1
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
2
|
Książek-Trela P, Figura D, Węzka D, Szpyrka E. Degradation of a mixture of 13 polycyclic aromatic hydrocarbons by commercial effective microorganisms. Open Life Sci 2024; 19:20220831. [PMID: 38415204 PMCID: PMC10898624 DOI: 10.1515/biol-2022-0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/29/2024] Open
Abstract
The study focused on the contribution of effective microorganisms (EM) and their consortia, used in commercial biological preparations and formulations for soil revitalization, to the degradation of a mixture of 13 polycyclic aromatic hydrocarbons (PAHs) commonly found in the soil environment. PAHs, diverse forms of which are present in the environment, never occur individually but always as a part of a chemical mixture. Therefore, the research presented in this article, focusing on the EM impact on the mixture of PAHs, reflects the conditions most similar to natural ones. On Day 35 of the experiment, PAH levels decreased by 75.5-95.5%. The highest PAHs degradation efficiency was achieved for fluorene, with a preparation containing eight bacteria strains from the Bacillus genus: B. coagulans, B. amyloliquefaciens, B. laterosporus, B. licheniformis, B. mucilaginosus, B. megaterium, B. polymyxa, and B. pumilus. All tested preparations containing bacterial consortia and a preparation with the yeast S. cerevisiae intensified the PAHs degradation more effectively than formulations including only the yeast Yarrowia lipolytica or a mixture of Debaryomyces hansenii and Bacillus. The designed and proposed research will contribute to the development of biotechnological methods - bioremediation by microorganisms that are safe for the human and environment health.
Collapse
Affiliation(s)
- Paulina Książek-Trela
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow 1 Pigonia St., 35-310 Rzeszow, Poland
| | - Damian Figura
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow 1 Pigonia St., 35-310 Rzeszow, Poland
| | - Dominika Węzka
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow 1 Pigonia St., 35-310 Rzeszow, Poland
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow 1 Pigonia St., 35-310 Rzeszow, Poland
| |
Collapse
|
3
|
Ning D, Wang Y, Fan Y, Wang J, Van Nostrand JD, Wu L, Zhang P, Curtis DJ, Tian R, Lui L, Hazen TC, Alm EJ, Fields MW, Poole F, Adams MWW, Chakraborty R, Stahl DA, Adams PD, Arkin AP, He Z, Zhou J. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol 2024; 9:490-501. [PMID: 38212658 DOI: 10.1038/s41564-023-01573-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.
Collapse
Affiliation(s)
- Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Jianjun Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Ping Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Curtis
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Lauren Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Terry C Hazen
- Department of Earth and Planetary Sciences, Bredesen Center, Department of Civil and Environmental Sciences, Center for Environmental Biotechnology, and Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Eric J Alm
- Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Farris Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Paul D Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
4
|
Châtillon E, Cébron A, Rigal F, Cagnon C, Lorgeoux C, Faure P, Duran R, Cravo-Laureau C. Functional redundancy in response to runoff input upholds microbial community in hydrocarbon-contaminated land-sea continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122330. [PMID: 37572846 DOI: 10.1016/j.envpol.2023.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
An experimental approach mimicking the land-sea continuum in microcosms was developed in order to determine the effect of the terrigenous inputs by soil runoff on the microbial functional potential in hydrocarbon (HC) contaminated marine coastal sediment. We hypothesized that the coalescent event increases the functional potential of microbial communities in marine coastal sediments, influencing the fate of HC in marine coastal ecosystems. The microbial functional potential including the HC degradation ability was assessed by DNA-array to compare the sediment receiving or not terrigenous inputs. The removal of HC and the functional gene richness in sediment was unchanged with the terrigenous inputs. However, the gene variants (GVs) composition was modified indicating functional redundancy. In addition, functional indicators including GVs related to sulfite reduction, denitrification and polyaromatic degradation were identified in higher proportion in sediment receiving terrigenous inputs. The terrigenous inputs modified the functional co-occurrence networks, showing a reorganization of the GVs associations with an increase of the network complexity. Different keystone GVs ensuring similar functions were identified in networks with or without terrigenous inputs, further confirming functional redundancy. We argue that functional redundancy maintains the structure of microbial community in hydrocarbon-contaminated land-sea continuum mixing zone. Our results provide helpful functional information for the monitoring and management of coastal environment affected by human land-based activities.
