1
|
Zhang C, Xu Y, Li L, Wu M, Fang Z, Tan J, Rollins JA, Lin H, Huang X, Mansfield SD, Li X, Zhang Y. A GDP-mannose-1-phosphate guanylyltransferase as a potential HIGS target against Sclerotinia sclerotiorum. PLoS Pathog 2025; 21:e1013129. [PMID: 40315235 PMCID: PMC12068732 DOI: 10.1371/journal.ppat.1013129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 05/12/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Sclerotinia stem rot is a devastating disease affecting vegetables and oil crops worldwide. It is caused by the necrotrophic ascomycete Sclerotinia (S.) sclerotiorum. Host-induced gene silencing (HIGS) has shown promise in disease control against insects and fungal pathogens, but effective HIGS target genes against S. sclerotiorum remain limited. In this study, we identified a GDP-mannose pyrophosphorylase (GMPP) SsMPG2 through forward genetic analysis. Ssmpg2 mutants exhibit abnormal sclerotia and compound appressoria, along with defective cell wall integrity and attenuated virulence. Meanwhile, knocking out SsMPG2 reduced the GMPP activity and glycosylation of proteins. In addition, SsMPG2 interacts with SsMPG1, which is essential in S. sclerotiorum. Downstream of the SsMPG1-SsMPG2 complex, SsPMT4, which encodes an O-mannosyltransferase, is also critical for compound appressoria formation and virulence. Notably, MPG2 is essential for the virulence of several other fungal pathogens such as Botrytis cinerea, Magnaporthe oryzae, and Fusarium graminearum. Furthermore, expressing hairpin RNAs against SsMPG1 and SsMPG2 in Nicotiana benthamiana and Arabidopsis thaliana significantly reduced disease symptoms caused by S. sclerotiorum. Collectively, our findings demonstrate the critical roles of GMPP in the virulence of phytopathogenic fungi and suggest that MPGs are promising HlGS targets for controlling S. sclerotiorum.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lin Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingsong Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zheyi Fang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyi Tan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jeffrey A. Rollins
- Depertment of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyi Huang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Crumière M, de Vallée A, Rascle C, Gillet FX, Nahar S, van Kan JAL, Bruel C, Poussereau N, Choquer M. A LysM Effector Mediates Adhesion and Plant Immunity Suppression in the Necrotrophic Fungus Botrytis cinerea. J Basic Microbiol 2025; 65:e2400552. [PMID: 39655398 DOI: 10.1002/jobm.202400552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 05/04/2025]
Abstract
LysM effectors are suppressors of chitin-triggered plant immunity in biotrophic and hemibiotrophic fungi. In necrotrophic fungi, LysM effectors might induce a mechanism to suppress host immunity during the short asymptomatic phase they establish before these fungi activate plant defenses and induce host cell death leading to necrosis. Here, we characterize a secreted LysM protein from a major necrotrophic fungus, Botrytis cinerea, called BcLysM1. Transcriptional induction of BcLysM1 gene was observed in multicellular appressoria, called infection cushions, in unicellular appressoria and in the early phase of infection on bean leaves. We confirmed that BcLysM1 protein binds chitin in the fungus cell wall and protects hyphae against degradation by external chitinases. This effector is also able to suppress the chitin-induced ROS burst in Arabidopsis thaliana, suggesting sequestration of chitooligosaccharides in apoplast during infection. Moreover, contribution of BcLysM1 in infection initiation and in adhesion to bean leaf surfaces were demonstrated. Our data show for the first time that a LysM effector can play a dual role in mycelial adhesion and suppression of chitin-triggered host immunity, both of which occur during the early asymptomatic phase of infection by necrotrophic fungi.
Collapse
Affiliation(s)
- Mélanie Crumière
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Christine Rascle
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - François-Xavier Gillet
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Shamsun Nahar
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Christophe Bruel
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Mathias Choquer
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| |
Collapse
|
3
|
Volkov VV, Sadaf A, Perry CC. Raman microscopy tracks maturity of melanin intermediates in Botrytis cinerea, a plant pathogen. RSC Adv 2023; 13:1381-1391. [PMID: 36686955 PMCID: PMC9817083 DOI: 10.1039/d2ra06439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
We use Raman microscopy to describe the structure and chemical composition of both conidiophore and hyphae of Botrytis cinerea, a common plant pathogen. To interpret experimental data, we use density functional theory (DFT) to compute Raman tensors specific to an important fungal glycopeptide, a segment of α-chitin, and several naphthalene-based precursors of increasing complexity, which we propose play a role in the melanin synthesis pathway. Using spectral interpretations based on quantum chemical validation, we review microscopy images reconstructed for specific Raman activities and describe differences in distributions of structural components, photo-protective secondary naphthalene-based pigments, and proteins in both spores and hyphal filaments. Comparison of our results with literature data on other fungi suggests an example of convergent evolution expressed at the level of secondary metabolites specific to plant pathogenic fungi. Our results indicate that pre-resonant Raman monitoring of melanin precursors may help assessment of local Botrytis population biology to aid agricultural production.
