1
|
Basu Mallick S, Das S, Venkatasubramanian A, Kundu S, Datta PP. Comprehensive in silico analyses of fifty-one uncharacterized proteins from Vibrio cholerae. PLoS One 2024; 19:e0311301. [PMID: 39365770 PMCID: PMC11452002 DOI: 10.1371/journal.pone.0311301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Due to the rise of multidrug-resistant strains of Vibrio cholerae and the recent cholera outbreaks in African and Asian nations, it is imperative to identify novel therapeutic targets and possible vaccine candidates. In this regard, this work primarily aims to identify and characterize new antigenic molecules using comparative RNA sequencing data and label-free proteomics data, carried out with essential GTPase cgtA knockdown and wild-type strain of V. cholerae. We identified hitherto 51 characterized proteins from high-throughput RNA-sequencing and proteomics data. This work involved the assessment of their physicochemical characteristics, subcellular localization, solubility, structures, and functional annotations. In addition, the immunoinformatic and reverse vaccinology technique was used to find new vaccine targets with high antigenicity, low allergenicity, and low toxicity profiles. Among the 51 proteins, 24 were selected based on their immunogenic profiles to identify B/T-cell epitopes. In addition, 20 prospective therapeutic targets were identified using virulence predictions and related investigations. Furthermore, two proteins, UniProt ID- Q9KRD2 and Q9KU58, with molecular weight of 92kDa and 12kDa, respectively, were chosen for cloning and expression towards in vitro biochemical characterization based on their range of expression patterns, high antigenic, low allergenic, and low toxicity properties. In conclusion, we believe that this study will reveal new facets and avenues for drug discovery and put us a step forward toward novel therapeutic interventions against the deadly disease of cholera.
Collapse
Affiliation(s)
- Sritapa Basu Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Aravind Venkatasubramanian
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Sourabh Kundu
- Ramakrishna Mission and Vivekananda Educational and Research Institute, Narendrapur, Kolkata, WB, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| |
Collapse
|
2
|
Biktimirov A, Islamov D, Fatkhullin B, Lazarenko V, Validov S, Yusupov M, Usachev K. Crystal structure of GTPase YsxC from Staphylococcus aureus. Biochem Biophys Res Commun 2024; 699:149545. [PMID: 38277729 DOI: 10.1016/j.bbrc.2024.149545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
The YsxC protein from Staphylococcus aureus is a GTP-binding protein from the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPase class, EngB family of GTPases. Recent structural and biochemical studies of YsxC function show that it is an integral part of the pathogenic microorganism life cycle, as it is involved in the assembly of the large 50S ribosomal subunit. Structural studies of this protein with its specific functional features make it an attractive target for further development of new selective antimicrobials. In this study, we cloned the ysxC protein gene from S. aureus, overexpressed the protein in E. coli, and subsequently purified and crystallized it. Protein crystals were successfully grown using the vapor diffusion method, yielding diffraction data with a resolution of up to 2 Å. Comparative analysis of the structure of SaYsxC with known three-dimensional structures of homologs from other microorganisms showed the presence of structural differences for the apo form.
Collapse
Affiliation(s)
- Artem Biktimirov
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation
| | - Daut Islamov
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation; Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, 420111, Russian Federation
| | - Bulat Fatkhullin
- Institute of Genetics, Molecular and Cellular Biology, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, F-67400, France
| | - Vladimir Lazarenko
- National Research Centre Kurchatov Institute, Kurchatov Sq. 2, 123182, Moscow, Russian Federation
| | - Shamil Validov
- Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, 420111, Russian Federation
| | - Marat Yusupov
- Institute of Genetics, Molecular and Cellular Biology, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, F-67400, France
| | - Konstantin Usachev
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation.
