and cytotoxicity in Campylobacter spp. isolated from commercial chickens and human clinical cases. Onderstepoort J Vet Res 2018; 85:e1-e9. [PMID: 29781670 PMCID: PMC6238761 DOI: 10.4102/ojvr.v85i1.1507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/06/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
Virulence-associated genes have been recognised and detected in Campylobacter species. The majority of them have been proven to be associated with pathogenicity. This study aimed to detect the presence of virulence genes associated with pathogenicity and responsible for invasion, expression of adherence, colonisation and production of the cytolethal distending toxin (cdt) in Campylobacter jejuni and Campylobacter coli. Commercial chicken faecal samples were randomly sampled from chicken farms within the Durban metropolitan area in South Africa. Furthermore, human clinical Campylobacter spp. isolates were randomly sampled from a private pathology laboratory in South Africa. Out of a total of 100 chicken faecal samples, 78% (n = 78) were positive for Campylobacter growth on modified charcoal cefoperazone deoxycholate and from the random laboratory collection of 100 human clinical isolates, 83% (n = 83) demonstrated positive Campylobacter spp. growth following culturing methods. These samples were screened for the presence of the following virulence genes: cadF, hipO, asp, ciaB, dnaJ, pldA, cdtA, cdtB and cdtC. As expected, the cadF gene was present in 100% of poultry (n = 78) and human clinical isolates (n = 83). Campylobacter jejuni was the main species detected in both poultry and human clinical isolates, whilst C. coli were detected at a significantly lower percentage (p < 0.05). Eight per cent of the C. jejuni from human clinical isolates had all virulence genes that were investigated. Only one C. coli isolate demonstrated the presence of all the virulence genes investigated; however, the pldA virulence gene was detected in 100% of the C. coli isolates in poultry and a high percentage (71%) in human clinical C. coli isolates as well. The detection of cdt genes was found at higher frequency in poultry than human clinical isolates. The high prevalence rates of virulence genes detected in poultry and human clinical isolates demonstrate their significance in the pathogenicity of Campylobacter species.
Collapse
|
12
|
Aksomaitiene J, Ramonaite S, Olsen JE, Malakauskas M. Prevalence of Genetic Determinants and Phenotypic Resistance to Ciprofloxacin in Campylobacter jejuni from Lithuania. Front Microbiol 2018; 9:203. [PMID: 29491855 PMCID: PMC5817067 DOI: 10.3389/fmicb.2018.00203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Recently, the number of reports on isolation of ciprofloxacin resistant Campylobacter jejuni has increased worldwide. The aim of this study was to determine the prevalence of resistance to ciprofloxacin and its genetic determinants among C. jejuni isolated from humans (n = 100), poultry products (n = 96) and wild birds (n = 96) in Lithuania. 91.4% of the C. jejuni isolates were phenotypically resistant to ciprofloxacin. DNA sequence analyses of the gyrA gene from 292 isolates revealed that a change in amino acid sequence, Thr86Ile, was the main substition conferring resistance to ciprofloxacin. This change was significantly associated with isolates from poultry products (P < 0.05) and humans (P < 0.05). A total of 26.7% of C. jejuni isolates from human (n = 47), poultry products (n = 30) and wild bird (n = 1), had a mutation from Ser at position 22, and six had an additional mutation from Ala at position 39. Eight isolates from poultry and two isolates from human, corresponding to 67.0% of isolates with MICs ≥128 μg/ml, showed missense mutations Thr86Ile (ACA → ATA) and Ser22Gly (AGT → GGT) together, whereas isolates without these mutations showed lower MIC values (from 4 to 64 μg/ml). Two hundred forty-five C. jejuni isolates showed one or more silent mutations, and 32.4% of examined isolates possessed six silent mutations. In addition to the ciprofloxacin resistant isolates harboring only Thr86Ile point mutation (110 isolates), the current study identified resistant isolates (n = 101) harboring additional point mutations (Ser22Gly, Ala39Ser, Arg48Lys, Thr85Ala Ala122Ser, Glu136Asp, Vall49Ile), and strains (n = 57) having only Glu136Asp point mutation. The study highlight the potential public health problem with elevated ciprofloxacin resistance in Campylobacters from poultry meat, wild birds and humans, and the need for extensive surveillance enabling to follow changes of antimicrobial resistance development in this species.
