1
|
Yang S, Zheng J, Mao H, Vinitchaikul P, Wu D, Chai J. Multiomics of yaks reveals significant contribution of microbiome into host metabolism. NPJ Biofilms Microbiomes 2024; 10:133. [PMID: 39572587 PMCID: PMC11582361 DOI: 10.1038/s41522-024-00609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
An intensive feeding system might improve the production cycle of yaks. However, how intensive feeding system contributes to yak growth is unclear. Here, multi-omics, including rumen metagenomics, rumen and plasma metabolomics, were performed to classify the regulatory mechanisms of intensive feeding system on yaks. Increased growth performance were observed. Rumen metagenomics revealed that Clostridium, Methanobrevibacter, Piromyces and Anaeromyces increased in the intensively fed yaks, contributing to amino acid and carbohydrate metabolism. The grazing yaks had more cellulolytic microbes. These microbiomes were correlated with the pathways of "Alanine aspartate and glutamate metabolism" and "Pyruvate metabolism". Intensive feeding increased methane degradation functions, while grazing yaks had higher methyl metabolites associated with methane production. These rumen microbiomes and their metabolites resulted in changes in plasma metabolome, finally influencing yaks' growth. Thus, an intensive feeding system altered the rumen microbiome and metabolism as well as host metabolism, resulting in improvements of yak growth.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China
| | - Huaming Mao
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | | | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China.
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Mitchell KE, Lee C, Socha MT, Kleinschmit DH, Firkins JL. Supplementing branched-chain volatile fatty acids in dual-flow cultures varying in dietary forage and corn oil concentrations. III: Protein metabolism and incorporation into bacterial protein. J Dairy Sci 2023; 106:7566-7577. [PMID: 37641344 DOI: 10.3168/jds.2022-23193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/11/2023] [Indexed: 08/31/2023]
Abstract
Some cellulolytic bacteria cannot transport branched-chain AA (BCAA) and do not express complete synthesis pathways, thus depending on cross-feeding for branched-chain volatile fatty acid (BCVFA) precursors for membrane lipids or for reductive carboxylation to BCAA. Our objective was to assess BCVFA uptake for BCAA synthesis in continuous cultures administered high forage (HF) and low forage (LF) diets without or with corn oil (CO). We hypothesized that BCVFA would be used for BCAA synthesis more in the HF than in LF diets. To help overcome bacterial inhibition by polyunsaturated fatty acids in CO, BCVFA usage for bacterial BCAA synthesis was hypothesized to decrease when CO was added to HF diets. The study was an incomplete block design with 8 dual-flow fermenters used in 4 periods with 8 treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were: HF or LF (67 or 33% forage, 33:67 alfalfa:orchardgrass pellets), without or with supplemental CO (3% of dry matter), and without or with 2.15 mmol/d (5 mg/d 13C) each of isovalerate, isobutyrate, and 2-methylbutyrate for one combined BCVFA treatment. The flow of bacterial BCAA increased by 10.7% by supplementing BCVFA and 9.14% with LF versus HF; similarly, dosing BCVFA versus without BCVFA increased BCAA by 1.98% in total bacterial AA, whereas LF increased BCAA by 1.92% versus HF. Additionally, BCVFA supplementation increased bacterial AA flow by 16.6% when supplemented in HF - CO and 12.4% in LF + CO diets, but not in the HF + CO (-1.5%) or LF - CO (+6.7%) diets (Diet × CO × BCVFA interaction). The recovery of 13C in bacterial AA flow was 31% lower with LF than with HF. Of the total 13C recovered in bacteria, 13.8, 17.3, and 30.2% were recovered in Val, Ile, and Leu, respectively; negligible 13C was recovered in other AA. When fermenters were dosed with BCVFA, nonbacterial and total effluent flows of AA, particularly of alanine and proline, suggest decreased peptidolysis. Increased ruminal outflow of bacterial AA, especially BCAA, but also nonbacterial AA could potentially support postabsorptive responses from BCVFA supplementation to dairy cattle.