Collapse
Affiliation(s)
- Victor V. Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| | - Ayesha Sadaf
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| | - Carole C. Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent UniversityNottinghamNG11 8NSUK+44 (0)115 8486695
| |
Collapse
|
4
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
5
|
Liu C, Talbot NJ, Chen XL. Protein glycosylation during infection by plant pathogenic fungi. THE NEW PHYTOLOGIST 2021; 230:1329-1335. [PMID: 33454977 DOI: 10.1111/nph.17207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Glycosylation is a conserved set of post-translational modifications that exists in all eukaryotic cells. During the last decade, the role of glycosylation in plant pathogenic fungi has received significant attention and considerable progress has been made especially in Ustilago maydis and Magnaporthe oryzae. Here, we review recent advances in our understanding of the role of N-glycosylation, O-glycosylation and glycosylphosphatidylinositol (GPI) anchors during plant infection by pathogenic fungi. We highlight the roles of these processes in regulatory mechanisms associated with appressorium formation, host penetration, biotrophic growth and immune evasion. We argue that improved knowledge of glycosylation pathways and the impact of these modifications on fungal pathogenesis is overdue and could provide novel strategies for disease control.
Collapse
Affiliation(s)
- Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
7
|
Zhao G, Xu Y, Ouyang H, Luo Y, Sun S, Wang Z, Yang J, Jin C. Protein O-mannosylation affects protein secretion, cell wall integrity and morphogenesis in Trichoderma reesei. Fungal Genet Biol 2020; 144:103440. [PMID: 32758529 DOI: 10.1016/j.fgb.2020.103440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of proteins in the ER. Trichoderma reesei strains displayed a single representative of each PMT subfamily, Trpmt1, Trpmt2 and Trpmt4. In this work, two knockout strains ΔTrpmt1and ΔTrpmt4were obtained. Both mutants showed retarded growth, defective cell walls, reduced conidiation and decreased protein secretion. Additionally, the ΔTrpmt1strain displayed a thermosensitive growth phenotype, while the ΔTrpmt4 strain showed abnormal polarity. Meanwhile, OETrpmt2 strain, in which the Trpmt2 was over-expressed, exhibited increased conidiation, enhanced protein secretion and abnormal polarity. Using a lectin enrichment method and MS/MS analysis, 173 O-glycoproteins, 295 O-glycopeptides and 649 O-mannosylation sites were identified as the targets of PMTs in T. reesei. These identified O-mannoproteins are involved in various physiological processes such as protein folding, sorting, transport, quality control and secretion, as well as cell wall integrity and polarity. By comparing proteins identified in the mutants and its parent strain, the potential specific protein substrates of PMTs were identified. Based on our results, TrPMT1 is specifically involved inO-mannosylation of intracellular soluble proteins and secreted proteins, specially glycosidases. TrPMT2 is involved inO-mannosylation of secreted proteins and GPI-anchor proteins, and TrPMT4 mainly modifies multiple transmembrane proteins. The TrPMT1-TrPMT4 complex is responsible for O-mannosylation of proteins involved in cell wall integrity. Overexpression of TrPMT2 enhances protein secretion, which might be a new strategy to improve expression efficiency in T. reesei.
Collapse
Affiliation(s)
- Guangya Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutao Sun
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongfu Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
8
|
González M, Brito N, Hernández‐Bolaños E, González C. New tools for high-throughput expression of fungal secretory proteins in Saccharomyces cerevisiae and Pichia pastoris. Microb Biotechnol 2019; 12:1139-1153. [PMID: 30289201 PMCID: PMC6801181 DOI: 10.1111/1751-7915.13322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Heterologous protein expression in yeast, mostly in Saccharomyces cerevisiae and Pichia pastoris, is a well-established and widely used technique. It typically requires the construction of an expression vector in Escherichia coli containing the foreign gene and its subsequent transformation into yeast. Although simple, this procedure has important limitations for the expression of large numbers of proteins, that is, for the generation of protein libraries. We describe here the development of a novel system for the easy and fast expression of heterologous proteins both in S. cerevisiae and in P. pastoris, under the control of the GAL1 and AOX1 promoters respectively. Expression in S. cerevisiae requires only the transformation of yeast cells with an unpurified PCR product carrying the gene to be expressed, and the expression of the same gene in P. pastoris requires only the isolation of the plasmid generated in S. cerevisiae and its transformation into this second yeast, thus making this system suitable for high-throughput projects. The system has been tested by the extracellular expression of 30 secretory fungal proteins.