| |
Collapse
|
3
|
Talà A, Calcagnile M, Resta SC, Pennetta A, De Benedetto GE, Alifano P. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol 2023; 14:1104454. [PMID: 36910221 PMCID: PMC9998046 DOI: 10.3389/fmicb.2023.1104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the increased resistance to all available antibiotics and the lack of vaccines, Neisseria gonorrhoeae (the gonococcus) poses an urgent threat. Although the mechanisms of virulence and antibiotic resistance have been largely investigated in this bacterium, very few studies have addressed the stringent response (SR) that in pathogenic bacteria controls the expression of genes involved in host-pathogen interaction and tolerance and persistence toward antibiotics. In this study, the results of the transcriptome analysis of a clinical isolate of N. gonorrhoeae, after induction of the SR by serine hydroxamate, provided us with an accurate list of genes that are transcriptionally modulated during the SR. The list includes genes associated with metabolism, cellular machine functions, host-pathogen interaction, genome plasticity, and antibiotic tolerance and persistence. Moreover, we found that the artificial induction of the SR in N. gonorrhoeae by serine hydroxamate is prevented by thiostrepton, a thiopeptide antibiotic that is known to interact with ribosomal protein L11, thereby inhibiting functions of EF-Tu and EF-G, and binding of pppGpp synthase I (RelA) to ribosome upon entry of uncharged tRNA. We found that N. gonorrhoeae is highly sensitive to thiostrepton under in vitro conditions, and that thiostrepton, in contrast to other antibiotics, does not induce tolerance or persistence. Finally, we observed that thiostrepton attenuated the expression of key genes involved in the host-pathogen interaction. These properties make thiostrepton a good drug candidate for dampening bacterial virulence and preventing antibiotic tolerance and persistence. The ongoing challenge is to increase the bioavailability of thiostrepton through the use of chemistry and nanotechnology.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Pennetta
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
4
|
Chakraborty A, Halder S, Kishore P, Saha D, Saha S, Sikder K, Basu A. The structure-function analysis of Obg-like GTPase proteins along the evolutionary tree from bacteria to humans. Genes Cells 2022; 27:469-481. [PMID: 35610748 PMCID: PMC9545696 DOI: 10.1111/gtc.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Obg proteins belong to P-loop guanine triphosphatase (GTPase) that are conserved from bacteria to humans. Like other GTPases, Obg cycles between guanine triphosphate (GTP) bound "on" state and guanine diphosphate (GDP)-bound "off" state, thereby controlling various cellular processes. Different members of this group have unique structural characteristics; a conserved glycine-rich N-terminal domain known as obg fold, a central conserved nucleotide binding domain, and a less conserved C-terminal domain of other functions. Obg is a ribosome dependent GTPase helps in ribosome maturation by interacting with several proteins of the 50S subunit of the ribosome. Obg proteins have been widely considered as a regulator of cellular functions, helping in DNA replication, cell division. Apart from that, this protein also takes part in various stress adaptation pathways like a stringent response, sporulation, and general stress response. In this particular review, the structural features of ObgE have been highlighted and how the structure plays important role in interacting with regulators like GTP, ppGpp that are crucial for executing biological function has been orchestrated. In particular, we believe that Obg-like proteins can provide a link between different global pathways that are necessary for fine-tuning cellular processes to maintain the cellular energy status.
Collapse
Affiliation(s)
- Asmita Chakraborty
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sheta Halder
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Purvi Kishore
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Disha Saha
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Sujata Saha
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Kunal Sikder
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
5
|
Greydanus DE, Cabral MD, Patel DR. Pelvic inflammatory disease in the adolescent and young adult: An update. Dis Mon 2021; 68:101287. [PMID: 34521505 DOI: 10.1016/j.disamonth.2021.101287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic inflammatory disease (PID) is an infection of the female upper genital tract that is typically polymicrobial with classic core involvement of Neisseria gonorrhoeae and/or Chlamydia trachomatis, though other endogenous flora from the vagino-cervical areas can be involved as well. It is often a sexually transmitted disease but other etiologic routes are also noted. A variety of risk factors have been identified including adolescence, young adulthood, adolescent cervical ectropion, multiple sexual partners, immature immune system, history of previous PID, risky contraceptive practices and others. An early diagnosis and prompt treatment are necessary to reduce risks of PID complications such as chronic pelvic pain, ectopic pregnancy and infertility. Current management principles of PID are also reviewed. It is important for clinicians to screen sexually active females for common sexually transmitted infections such as Chlamydia trachomatis and provide safer sex education to their adolescent and young adult patients. Clinicians should provide comprehensive management to persons with PID and utilize established guidelines such as those from the US Centers for Disease Control and Prevention (CDC).