Collapse
Affiliation(s)
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | | | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43035
| |
Collapse
|
3
|
Adeniyi A, Bello I, Mukaila T, Monono E, Hammed A. Developing rumen mimicry process for biological ammonia synthesis. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02880-7. [PMID: 37166514 DOI: 10.1007/s00449-023-02880-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The ruminant rumen houses hyper-ammonia-producing bacteria (HAB) that produce ammonia with minimal energy use. Here we developed a mimicry process to produce bio-ammonia, a solution of ammonia and ammonium. The rumen microbes were used to ferment soybean (SYB), soybean protein isolate (SPI), and pepsin-hydrolysate (HP) for bio-ammonia production. The maximum bio-ammonia produced from SYB, SPI, and HP were 0.65, 1.2, and 1.1 g/L, respectively. The presence of non-protein in SYB hindered bio-ammonia production and the processing of SYB to SPI and HP significantly (p < 0.05) increased bio-ammonia production. HP was converted to bio-ammonia quicker than SPI suggesting that enzymatic hydrolysis increases bioprocessing efficiency. Metagenomic analysis of a sample culture revealed that the HAB population is predominantly Klebsiella quasivariicola (73%), Escherichia coli (6%), and Enterobacter cloacae (6%). The bioprocessing steps developed would enable industrial ammonia production to achieve a low CO2 footprint.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ewumbua Monono
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA.
| |
Collapse
|
4
|
Honerlagen H, Reyer H, Abou-Soliman I, Segelke D, Ponsuksili S, Trakooljul N, Reinsch N, Kuhla B, Wimmers K. Microbial signature inferred from genomic breeding selection on milk urea concentration and its relation to proxies of nitrogen-utilization efficiency in Holsteins. J Dairy Sci 2023:S0022-0302(23)00233-3. [PMID: 37173253 DOI: 10.3168/jds.2022-22935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/03/2023] [Indexed: 05/15/2023]
Abstract
Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.
Collapse
Affiliation(s)
- Hanne Honerlagen
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Ibrahim Abou-Soliman
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany; Desert Research Center, Department of Animal and Poultry Breeding, Dokki, Giza Governorate 3751254, Egypt
| | - Dierck Segelke
- IT-Solutions for Animal Production, Vereinigte Informationssysteme Tierhaltung w.V. (vit), 27283 Verden, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Norbert Reinsch
- Research Institute for Farm Animal Biology, Institute of Genetics and Biometry, 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany; University of Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany.
| |
Collapse
|
5
|
Honerlagen H, Reyer H, Segelke D, Müller CBM, Prahl MC, Ponsuksili S, Trakooljul N, Reinsch N, Kuhla B, Wimmers K. Ruminal background of predisposed milk urea (MU) concentration in Holsteins. Front Microbiol 2022; 13:939711. [PMID: 36177471 PMCID: PMC9513179 DOI: 10.3389/fmicb.2022.939711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Efforts to reduce nitrogen (N) emissions are currently based on the optimization of dietary- N supply at average herd N requirements. The implementation of the considerable individual differences and predispositions in N- use efficiency and N- excretion in breeding programs is hampered by the difficulty of data collection. Cow individual milk urea (MU) concentration has been proposed as an easy-to-measure surrogate trait, but recent studies questioned its predictive power. Therefore, a deeper understanding of the biological mechanisms underlying predisposed higher (HMUg) or lower (LMUg) MU concentration in dairy cows is needed. Considering the complex N- metabolism in ruminants, the distinction between HMUg and LMUg could be based on differences in (i) the rumen microbial community, (ii) the host-specific transcription processes in the rumen villi, and (iii) the host-microbe interaction in the rumen. Therefore, rumen fluid and rumen epithelial samples from 10 HMUg and 10 LMUg cows were analyzed by 16S sequencing and HiSeq sequencing. In addition, the effect of dietary-N reduction on ruminal shifts was investigated in a second step. In total, 10 differentially abundant genera (DAG) were identified between HMUg and LMUg cows, elucidating greater abundances of ureolytic Succinivibrionaceae_UCG-002 and Ruminococcaceae_unclassified in LMUg animals and enhanced occurrences of Butyvibrio in HMUg cows. Differential expression analysis revealed genes of the bovine Major Histocompatibility Complex (BOLA genes) as well as MX1, ISG15, and PRSS2 displaying candidates of MU predisposition that further attributed to enhanced immune system activities in LMUg cows. A number of significant correlations between microbial genera and host transcript abundances were uncovered, including strikingly positive correlations of BOLA-DRA transcripts with Roseburia and Lachnospiraceae family abundances that might constitute particularly prominent microbial-host interplays of MU predisposition. The reduction of feed-N was followed by 18 DAG in HMUg and 19 DAG in LMUg, depicting pronounced interest on Shuttleworthia, which displayed controversial adaption in HMUg and LMUg cows. Lowering feed-N further elicited massive downregulation of immune response and energy metabolism pathways in LMUg. Considering breeding selection strategies, this study attributed information content to MU about predisposed ruminal N-utilization in Holstein-Friesians.