Collapse
Affiliation(s)
- Jurgita Aksomaitiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sigita Ramonaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
13
|
Premarathne JMKJK, Satharasinghe DA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S. Impact of human Campylobacter infections in Southeast Asia: The contribution of the poultry sector. Crit Rev Food Sci Nutr 2018; 57:3971-3986. [PMID: 28001082 DOI: 10.1080/10408398.2016.1266297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
Collapse
Affiliation(s)
- Jayasekara Mudiyanselage Krishanthi Jayarukshi Kumari Premarathne
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Livestock and Avian Science , Wayamba University of Sri Lanka, Faculty of Livestock, Fisheries and Nutrition , Makandura , Gonawila , Sri Lanka
| | - Dilan Amila Satharasinghe
- c Institute of Bioscience , University Putra Malaysia , UPM , Serdang , Malaysia.,d Department of Basic Veterinary Science , University of Peradeniya, Faculty of Veterinary Medicine and Animal Science , Peradeniya , Sri Lanka
| | - John Tang Yew Huat
- e Faculty of Food Technology , Universiti Sultan Zainal Abidin , Kuala Terengganu , Terengganu , Malaysia
| | - Dayang Fredalina Basri
- f School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences , Universiti Kebangsaan Malaysia , Jalan Raja Muda Abdul Aziz, Kuala Lumpur , Malaysia
| | - Yaya Rukayadi
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia
| | - Yoshitsugu Nakaguchi
- g Center for Southeast Asian Studies , Kyoto University, Yoshida , Sakyo-ku , Kyoto , Japan
| | - Mitsuaki Nishibuchi
- g Center for Southeast Asian Studies , Kyoto University, Yoshida , Sakyo-ku , Kyoto , Japan
| | - Son Radu
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
14
|
Reddy S, Zishiri OT. Detection and prevalence of antimicrobial resistance genes in <i>Campylobacter</i> spp. isolated from chickens and humans. ACTA ACUST UNITED AC 2017; 84:e1-e6. [PMID: 28582978 PMCID: PMC6238756 DOI: 10.4102/ojvr.v84i1.1411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/07/2022]
Abstract
Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.
Collapse
|
15
|
Kelly C, Gundogdu O, Pircalabioru G, Cean A, Scates P, Linton M, Pinkerton L, Magowan E, Stef L, Simiz E, Pet I, Stewart S, Stabler R, Wren B, Dorrell N, Corcionivoschi N. The In Vitro and In Vivo Effect of Carvacrol in Preventing Campylobacter Infection, Colonization and in Improving Productivity of Chicken Broilers. Foodborne Pathog Dis 2017; 14:341-349. [PMID: 28398869 DOI: 10.1089/fpd.2016.2265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.
Collapse
Affiliation(s)
- Carmel Kelly
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Ozan Gundogdu
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | | | - Ada Cean
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Pam Scates
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Mark Linton
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Laurette Pinkerton
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Elizabeth Magowan
- 5 Sustainable Agri-Food Sciences Division, Agriculture Branch, Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Lavinia Stef
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Eliza Simiz
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Ioan Pet
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Sharon Stewart
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Richard Stabler
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Brendan Wren
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Nick Dorrell
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Nicolae Corcionivoschi
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom .,4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| |
Collapse
|
16
|
Mughini-Gras L, Penny C, Ragimbeau C, Schets FM, Blaak H, Duim B, Wagenaar JA, de Boer A, Cauchie HM, Mossong J, van Pelt W. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. WATER RESEARCH 2016; 101:36-45. [PMID: 27244295 DOI: 10.1016/j.watres.2016.05.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contamination with Campylobacter is largely unknown. In the Netherlands, the massive poultry culling to control the 2003 avian influenza epidemic coincided with a 44-50% reduction in human campylobacteriosis cases in the culling areas, suggesting substantial environment-mediated spread of poultry-borne Campylobacter. We inferred the origin of surface water Campylobacter jejuni and Campylobacter coli strains in Luxembourg and the Netherlands, as defined by multilocus sequence typing, by comparison to strains from poultry, pigs, ruminants, and wild birds, using the asymmetric island model for source attribution. Most Luxembourgish water strains were attributed to wild birds (61.0%), followed by poultry (18.8%), ruminants (15.9%), and pigs (4.3%); whereas the Dutch water strains were mainly attributed to poultry (51.7%), wild birds (37.3%), ruminants (9.8%), and pigs (1.2%). Attributions varied over seasons and surface water types, and geographical variation in the relative contribution of poultry correlated with the magnitude of poultry production at either the national or provincial level, suggesting that environmental dissemination of Campylobacter from poultry farms and slaughterhouses can be substantial in poultry-rich regions.
