1
|
Persson KEM, Horton JL, Kurtovic L, McCarthy JS, Anders RF, Beeson JG. Declining Antibody Affinity Over Time After Human Vaccination With a Plasmodium falciparum Merozoite Vaccine Candidate. J Infect Dis 2024; 230:e753-e757. [PMID: 38723177 PMCID: PMC11420798 DOI: 10.1093/infdis/jiae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 09/25/2024] Open
Abstract
Maintaining high-affinity antibodies after vaccination may be important for long-lasting immunity to malaria, but data on induction and kinetics of affinity is lacking. In a phase 1 malaria vaccine trial, antibody affinity increased following a second vaccination but declined substantially over 12 months, suggesting poor maintenance of high-affinity antibodies. CLINICAL TRIALS REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12607000552482.
Collapse
Affiliation(s)
- Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Chemistry and Pharmacology, Laboratory Medicine, Region Skåne, Lund, Sweden
| | | | | | - James S McCarthy
- QIMR-Berghofer Medical Research Institute, QueenslandAustralia
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Saleh BH, Lugaajju A, Storry JR, Persson KEM. Autoantibodies against red blood cell antigens are common in a malaria endemic area. Microbes Infect 2023; 25:105060. [PMID: 36270601 DOI: 10.1016/j.micinf.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparum malaria can cause severe anemia. Even after treatment, hematocrit can decrease. The role of autoantibodies against erythrocytes is not clearly elucidated and how common they are, or what they are directed against, is still largely unknown. We have investigated antibodies against erythrocytes in healthy adult men living in a highly malaria endemic area in Uganda. We found antibodies in more than half of the individuals, which is significantly more than in a non-endemic area (Sweden). Some of the Ugandan samples had a broad reactivity where it was not possible to determine the exact target of the autoantibodies, but we also found specific antibodies directed against erythrocyte surface antigens known to be of importance for merozoite invasion such as glycophorin A (anti-Ena, anti-M) and glycophorin B (anti-U, anti-S). In addition, several autoantibodies had partial specificities against glycophorin C and the blood group systems Rh, Diego (located on Band 3), Duffy (located on ACKR1), and Cromer (located on CD55), all of which have been described to be important for malaria and therefore of interest for understanding how autoantibodies could potentially stop parasites from entering the erythrocyte. In conclusion, specific autoantibodies against erythrocytes are common in a malaria endemic area.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; Faculty of Medicine, Department of Medical Microbiology and Parasitology, King Abdulaziz University, Building 7, 21589 Jeddah, Saudi Arabia
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden; School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Klinikgatan 26, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Akutgatan 8, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Klinikgatan 19, 22185 Lund, Sweden.
| |
Collapse
|
3
|
Papp K, Kovács Á, Orosz A, Hérincs Z, Randek J, Liliom K, Pfeil T, Prechl J. Absolute Quantitation of Serum Antibody Reactivity Using the Richards Growth Model for Antigen Microspot Titration. SENSORS (BASEL, SWITZERLAND) 2022; 22:3962. [PMID: 35632371 PMCID: PMC9147899 DOI: 10.3390/s22103962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In spite of its pivotal role in the characterization of humoral immunity, there is no accepted method for the absolute quantitation of antigen-specific serum antibodies. We devised a novel method to quantify polyclonal antibody reactivity, which exploits protein microspot assays and employs a novel analytical approach. Microarrays with a density series of disease-specific antigens were treated with different serum dilutions and developed for IgG and IgA binding. By fitting the binding data of both dilution series to a product of two generalized logistic functions, we obtained estimates of antibody reactivity of two immunoglobulin classes simultaneously. These estimates are the antigen concentrations required for reaching the inflection point of thermodynamic activity coefficient of antibodies and the limiting activity coefficient of antigen. By providing universal chemical units, this approach may improve the standardization of serological testing, the quality control of antibodies and the quantitative mapping of the antibody-antigen interaction space.
Collapse
Affiliation(s)
- Krisztián Papp
- R&D Laboratory, Diagnosticum Zrt, 1047 Budapest, Hungary; (K.P.); (Z.H.)
| | - Ágnes Kovács
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, 1117 Budapest, Hungary; (Á.K.); (T.P.)
| | - Anita Orosz
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Zoltán Hérincs
- R&D Laboratory, Diagnosticum Zrt, 1047 Budapest, Hungary; (K.P.); (Z.H.)
| | - Judit Randek
- Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary;
| | - Tamás Pfeil
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, 1117 Budapest, Hungary; (Á.K.); (T.P.)
- ELKH-ELTE Numerical Analysis and Large Networks Research Group, 1117 Budapest, Hungary
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, 1047 Budapest, Hungary; (K.P.); (Z.H.)
| |
Collapse
|
4
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Elledge SK, Zhou XX, Byrnes JR, Martinko AJ, Lui I, Pance K, Lim SA, Glasgow JE, Glasgow AA, Turcios K, Iyer NS, Torres L, Peluso MJ, Henrich TJ, Wang TT, Tato CM, Leung KK, Greenhouse B, Wells JA. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat Biotechnol 2021. [PMID: 33767397 DOI: 10.1038/s41587-41021-00878-41588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.