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, Michigan, 49008, United States of America.
| | - Maria Demma Cabral
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, Michigan, 49008, United States of America.
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, Michigan, 49008, United States of America.
| |
Collapse
|
6
|
Chen J, Wang L, Jin X, Wan J, Zhang L, Je BI, Zhao K, Kong F, Huang J, Tian M. Oryza sativa ObgC1 Acts as a Key Regulator of DNA Replication and Ribosome Biogenesis in Chloroplast Nucleoids. RICE (NEW YORK, N.Y.) 2021; 14:65. [PMID: 34251486 PMCID: PMC8275814 DOI: 10.1186/s12284-021-00498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. RESULTS We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. CONCLUSION Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Li Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaowan Jin
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lang Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Byoung Il Je
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China
| | - Ke Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanlei Kong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Huang
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China.
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, 625000, China.
| |
Collapse
|
7
|
Chatterjee A, Acharjee A, Das S, Datta PP. Deletion analyses reveal insights into the domain specific activities of an essential GTPase CgtA in Vibrio cholerae. Arch Biochem Biophys 2019; 665:143-151. [PMID: 30894284 DOI: 10.1016/j.abb.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
CgtA is an essential bacterial GTPase protein involved in multiple cellular activities. In the presence of 50S ribosome, its GTPase activity increases significantly. Through sequential deletions of CgtA protein of Vibrio cholerae (CgtAvc) we found that its N terminal Obg domain is essential for ribosome binding and augmenting the ribosome mediated GTPase activity. Strategic deletions of the three glycine rich loops of Obg domain revealed that loop 1 of Obg domain is involved in anchoring the protein into the 50S, whereas, loop 2 & loop 3 are involved in conveying the effect of interaction of the Obg domain with the 50S to the GTPase domain through an interdomain linker, followed by GTP hydrolysis. On the other hand, the non-conserved C-terminal domain (CTD) is not directly involved in ribosome binding but shows negative impact on GTPase activity.
Collapse
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India; Viral Research and Diagnostic Laboratories, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, P.O. Box-177, Kolkata, 700 010, West Bengal, India
| | - Arita Acharjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
8
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
9
|
SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog 2018; 14:e1007081. [PMID: 29975784 PMCID: PMC6033465 DOI: 10.1371/journal.ppat.1007081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Lysozymes are nearly omnipresent as the first line of immune defense against microbes in animals. They exert bactericidal action through antimicrobial peptide activity and peptidoglycan hydrolysis. Gram-negative bacteria developed several weapons to battle lysozymes, including inhibitors of c-type lysozymes in the MliC/PliC family and the Neisseria adhesin complex protein (ACP). Until the recent discovery of ACP, no proteinaceous lysozyme inhibitors were reported for the genus Neisseria, including the important human pathogen N. gonorrhoeae. Here, we describe a previously unrecognized gonococcal virulence mechanism involving a protein encoded by the open reading frame ngo1063 that acts to counteract c-type Iysozyme and provides a competitive advantage in the murine model of gonorrhea. We named this protein SliC as a surface-exposed lysozyme inhibitor of c-type lysozyme. SliC displays low overall primary sequence similarity to the MliC/PliC inhibitors, but we demonstrate that it has a parallel inhibitory mechanism. Our studies provide the first evidence that bacterial proteinaceous lysozyme inhibitors protect against host lysozyme during infection based on lack of attenuation of the ΔsliC mutant in lysozyme knock-out mice, and that the conserved residues involved in lysozyme inhibition, S83 and K103, are functionally indispensable during infection in wild type mice. Recombinant SliC completely abrogated the lytic activity of human and chicken c-type lysozymes, showing a preference towards human lysozyme with an IC50 of 1.85 μM and calculated KD value of 9.2 ± 1.9 μM. In contrast, mutated SliC bearing S83A and K103A substitutions failed to protect fluorescein-labeled cell-wall from lysozyme-mediated hydrolysis. Further, we present data revealing that SliC is a surface-displayed lipoprotein released in membrane vesicles that is expressed throughout all phases of growth, in conditions relevant to different niches of the human host, and during experimental infection of the murine genital tract. SliC is also highly conserved and expressed by diverse gonococcal isolates as well as N. meningitidis, N. lactamica, and N. weaveri. This study is the first to highlight the importance of an anti-lysozyme strategy to escape the innate immune response during N. gonorrhoeae infection. Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is a clinically important pathogen due to the emergence of multi-drug resistance and the lack of a vaccine(s). During host colonization, pathogenic and commensal Neisseria inevitably encounter lysozyme, a major host innate defense factor that is abundantly present in epithelial secretions and phagocytic cells. Although Neisseria spp produce a c-type lysozyme inhibitor, the Adhesin Complex Protein, the significance of lysozyme inhibition for host colonization has not been addressed. Here we demonstrate the existence of a new c-type lysozyme inhibitor in Neisseria. We show that it is a surface-displayed lipoprotein in N. gonorrhoeae and, through its lysozyme-blocking function, plays a critical role in colonization of genital tract mucosae during infection in the female gonorrhea mouse model. We named the protein SliC as a surface-exposed lysozyme inhibitor of c-type lysozyme. Understanding the mechanisms underlying anti-lysozyme strategies may facilitate antimicrobial development.