Collapse
Affiliation(s)
- Hanne Honerlagen
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Dierck Segelke
- IT-Solutions for Animal Production, Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden, Germany
| | - Carolin Beatrix Maria Müller
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Marie Christin Prahl
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Norbert Reinsch
- Research Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Lopes DRG, de Souza Duarte M, La Reau AJ, Chaves IZ, de Oliveira Mendes TA, Detmann E, Bento CBP, Mercadante MEZ, Bonilha SFM, Suen G, Mantovani HC. Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers. J Anim Sci Biotechnol 2021; 12:79. [PMID: 34261531 PMCID: PMC8281616 DOI: 10.1186/s40104-021-00599-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ruminants rely upon a complex community of microbes in their rumen to convert host-indigestible feed into nutrients. However, little is known about the association between the rumen microbiota and feed efficiency traits in Nellore (Bos indicus) cattle, a breed of major economic importance to the global beef market. Here, we compare the composition of the bacterial, archaeal and fungal communities in the rumen of Nellore steers with high and low feed efficiency (FE) phenotypes, as measured by residual feed intake (RFI). RESULTS The Firmicutes to Bacteroidetes ratio was significantly higher (P < 0.05) in positive-RFI steers (p-RFI, low feed efficiency) than in negative-RFI (n-RFI, high feed efficiency) steers. The differences in bacterial composition from steers with high and low FE were mainly associated with members of the families Lachnospiraceae, Ruminococcaceae and Christensenellaceae, as well as the genus Prevotella. Archaeal community richness was lower (P < 0.05) in p-RFI than in n-RFI steers and the genus Methanobrevibacter was either increased or exclusive of p-RFI steers. The fungal genus Buwchfawromyces was more abundant in the rumen solid fraction of n-RFI steers (P < 0.05) and a highly abundant OTU belonging to the genus Piromyces was also increased in the rumen microbiota of high-efficiency steers. However, analysis of rumen fermentation variables and functional predictions indicated similar metabolic outputs for the microbiota of distinct FE groups. CONCLUSIONS Our results demonstrate that differences in the ruminal microbiota of high and low FE Nellore steers comprise specific taxa from the bacterial, archaeal and fungal communities. Biomarker OTUs belonging to the genus Piromyces were identified in animals showing high feed efficiency, whereas among archaea, Methanobrevibacter was associated with steers classified as p-RFI. The identification of specific RFI-associated microorganisms in Nellore steers could guide further studies targeting the isolation and functional characterization of rumen microbes potentially important for the energy-harvesting efficiency of ruminants.
Collapse
Affiliation(s)
| | | | - Alex J La Reau
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Edenio Detmann
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
7
|
Abdallah A, Elemba E, Zhong Q, Sun Z. Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Curr Protein Pept Sci 2021; 21:785-798. [PMID: 32048965 DOI: 10.2174/1389203721666200212095503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.
Collapse
Affiliation(s)
- Abedin Abdallah
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Evera Elemba
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qingzhen Zhong
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zewei Sun
- Key laboratory of Straw Biology and Utilization (The Ministry of Education), Key Lab of Animal Nutrition and Feed
Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Carneiro DG, Almeida FA, Aguilar AP, Vieira NM, Pinto UM, Mendes TAO, Vanetti MCD. Salmonella enterica Optimizes Metabolism After Addition of Acyl-Homoserine Lactone Under Anaerobic Conditions. Front Microbiol 2020; 11:1459. [PMID: 32849316 PMCID: PMC7401450 DOI: 10.3389/fmicb.2020.01459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Acyl-homoserine lactones (AHLs) are quorum sensing (QS) signaling molecules that mediate cell-to-cell communication in Gram-negative bacteria. Salmonella does not produce AHL, however, it can recognize AHLs produced by other species through SdiA protein modulating important cellular functions. In this work, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on glucose consumption, metabolic profile, and gene expression of Salmonella throughout the cultivation time in Tryptic Soy Broth (TSB) under anaerobic conditions was evaluated. Analysis of the supernatant culture in high-performance liquid chromatography (HPLC) revealed lower glucose uptake after 4 and 6 h of the addition of C12-HSL. Gas chromatography-mass spectrometry (GC-MS) based analysis of the intracellular metabolites revealed C12-HSL perturbation in the abundance levels of metabolites related to the metabolic pathways of glycerolipids, purines, amino acids, and aminoacyl-tRNA biosynthesis. The real-time quantitative PCR (RT-qPCR) indicated that Salmonella increase expression of genes associated with nucleoside degradation and quantification of metabolites supported the induction of pentose phosphate pathway to ensure growth under lower glucose consumption. The obtained data suggest an important role of C12-HSL in the optimization of metabolism at a situation of high population densities.