Collapse
Affiliation(s)
- Mario González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Nélida Brito
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Eduardo Hernández‐Bolaños
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| | - Celedonio González
- Departamento de BioquímicaMicrobiología, Biología Celular y GenéticaUniversidad de La Laguna38206La Laguna (Tenerife)Spain
| |
Collapse
|
9
|
Chaliha C, Rugen MD, Field RA, Kalita E. Glycans as Modulators of Plant Defense Against Filamentous Pathogens. FRONTIERS IN PLANT SCIENCE 2018; 9:928. [PMID: 30022987 PMCID: PMC6039678 DOI: 10.3389/fpls.2018.00928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
Plants and microbes utilize glycoconjugates as structural entities, energy reserves for cellular processes, and components of cellular recognition or binding events. The structural heterogeneity of carbohydrates in such systems is a result of the ability of the carbohydrate biosynthetic enzymes to reorient sugar monomers in a variety of forms, generating highly complex, linear, branched, or hierarchical structures. During the interaction between plants and their microbial pathogens, the microbial cell surface glycans, cell wall derived glycans, and glycoproteins stimulate the signaling cascades of plant immune responses, through a series of specific or broad spectrum recognition events. The microbial glycan-induced plant immune responses and the downstream modifications observed in host-plant glycan structures that combat the microbial attack have garnered immense interest among scientists in recent times. This has been enabled by technological advancements in the field of glycobiology, making it possible to study the ongoing co-evolution of the microbial and the corresponding host glycan structures, in greater detail. The new glycan analogs emerging in this evolutionary arms race brings about a fresh perspective to our understanding of plant-pathogen interactions. This review discusses the role of diverse classes of glycans and their derivatives including simple sugars, oligosaccharides, glycoproteins, and glycolipids in relation to the activation of classical Pattern-Triggered Immunity (PTI) and Effector-Triggered Immunity (ETI) defense responses in plants. While primarily encompassing the biological roles of glycans in modulating plant defense responses, this review categorizes glycans based on their structure, thereby enabling parallels to be drawn to other areas of glycobiology. Further, we examine how these molecules are currently being used to develop new bio-active molecules, potent as priming agents to stimulate plant defense response and as templates for designing environmentally friendly foliar sprays for plant protection.
Collapse
Affiliation(s)
- Chayanika Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Michael D. Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
10
|
García N, González MA, González C, Brito N. Simultaneous Silencing of Xylanase Genes in Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:2174. [PMID: 29312413 PMCID: PMC5743704 DOI: 10.3389/fpls.2017.02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 05/30/2023]
Abstract
The endo-β-1,4-xylanase BcXyn11A is one of several plant cell-wall degrading enzymes that the phytopathogenic fungus Botrytis cinerea secretes during interaction with its hosts. In addition to its enzymatic activity, this protein also acts as an elicitor of the defense response in plants and has been identified as a virulence factor. In the present work, other four endoxylanase coding genes (Bcxyn11B, Bcxyn11C, Bcxyn10A, and Bcxyn10B) were identified in the B. cinerea genome and the expression of all five genes was analyzed by Q-RT- PCR in vitro and in planta. A cross-regulation between xylanase genes was identified analyzing their expression pattern in the ΔBcxyn11A mutant strain and a putative BcXyn11A-dependt induction of Bcxyn10B gene was found. In addition, multiple knockdown strains were obtained for the five endoxylanase genes by transformation of B. cinerea with a chimeric DNA construct composed of 50-nt sequences from the target genes. The silencing of each xylanase gene was analyzed in axenic cultures and during infection and the results showed that the efficiency of the multiple silencing depends on the growth conditions and on the cross-regulation between them. Although the simultaneous silencing of the five genes was observed by Q-RT-PCR when the silenced strains were grown on medium supplemented with tomato extract, the endoxylanase activity measured in the supernatants was reduced only by 40%. Unexpectedly, the silenced strains overexpressed the Bcxyn11A and Bcxyn11C genes during the infection of tomato leaves, making difficult the analysis of the role of the endo-β-1,4-xylanases in the virulence of the fungus.