Collapse
|
10
|
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. J Biol Chem 2018; 293:1106-1119. [PMID: 29229778 PMCID: PMC5787791 DOI: 10.1074/jbc.ra117.000437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface-displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330,
| | - Igor H Wierzbicki
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Ryszard A Zielke
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Rachael F Ryner
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Susan K Buchanan
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
11
|
Abstract
The function and extracellular location of cell envelope proteins make them attractive candidates for developing vaccines against bacterial diseases, including challenging drug-resistant pathogens, such as Neisseria gonorrhoeae A proteomics-driven reverse vaccinology approach has delivered multiple gonorrhea vaccine candidates; however, the biological functions of many of them remain to be elucidated. Herein, the functions of six gonorrhea vaccine candidates-NGO2121, NGO1985, NGO2054, NGO2111, NGO1205, and NGO1344-in cell envelope homeostasis were probed using phenotype microarrays under 1,056 conditions and a ΔbamE mutant (Δngo1780) as a reference of perturbed outer membrane integrity. Optimal growth conditions for an N. gonorrhoeae phenotype microarray assay in defined liquid medium were developed, which can be useful in other applications, including rapid and thorough antimicrobial susceptibility assessment. Our studies revealed 91 conditions having uniquely positive or negative effects on one of the examined mutants. A cluster analysis of 37 and 57 commonly beneficial and detrimental compounds, respectively, revealed three separate phenotype groups: NGO2121 and NGO1985; NGO1344 and BamE; and the trio of NGO1205, NGO2111, and NGO2054, with the last protein forming an independent branch of this cluster. Similar phenotypes were associated with loss of these vaccine candidates in the highly antibiotic-resistant WHO X strain. Based on their extensive sensitivity phenomes, NGO1985 and NGO2121 appear to be the most promising vaccine candidates. This study establishes the principle that phenotype microarrays can be successfully applied to a fastidious bacterial organism, such as N. gonorrhoeae IMPORTANCE Innovative approaches are required to develop vaccines against prevalent and neglected sexually transmitted infections, such as gonorrhea. Herein, we have utilized phenotype microarrays in the first such investigation into Neisseria gonorrhoeae to probe the function of proteome-derived vaccine candidates in cell envelope homeostasis. Information gained from this screening can feed the vaccine candidate decision tree by providing insights into the roles these proteins play in membrane permeability, integrity, and overall N. gonorrhoeae physiology. The optimized screening protocol can be applied in investigations into the function of other hypothetical proteins of N. gonorrhoeae discovered in the expanding number of whole-genome sequences, in addition to revealing phenotypic differences between clinical and laboratory strains.