Collapse
Affiliation(s)
- Elise Châtillon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, GeoRessources, F-54000, Nancy, France
| | - François Rigal
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Pierre Faure
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
5
|
Tamothran AM, Bhubalan K, Anuar ST, Curtis JM. The degradation and toxicity of commercially traded vegetable oils following spills in aquatic environment. ENVIRONMENTAL RESEARCH 2022; 214:113985. [PMID: 35970378 DOI: 10.1016/j.envres.2022.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The production of commodity and specialty vegetable oils is increasing every year to fulfill the ever-increasing demand where the trading of oils occurs primarily via sea shipping. Spills of vegetable oil into the aquatic environment may result in detrimental effects on aquatic ecosystems. Environmental degradation of vegetable oil spills occurs mainly via microbial activity, chemical oxidation, wave and wind actions. However, the polymerization of oils can hinder their ability to naturally degrade. Thus, human intervention in the form of both short- and long-term remediation, is desirable to reduce the effects of vegetable oil spills on aquatic ecosystems. Studies have been conducted to determine how the type and concentration of the vegetable oil contamination influence its toxicity on various organisms. Some studies show that the effect of vegetable oil spills is found to be relatively short-lived and to a certain extent increase the survivability of certain organisms. However, the integrated effect of vegetable oil spills on aquatic organisms and their environment is still being researched. This review summarizes the existing knowledge on the reported occurrences of vegetable oil spills, their degradation, and their toxicity towards the surrounding aquatic environment which would be helpful in the knowledge transfer of remediation of vegetable oils.
Collapse
Affiliation(s)
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Sabiqah Tuan Anuar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Jonathan M Curtis
- Lipid Chemistry Group, Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
6
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
7
|
Jurado V, Del Rosal Y, Jimenez de Cisneros C, Liñan C, Martin-Pozas T, Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C. Microbial communities in carbonate precipitates from drip waters in Nerja Cave, Spain. PeerJ 2022; 10:e13399. [PMID: 35529484 PMCID: PMC9074860 DOI: 10.7717/peerj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Research on cave microorganisms has mainly focused on the microbial communities thriving on speleothems, rocks and sediments; however, drip water bacteria and calcite precipitation has received less attention. In this study, microbial communities of carbonate precipitates from drip waters in Nerja, a show cave close to the sea in southeastern Spain, were investigated. We observed a pronounced difference in the bacterial composition of the precipitates, depending on the galleries and halls. The most abundant phylum in the precipitates of the halls close to the cave entrance was Proteobacteria, due to the low depth of this sector, the direct influence of a garden on the top soil and the infiltration of waters into the cave, as well as the abundance of members of the order Hyphomicrobiales, dispersing from plant roots, and other Betaproteobacteria and Gammaproteobacteria, common soil inhabitants. The influence of marine aerosols explained the presence of Marinobacter, Idiomarina, Thalassobaculum, Altererythrobacter and other bacteria due to the short distance from the cave to the sea. Nineteen out of forty six genera identified in the cave have been reported to precipitate carbonate and likely have a role in mineral deposition.
Collapse
Affiliation(s)
- Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | | | | - Cristina Liñan
- Departamento de Ecologia y Geologia, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | | | | | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | |
Collapse
|
8
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
9
|
Liu JL, Yao J, Wang F, Min N, Gu JH, Li ZF, Sunahara G, Duran R, Solevic-Knudsen T, Hudson-Edwards KA, Alakangas L. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:98-107. [PMID: 30669085 DOI: 10.1016/j.envpol.2018.12.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China.
| | - Fei Wang
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Min
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Ji-Hai Gu
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Zi-Fu Li
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Tatjana Solevic-Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, PO Box 473, 11001, Belgrade, Serbia
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall, TR10 9DF, UK
| | - Lena Alakangas
- Department of Chemical Engineering and Geosciences, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
10
|
Badapanda C, Metha SM. Advancing our understanding of the oxygen minimum zone microbial communities by an integrated metatranscriptomics approach. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|