Collapse
Affiliation(s)
- Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), PO Box 1, 3720 BA Bilthoven, The Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands.
| | - Christian Penny
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Catherine Ragimbeau
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| | - Franciska M Schets
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Hetty Blaak
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Birgitta Duim
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands; WHO-Collaborating Center for Campylobacter and OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands; Central Veterinary Institute of Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands; WHO-Collaborating Center for Campylobacter and OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Albert de Boer
- Central Veterinary Institute of Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Joel Mossong
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| | - Wilfrid van Pelt
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
17
|
Cha W, Mosci R, Wengert SL, Singh P, Newton DW, Salimnia H, Lephart P, Khalife W, Mansfield LS, Rudrik JT, Manning SD. Antimicrobial Susceptibility Profiles of Human Campylobacter jejuni Isolates and Association with Phylogenetic Lineages. Front Microbiol 2016; 7:589. [PMID: 27199922 PMCID: PMC4845714 DOI: 10.3389/fmicb.2016.00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a zoonotic pathogen and the most common bacterial cause of human gastroenteritis worldwide. With the increase of antibiotic resistance to fluoroquinolones and macrolides, the drugs of choice for treatment, C. jejuni was recently classified as a serious antimicrobial resistant threat. Here, we characterized 94 C. jejuni isolates collected from patients at four Michigan hospitals in 2011 and 2012 to determine the frequency of resistance and association with phylogenetic lineages. The prevalence of resistance to fluoroquinolones (19.1%) and macrolides (2.1%) in this subset of C. jejuni isolates from Michigan was similar to national reports. High frequencies of fluoroquinolone-resistant C. jejuni isolates, however, were recovered from patients with a history of foreign travel. A high proportion of these resistant isolates were classified as multilocus sequence type (ST)-464, a fluoroquinolone-resistant lineage that recently emerged in Europe. A significantly higher prevalence of tetracycline-resistant C. jejuni was also found in Michigan and resistant isolates were more likely to represent ST-982, which has been previously recovered from ruminants and the environment in the U.S. Notably, patients with tetracycline-resistant C. jejuni infections were more likely to have contact with cattle. These outcomes prompt the need to monitor the dissemination and diversification of imported fluoroquinolone-resistant C. jejuni strains and to investigate the molecular epidemiology of C. jejuni recovered from cattle and farm environments to guide mitigation strategies.
Collapse
Affiliation(s)
- Wonhee Cha
- Departments of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| | - Rebekah Mosci
- Departments of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| | - Samantha L Wengert
- Departments of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| | - Pallavi Singh
- Departments of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| | - Duane W Newton
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Hossein Salimnia
- School of Medicine, Wayne State University, DetroitMichigan, USA; Detroit Medical Center University LaboratoriesDetroit, MI, USA
| | - Paul Lephart
- Detroit Medical Center University Laboratories Detroit, MI, USA
| | | | - Linda S Mansfield
- Departments of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA; Departments of Large Animal Clinical Sciences, Michigan State University, East LansingMI, USA
| | - James T Rudrik
- Bureau of Laboratories, Michigan Department of Health and Human Services Lansing, MI, USA
| | - Shannon D Manning
- Departments of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| |
Collapse
|
18
|
Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C, Losch S, Cauchie HM, van Pelt W, Ragimbeau C. Human Campylobacteriosis in Luxembourg, 2010-2013: A Case-Control Study Combined with Multilocus Sequence Typing for Source Attribution and Risk Factor Analysis. Sci Rep 2016; 6:20939. [PMID: 26860258 PMCID: PMC4748240 DOI: 10.1038/srep20939] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Campylobacteriosis has increased markedly in Luxembourg during recent years. We sought to determine which Campylobacter genotypes infect humans, where they may originate from, and how they may infect humans. Multilocus sequence typing was performed on 1153 Campylobacter jejuni and 136 C. coli human strains to be attributed to three putative animal reservoirs (poultry, ruminants, pigs) and to environmental water using the asymmetric island model. A nationwide case-control study (2010-2013) for domestic campylobacteriosis was also conducted, including 367 C. jejuni and 48 C. coli cases, and 624 controls. Risk factors were investigated by Campylobacter species, and for strains attributed to different sources using a combined case-control and source attribution analysis. 282 sequence types (STs) were identified: ST-21, ST-48, ST-572, ST-50 and ST-257 were prevailing. Most cases were attributed to poultry (61.2%) and ruminants (33.3%). Consuming chicken outside the home was the dominant risk factor for both Campylobacter species. Newly identified risk factors included contact with garden soil for either species, and consuming beef specifically for C. coli. Poultry-associated campylobacteriosis was linked to poultry consumption in wintertime, and ruminant-associated campylobacteriosis to tap-water provider type. Besides confirming chicken as campylobacteriosis primary source, additional evidence was found for other reservoirs and transmission routes.