Collapse
|
11
|
González M, Brito N, González C. The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity. THE NEW PHYTOLOGIST 2017; 215:397-410. [PMID: 28480965 DOI: 10.1111/nph.14588] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
Abstract
The broad-range phytopathogenic fungus Botrytis cinerea secretes hundreds of proteins during infection of its plant hosts. One of these proteins, BcIEB1, is abundantly secreted and is able to elicit plant defenses, probably as a pathogen-associated molecular pattern, although its native function in B. cinerea biology remains unknown. Pull-down experiments designed to isolate the molecular target of BcIEB1 in tobacco resulted in the identification of osmotin, a pathogenesis-related protein of family 5 that shows antifungal activity. The expression of osmotin in Escherichia coli allowed the verification of the BcIEB1-osmotin interaction with pure proteins by pull-down and far Western blot experiments, as well as the confirmation of the activity of osmotin against B. cinerea. Interestingly, B. cinerea Δbcieb1 mutants are more susceptible than the wild-type to osmotin, and the external addition of pure BcIEB1 protects the Δbcieb1 mutants, as well as Saccharomyces cerevisiae, from the antifungal action of osmotin, thus pointing at PR5 inhibition as the primary native function of BcIEB1. The question of whether osmotin is also involved in the activation of plant defenses by BcIEB1 is also addressed, and the data suggest that osmotin does not participate in the elicitation process.
Collapse
Affiliation(s)
- Mario González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain
| | - Nélida Brito
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain
| | - Celedonio González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain
| |
Collapse
|
12
|
Pérez-Hernández A, González M, González C, van Kan JAL, Brito N. BcSUN1, a B. cinerea SUN-Family Protein, Is Involved in Virulence. Front Microbiol 2017; 8:35. [PMID: 28163701 PMCID: PMC5247446 DOI: 10.3389/fmicb.2017.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
BcSUN1 is a glycoprotein secreted by Botrytis cinerea, an important plant pathogen that causes severe losses in agriculture worldwide. In this work, the role of BcSUN1 in different aspects of the B. cinerea biology was studied by phenotypic analysis of Bcsun1 knockout strains. We identified BcSUN1 as the only member of the Group-I SUN family of proteins encoded in the B. cinerea genome, which is expressed both in axenic culture and during infection. BcSUN1 is also weakly attached to the cellular surface and is involved in maintaining the structure of the cell wall and/or the extracellular matrix. Disruption of the Bcsun1 gene produces different cell surface alterations affecting the production of reproductive structures and adhesion to plant surface, therefore reducing B. cinerea virulence. BcSUN1 is the first member of the SUN family reported to be involved in the pathogenesis of a filamentous fungus.
Collapse
Affiliation(s)
- Alicia Pérez-Hernández
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Mario González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Celedonio González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research Centre (WUR)Wageningen, Netherlands
| | - Nélida Brito
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna (ULL)La Laguna, Spain
| |
Collapse
|
13
|
Frías M, González M, González C, Brito N. BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:115-124. [PMID: 27457989 DOI: 10.1016/j.plantsci.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
BcIEB1 is a very abundant protein in the secretome of Botrytis cinerea but it has no known function and no similarity to any characterized protein family. Previous results suggested that this protein is an elicitor of the plant defense system. In this work we have generated loss-of-function B. cinerea mutants lacking BcIEB1 and we have expressed the protein in yeast to assay its activity on plants. Analysis of the Δbcieb1 mutants did not result in any observable phenotype, including no difference in the virulence on a variety of hosts. However, when BcIEB1 was applied to plant tissues it produced necrosis as well as a whole range of symptoms: inhibition of seedling growth in Arabidopsis and tobacco, ion leakage from tobacco leaf disks, a ROS burst, cell death and autofluorescence in onion epidermis, as well as the expression of defense genes in tobacco. Moreover, tobacco plants treated with BcIEB1 showed an increased systemic resistance to B. cinerea. A small 35-amino acids peptide derived from a conserved region of BcIEB1 is almost as active on plants as the whole protein. These results clearly indicate that BcIEB1 elicits plant defenses, probably as a consequence of its recognition as a pathogen associated molecular pattern.
Collapse
Affiliation(s)
- Marcos Frías
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Mario González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Celedonio González
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
| | - Nélida Brito
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
14
|
Dieryckx C, Gaudin V, Dupuy JW, Bonneu M, Girard V, Job D. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:859. [PMID: 26528317 PMCID: PMC4607878 DOI: 10.3389/fpls.2015.00859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 05/27/2023]
Abstract
Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873.
Collapse
Affiliation(s)
- Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Vanessa Gaudin
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Marc Bonneu
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Dominique Job
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| |
Collapse
|
15
|
Leroch M, Mueller N, Hinsenkamp I, Hahn M. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2015; 16:787-98. [PMID: 25582910 PMCID: PMC6638485 DOI: 10.1111/mpp.12234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen-activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant-pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild-type. Although the wild-type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co-regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway.
Collapse
Affiliation(s)
- Michaela Leroch
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Nathalie Mueller
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Isabel Hinsenkamp
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| |
Collapse
|