Collapse
Affiliation(s)
- Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Katarina Pance
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Shion A Lim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff E Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anum A Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Keirstinne Turcios
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Nikita S Iyer
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Leonel Torres
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Taia T Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Departments of Medicine and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021; 10:pathogens10070832. [PMID: 34357982 PMCID: PMC8308493 DOI: 10.3390/pathogens10070832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits antibody responses against many of its protein components, but there is also formation of antibodies against different parts of the red blood cells, in which the parasites spend most of their time. In the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions largely depend on naturally acquired antibodies for protection. However, these antibodies do not confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We discuss different studies that have sought to understand acquired antibody responses against P. falciparum antigens, and potential problems when different antibodies are combined, such as in naturally acquired immunity.
Collapse
|
7
|
Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat Biotechnol 2021; 39:928-935. [PMID: 33767397 DOI: 10.1038/s41587-021-00878-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.
Collapse
|
8
|
A chemokine-fusion vaccine targeting immature dendritic cells elicits elevated antibody responses to malaria sporozoites in infant macaques. Sci Rep 2021; 11:1220. [PMID: 33441615 PMCID: PMC7807052 DOI: 10.1038/s41598-020-79427-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Infants and young children are the groups at greatest risk for severe disease resulting from Plasmodium falciparum infection. We previously demonstrated in mice that a protein vaccine composed of the chemokine macrophage inflammatory protein 3α genetically fused to the minimally truncated circumsporozoite protein of P. falciparum (MCSP) elicits high concentrations of specific antibody and significant reduction of liver sporozoite load in a mouse model system. In the current study, a squalene based adjuvant (AddaVax, InvivoGen, San Diego, Ca) equivalent to the clinically approved MF59 (Seqiris, Maidenhead, UK) elicited greater antibody responses in mice than the previously employed adjuvant polyinosinic:polycytidylic acid, ((poly(I:C), InvivoGen, San Diego, Ca) and the clinically approved Aluminum hydroxide gel (Alum, Invivogen, San Diego, Ca) adjuvant. Use of the AddaVax adjuvant also expanded the range of IgG subtypes elicited by mouse vaccination. Sera passively transferred into mice from MCSP/AddaVax immunized 1 and 6 month old macaques significantly reduced liver sporozoite load upon sporozoite challenge. Protective antibody concentrations attained by passive transfer in the mice were equivalent to those observed in infant macaques 18 weeks after the final immunization. The efficacy of this vaccine in a relevant non-human primate model indicates its potential usefulness for the analogous high risk human population.
Collapse
|
9
|
Reduced nonspecific protein adsorption by application of diethyldithiocarbamate in receptor layer of diphtheria toxoid electrochemical immunosensor. Bioelectrochemistry 2020; 132:107415. [DOI: 10.1016/j.bioelechem.2019.107415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
|
10
|
Ssewanyana I, Arinaitwe E, Nankabirwa JI, Yeka A, Sullivan R, Kamya MR, Rosenthal PJ, Dorsey G, Mayanja-Kizza H, Drakeley C, Greenhouse B, Tetteh KKA. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda. Malar J 2017; 16:67. [PMID: 28183299 PMCID: PMC5301436 DOI: 10.1186/s12936-017-1721-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background People living in malaria endemic areas acquire protection from severe malaria quickly, but protection from clinical disease and control of parasitaemia is acquired only after many years of repeated infections. Antibodies play a central role in protection from clinical disease; however, protective antibodies are slow to develop. This study sought to investigate the influence of Plasmodium falciparum exposure on the acquisition of high-avidity antibodies to P. falciparum antigens, which may be associated with protection. Methods Cross-sectional surveys were performed in children and adults at three sites in Uganda with varied P. falciparum transmission intensity (entomological inoculation rates; 3.8, 26.6, and 125 infectious bites per person per year). Sandwich ELISA was used to measure antibody responses to two P. falciparum merozoite surface antigens: merozoite surface protein 1-19 (MSP1-19) and apical membrane antigen 1 (AMA1). In individuals with detectable antibody levels, guanidine hydrochloride (GuHCl) was added to measure the relative avidity of antibody responses by ELISA. Results Within a site, there were no significant differences in median antibody levels between the three age groups. Between sites, median antibody levels were generally higher in the higher transmission sites, with differences more apparent for AMA-1 and in ≥5 year group. Similarly, median avidity index (proportion of high avidity antibodies) showed no significant increase with increasing age but was significantly lower at sites of higher transmission amongst participants ≥5 years of age. Using 5 M GuHCl, the median avidity indices in the ≥5 year group at the highest and lowest transmission sites were 19.9 and 26.8, respectively (p = 0.0002) for MSP1-19 and 12.2 and 17.2 (p = 0.0007) for AMA1. Conclusion Avidity to two different P. falciparum antigens was lower in areas of high transmission intensity compared to areas with lower transmission. Appreciation of the mechanisms behind these findings as well as their clinical consequences will require additional investigation, ideally utilizing longitudinal data and investigation of a broader array of responses.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, UK
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Richard Sullivan
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | |
Collapse
|
11
|
Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, Sack M, Schillberg S, Reimann A, Fischer R. Application of a Scalable Plant Transient Gene Expression Platform for Malaria Vaccine Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1169. [PMID: 26779197 PMCID: PMC4688378 DOI: 10.3389/fpls.2015.01169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route toward the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification, and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs, and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here, we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility, and stability using fluorescent fusion proteins. Our results have been implemented for the evidence-based iterative design and expression of vaccine candidates combining suitable P. falciparum antigen domains. The antigens were also produced, purified, and characterized in further studies by taking advantage of the scalability of this platform.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- *Correspondence: Alexander Boes
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|