Collapse
|
12
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
13
|
Wierzbicki IH, Zielke RA, Korotkov KV, Sikora AE. Functional and structural studies on the Neisseria gonorrhoeae GmhA, the first enzyme in the glycero-manno-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability. Microbiologyopen 2017; 6:e00432. [PMID: 28063198 PMCID: PMC5387315 DOI: 10.1002/mbo3.432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/04/2022] Open
Abstract
Sedoheptulose-7-phosphate isomerase, GmhA, is the first enzyme in the biosynthesis of nucleotide-activated-glycero-manno-heptoses and an attractive, yet underexploited, target for development of broad-spectrum antibiotics. We demonstrated that GmhA homologs in Neisseria gonorrhoeae and N. meningitidis (hereafter called GmhAGC and GmhANM , respectively) were interchangeable proteins essential for lipooligosaccharide (LOS) synthesis, and their depletion had adverse effects on neisserial viability. In contrast, the Escherichia coli ortholog failed to complement GmhAGC depletion. Furthermore, we showed that GmhAGC is a cytoplasmic enzyme with induced expression at mid-logarithmic phase, upon iron deprivation and anaerobiosis, and conserved in contemporary gonococcal clinical isolates including the 2016 WHO reference strains. The untagged GmhAGC crystallized as a tetramer in the closed conformation with four zinc ions in the active site, supporting that this is most likely the catalytically active conformation of the enzyme. Finally, site-directed mutagenesis studies showed that the active site residues E65 and H183 were important for LOS synthesis but not for GmhAGC function in bacterial viability. Our studies bring insights into the importance and mechanism of action of GmhA and may ultimately facilitate targeting the enzyme with small molecule inhibitors.
Collapse
Affiliation(s)
- Igor H. Wierzbicki
- Department of Pharmaceutical SciencesCollege of PharmacyOregon State UniversityCorvallisORUSA
| | - Ryszard A. Zielke
- Department of Pharmaceutical SciencesCollege of PharmacyOregon State UniversityCorvallisORUSA
| | - Konstantin V. Korotkov
- Department of Molecular & Cellular BiochemistryCollege of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Aleksandra E. Sikora
- Department of Pharmaceutical SciencesCollege of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
14
|
Chatterjee A, Datta PP. Intrinsic GTPase activity of a ribosomal maturation protein CgtA is associated with its inter-domain movement: insights from MD simulations and biochemical studies. J Biomol Struct Dyn 2016; 35:2578-2587. [PMID: 27677930 DOI: 10.1080/07391102.2016.1224732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Partha P. Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
15
|
Kumar V, Singh HN, Tomar AK, Dantham S, Yadav S. Searching new targets to counter drug resistance – GTPase-Obg mRNA expression analysis in Mycobacterium under stress and in silico docking with GTPase inhibitors. J Biomol Struct Dyn 2016; 35:1804-1812. [DOI: 10.1080/07391102.2016.1195284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
16
|
Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol Cell Proteomics 2016; 15:2338-55. [PMID: 27141096 PMCID: PMC4937508 DOI: 10.1074/mcp.m116.058800] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound approach for identifying promising gonococcal antigens.
Collapse
Affiliation(s)
- Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Igor H Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Benjamin I Baarda
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Philip R Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olusegun O Soge
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington
| | - King K Holmes
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington; ‖Departments of Medicine and Global Health, University of Washington, Seattle, Washington
| | - Ann E Jerse
- **Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Magnus Unemo
- ‡‡WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;
| |
Collapse
|
17
|
Bonventre JA, Zielke RA, Korotkov KV, Sikora AE. Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics. PLoS One 2016; 11:e0148222. [PMID: 26848972 PMCID: PMC4743925 DOI: 10.1371/journal.pone.0148222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
A promising new drug target for the development of novel broad-spectrum antibiotics is the highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent sexually transmitted disease resulting in serious consequences on reproductive and neonatal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective antibiotic treatments are increasingly limited. To address the dire need for alternative antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to identify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was validated with a pilot screen of 40,000 compounds and achieved an average Z’ value of 0.58 ± 0.02, which suggests a robust assay amenable to high-throughput screening. We developed secondary assessments for identified lead compounds that utilize the interaction between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP, and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed using the colorimetric and fluorescence-based activity assays. These approaches can be useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle against multidrug resistant bacteria.
Collapse
Affiliation(s)
- Josephine A. Bonventre
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
- * E-mail:
| |
Collapse
|