Collapse
Affiliation(s)
- Deisy G Carneiro
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Felipe A Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Ananda P Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nívea M Vieira
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Uelinton M Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
9
|
Liu S, Zhang Z, Hailemariam S, Zheng N, Wang M, Zhao S, Wang J. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals (Basel) 2020; 10:ani10030368. [PMID: 32106487 PMCID: PMC7142414 DOI: 10.3390/ani10030368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Plant bioactive compounds have been chosen as alternative antibiotic to promote animal productivity. Biochanin A is a type of naturally occurring bioactive compound. It is O-methylated isoflavone and is found in red clover, alfalfa sprouts, and other legumes. The aim of this study was to determine the effect of biochanin A on rumen microbial fermentation and composition. The results show that biochanin a increases microbial gas production, but has no effect on volatile fatty acid (VFA) production. Microbial urease activity was inhibited by Biochanin A with the IC50 of 320 nM. Biochanin A also inhibited the degradation rate of Val, Lys, Met, Leu and total amino acids, respectively. The inhibition of urease activity and amino acid decomposition by biochanin A resulted in a reduction in ammonia. The 16S rRNA gene sequencing showed that biochanin A reduced the abundance of proteolytic bacteria Prevotella and Streptococcus. Therefore, biochanin A reduced the production of ammonia by inhibiting proteolytic bacteria and its decomposition of urea and amino acids activity. Abstract Biochanin A is a naturally occurring flavonoid compound that is found in plant species such as red clover (Trifolium pretense) and alfalfa (Medicago sativa). Flavonoids have been reported to regulate ruminal fermentation, and the objective of this study was to evaluate the effects of biochanin A on ruminal microbial composition and nitrogen metabolism. The experiment was performed by in vitro batch culturing of a control (without biochanin A) and a biochanin A treatment. Following a 24-h incubation, gas production and the amounts of ammonia-nitrogen (NH3-N), volatile fatty acid (VFA), and amino acids were measured. Microbial population using 16S rRNA gene sequence. We found that the addition of biochanin A significantly increased microbial gas production; but had no effect on VFA production. Biochanin A supplementation also resulted in reduced microbial urease activity with half the maximal inhibitory concentration of 320 nM and also inhibited the degradation rates of total amino acids, valine, lysine, methionine and leucine by 18%, 56%, 37%, 13%, and 12%, respectively. This inhibition of urease activity and amino acid decomposition resulted in a significant reduction in the NH3-N concentration. High-throughput sequencing of the 16S rRNA sequence to monitor microbial composition showed that biochanin A significantly reduced the abundance of the proteolytic bacteria Prevotella and ureolytic bacteria Selenomonas, but increased the abundance of the lactic acid metabolizing bacteria Veillonella and Megasphaera. In conclusion, biochanin A reduced the production of ammonia by inhibiting proteolytic bacteria and their decomposition of urea and amino acids.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Zhenyu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Samson Hailemariam
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Min Wang
- State Key Laboratory of Animal Nutrition, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, Hunan, China;
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
- Correspondence: (S.Z.); (J.W.)
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
- Correspondence: (S.Z.); (J.W.)
| |
Collapse
|
10
|
Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures. Curr Microbiol 2018; 75:1543-1550. [DOI: 10.1007/s00284-018-1558-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
11
|
Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 2018; 9:33. [PMID: 29721317 PMCID: PMC5911377 DOI: 10.1186/s40104-018-0249-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds (NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Nina Gresner
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
12
|
Inhibition of Growth and Ammonia Production of Ruminal Hyper Ammonia-Producing Bacteria by Chinook or Galena Hops after Long-Term Storage. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Flythe MD, Kagan IA, Wang Y, Narvaez N. Hops ( Humulus lupulus L.) Bitter Acids: Modulation of Rumen Fermentation and Potential As an Alternative Growth Promoter. Front Vet Sci 2017; 4:131. [PMID: 28871284 PMCID: PMC5566628 DOI: 10.3389/fvets.2017.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing.