Collapse
Affiliation(s)
- Joël Mossong
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb). PO Box 1 - 3720 BA Bilthoven, The Netherlands
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Yalelaan 1, De Uithof - 3584 CL Utrecht, The Netherlands
| | - Christian Penny
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Anthony Devaux
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| | - Christophe Olinger
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| | - Serge Losch
- Veterinary Services Administration, Laboratory of Veterinary Medicine, 54 av. Gaston Diderich, L-1420 Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Wilfrid van Pelt
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb). PO Box 1 - 3720 BA Bilthoven, The Netherlands
| | - Catherine Ragimbeau
- National Health Laboratory (LNS), Surveillance and Epidemiology of Infectious Diseases, 1 rue Louis Rech, Dudelange L-3555, Luxembourg
| |
Collapse
|
19
|
Kovač J, Čadež N, Stessl B, Stingl K, Gruntar I, Ocepek M, Trkov M, Wagner M, Smole Možina S. High genetic similarity of ciprofloxacin-resistant Campylobacter jejuni in central Europe. Front Microbiol 2015; 6:1169. [PMID: 26557112 PMCID: PMC4615952 DOI: 10.3389/fmicb.2015.01169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Campylobacteriosis is the leading zoonosis in the European Union with the majority of cases attributed to Campylobacter jejuni. Although the disease is usually self-limiting, some severe cases need to be treated with antibiotics, primarily macrolides and quinolones. However, the resistance to the latter is reaching alarming levels in most of the EU countries. To shed light on the expansion of antibiotic resistance in central Europe, we have investigated genetic similarity across 178 ciprofloxacin-resistant C. jejuni mostly isolated in Slovenia, Austria and Germany. We performed comparative genetic similarity analyses using allelic types of seven multilocus sequence typing housekeeping genes, and single nucleotide polymorphisms of a quinolone resistance determining region located within the DNA gyrase subunit A gene. This analysis revealed high genetic similarity of isolates from clonal complex ST-21 that carry gyrA allelic type 1 in all three of these central-European countries, suggesting these ciprofloxacin resistant isolates arose from a recent common ancestor and are spread clonally.
Collapse
Affiliation(s)
- Jasna Kovač
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary MedicineVienna, Austria
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | - Igor Gruntar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of LjubljanaLjubljana, Slovenia
| | - Matjaž Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of LjubljanaLjubljana, Slovenia
| | - Marija Trkov
- Department for Public Health Microbiology Ljubljana, Centre for Medical Microbiology, National Laboratory of Health, Environment and FoodLjubljana, Slovenia
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary MedicineVienna, Austria
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
20
|
Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev 2015; 28:687-720. [PMID: 26062576 PMCID: PMC4462680 DOI: 10.1128/cmr.00006-15] [Citation(s) in RCA: 950] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni infection is one of the most widespread infectious diseases of the last century. The incidence and prevalence of campylobacteriosis have increased in both developed and developing countries over the last 10 years. The dramatic increase in North America, Europe, and Australia is alarming, and data from parts of Africa, Asia, and the Middle East indicate that campylobacteriosis is endemic in these areas, especially in children. In addition to C. jejuni, there is increasing recognition of the clinical importance of emerging Campylobacter species, including Campylobacter concisus and Campylobacter ureolyticus. Poultry is a major reservoir and source of transmission of campylobacteriosis to humans. Other risk factors include consumption of animal products and water, contact with animals, and international travel. Strategic implementation of multifaceted biocontrol measures to reduce the transmission of this group of pathogens is paramount for public health. Overall, campylobacteriosis is still one of the most important infectious diseases that is likely to challenge global health in the years to come. This review provides a comprehensive overview of the global epidemiology, transmission, and clinical relevance of Campylobacter infection.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|