Collapse
Affiliation(s)
- Michael D Flythe
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Isabelle A Kagan
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Nelmy Narvaez
- SGS Canada Inc., Agricultural Services, Guelph, ON, Canada
| |
Collapse
|
14
|
Harlow BE, Goodman JP, Lynn BC, Flythe MD, Ji H, Aiken GE. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract. J Anim Sci 2017; 95:980-988. [PMID: 28380578 DOI: 10.2527/jas.2016.1128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [ (Schreb.) Darbysh.] seed extract by rumen microbiota ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting rumen fluid from fistulated wether goats ( = 3), straining, and differential centrifugation. Suspensions were dispensed into anaerobic tubes with added Trypticase with or without extract (∼10 μg kg ergovaline). Suspensions were incubated for 48 h at 39°C. Samples were collected at 0, 24, and 48 h for ergovaline analysis and enumeration of hyper-ammonia producing (HAB) and tryptophan-utilizing bacteria. Ergovaline values were analyzed by repeated measures using the mixed procedure of SAS. Enumeration data were log transformed for statistical analysis. When suspensions were incubated with extract, 11 to 15% of ergovaline disappearance was observed over 48 h ( = 0.02). After 24 h, suspensions with added extract had 10-fold less HAB than controls ( = 0.04), but treatments were similar by 48 h ( = 1.00). However, after 24 h and 48 h, suspensions with extract had 10-fold more tryptophan-utilizing bacteria ( < 0.01) that were later isolated and identified by their 16S RNA gene sequence as . The isolates and other known rumen pure cultures ( JB1, B159, HD4, B, F, MD1, SR) were evaluated for the ability to degrade ergovaline in vitro. Pure culture cell suspensions were incubated as described above and samples were taken at 0 and 48 h for ergovaline analysis. Data were analyzed using the ANOVA procedure of SAS. All HAB, including the isolates, tested degraded ergovaline (54 to 75%; < 0.05). B14 was also able to degrade ergovaline but to a lesser capacity (12%; < 0.05), but all other bacteria tested did not degrade ergovaline. The results of this study indicate which rumen bacteria may play an important role in ergovaline degradation and that microbiological strategies for controlling their activity could have ramifications for fescue toxicosis and other forms of ergotism in ruminants.
Collapse
|
15
|
Hall M. Nitrogen source and concentration affect utilization of glucose by mixed ruminal microbes in vitro. J Dairy Sci 2017; 100:2739-2750. [DOI: 10.3168/jds.2016-12091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022]
|
16
|
de Almeida FA, Pimentel-Filho NDJ, Carrijo LC, Bento CBP, Baracat-Pereira MC, Pinto UM, de Oliveira LL, Vanetti MCD. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis. Microb Pathog 2017; 102:148-159. [DOI: 10.1016/j.micpath.2016.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
|
17
|
Peng K, Shirley DC, Xu Z, Huang Q, McAllister TA, Chaves AV, Acharya S, Liu C, Wang S, Wang Y. Effect of purple prairie clover (Dalea purpurea Vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Harlow B, Bryant R, Cohen S, O'Connell S, Flythe M. Degradation of spent craft brewer's yeast by caprine rumen hyper ammonia‐producing bacteria. Lett Appl Microbiol 2016; 63:307-12. [DOI: 10.1111/lam.12623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- B.E. Harlow
- Department of Animal and Food Sciences University of Kentucky Lexington KY USA
| | - R.W. Bryant
- Asheville Flavor Innovations LLC Asheville NC USA
| | - S.D. Cohen
- Fermentation Sciences Appalachian State University Boone NC USA
| | - S.P. O'Connell
- Department of Biology Western Carolina University Cullowhee NC USA
| | - M.D. Flythe
- Department of Animal and Food Sciences University of Kentucky Lexington KY USA
- Agricultural Research Service Forage‐Animal Production Research Unit USDA Lexington KY USA
| |
Collapse
|