1
|
Galic I, Bez C, Bertani I, Venturi V, Stankovic N. Herbicide-treated soil as a reservoir of beneficial bacteria: microbiome analysis and PGP bioinoculants in maize. ENVIRONMENTAL MICROBIOME 2024; 19:107. [PMID: 39695885 DOI: 10.1186/s40793-024-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices. RESULTS A bacterial community analysis explored the effects of long-term S-metolachlor application on soil bacterial diversity, revealing that the herbicide's impact on microbial communities is less significant than the effects of temporal factors (summer vs. winter) or agricultural practices (continuous maize cultivation vs. maize-winter wheat rotation). Although S-metolachlor did not markedly alter the overall bacteriome structure in our environmental context, the application of enrichment techniques enabled the selection of genera such as Pseudomonas, Serratia, and Brucella, which were rare in metagenome analysis of soil samples. Strain isolation revealed a rich source of herbicide-tolerant PGP bacteria within the culturable microbiome fraction, termed the high herbicide concentration tolerant (HHCT) bacterial culture collection. Within the HHCT collection, we isolated 120 strains that demonstrated significant in vitro PGP and biocontrol potential, and soil quality improvement abilities. The most promising HHCT isolates were combined into three consortia, each exhibiting a comprehensive range of plant-beneficial traits. We evaluated the efficacy and persistence of these multi-strain consortia during 4-week in pot experiments on maize using both agronomic parameters and 16S rRNA gene community analysis assessing early-stage plant development, root colonization, and rhizosphere persistence. Notably, 7 out of 10 inoculated consortia partners successfully established themselves and persisted in the maize root microbiome without significantly altering host root biodiversity. Our results further evidenced that all three consortia positively impacted both seed germination and early-stage plant development, increasing shoot biomass by up to 47%. CONCLUSIONS Herbicide-treated soil bacterial community analysis revealed that integrative agricultural practices can suppress the effects of continuous S-metolachlor application on soil microbial diversity and stabilize microbiome fluctuations. The HHCT bacterial collection holds promise as a source of beneficial bacteria that promote plant fitness while maintaining herbicide tolerance.
Collapse
Affiliation(s)
- Ivana Galic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.
| |
Collapse
|
2
|
Song L, Shen Y, Zhang H, Zhang H, Zhang Y, Wang M, Zhang M, Wang F, Zhou L, Wen C, Zhao Y. Comprehensive genomic analysis of Brevibacillus brevis BF19 reveals its biocontrol potential against bitter gourd wilt. BMC Microbiol 2024; 24:415. [PMID: 39425006 PMCID: PMC11488265 DOI: 10.1186/s12866-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
Bitter gourd wilt, a severe vascular disease triggered by the soilborne pathogen Fusarium oxysporum f. sp. momordicae (FOM), markedly constrains bitter gourd yield. In this study, a novel strain BF19 of Brevibacillus brevis was isolated and identified, exhibiting strong antimicrobial activity against FOM through in vivo and in vitro experiments. To comprehensively assess the biocontrol potential of strain BF19, we conducted phenotypic, phylogenetic, and comparative genomics analyses. Phenotypic analysis revealed that BF19 exhibited 53.33% biocontrol efficacy and significantly increased the average plant height, root fresh weight, and dry weight. Whole-genome sequencing and comparative genomic analysis revealed numerous potential genes associated with biocontrol mechanisms in BF19. Importantly, the integration of metabolic cluster prediction with liquid chromatography‒tandem mass spectrometry (LC‒MS/MS) revealed the presence of a macrobrevin antibiotic, a product of polyketide synthases (PKSs), predominantly in BF19 fermentation products. The effectiveness of the Br. brevis strain BF19 and its crude extract against bitter gourd wilt has also been confirmed. This study provides a genetic framework for future investigations on PKSs and establishes a scientific basis for optimizing field applications of microbial biopesticides derived from Br. brevis BF19.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yue Shen
- Food Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huihao Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Han Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mingyue Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Al-Shuaibi BK, Kazerooni EA, Al-Maqbali D, Al-Kharousi M, Al-Yahya’ei MN, Hussain S, Velazhahan R, Al-Sadi AM. Biocontrol Potential of Trichoderma Ghanense and Trichoderma Citrinoviride toward Pythium aphanidermatum. J Fungi (Basel) 2024; 10:284. [PMID: 38667955 PMCID: PMC11051229 DOI: 10.3390/jof10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Pythium-induced damping-off of cucumber is a major constraint to cucumber production in different parts of the world. Although chemical fungicides are used for managing this disease, they have many drawbacks to the environment. The ability of the antagonistic fungi isolated from the rhizosphere and endosphere of Dactyloctenium robecchii and Moraea sisyrinchium in the control of soilborne pathogen Pythium aphanidermatum was inspected. Native Trichoderma isolates, Trichoderma ghanense and Trichoderma citrinoviride, were isolated from plant stem and soil samples collected from Al-Seeb, Oman. Using a dual culture technique, the antagonistic activity of the fungal isolates against P. aphanidermatum was examined in vitro. Among Trichoderma isolates, T. ghanense was more efficient in restraining the mycelial growth of P. aphanidermatum, causing an inhibition percentage of 44.6%. Further, T. citrinoviride induced significantly lower cessation of P. aphanidermatum mycelial growth (31.3%). Microscopic and electrolyte leakage inspection of the pathogen mycelia depicted extreme morphological malformations in their mycelium, which can be attributed to the antifungal metabolites of antagonists. Greenhouse studies demonstrated the effectivity of T. ghanense in controlling Pythium damping-off of cucumber plants, where the number of surviving plants was over 90% when the biocontrol agents were used compared to 0 in the control plants. Furthermore, treatment of the plants with the antagonists promoted growth characteristics of plants compared to uninoculated plants. This included improvements in shoot and root lengths, leaf length and width, and dry weight. These findings suggest that T. ghanense and T. citrinoviride can be developed as alternatives to synthetic chemical fungicides to manage soilborne pathogens of cucumber. This research is also the first to clarify the biocontrol ability of T. citrinoviride and T. ghanense against cucumber damping-off caused by P. aphanidermatum.
Collapse
Affiliation(s)
- Badriya Khalfan Al-Shuaibi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.); (R.V.)
| | - Elham Ahmed Kazerooni
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.); (R.V.)
| | - Dua’a Al-Maqbali
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 82, Muscat 112, Oman; (D.A.-M.); (M.A.-K.); (M.N.A.-Y.)
| | - Moza Al-Kharousi
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 82, Muscat 112, Oman; (D.A.-M.); (M.A.-K.); (M.N.A.-Y.)
| | - Mohamed N. Al-Yahya’ei
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 82, Muscat 112, Oman; (D.A.-M.); (M.A.-K.); (M.N.A.-Y.)
| | - Shah Hussain
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.); (R.V.)
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.); (R.V.)
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.); (R.V.)
| |
Collapse
|
4
|
Díaz-Díaz M, Antón-Domínguez BI, Raya MC, Bernal-Cabrera A, Medina-Marrero R, Trapero A, Agustí-Brisach C. Streptomyces spp. Strains as Potential Biological Control Agents against Verticillium Wilt of Olive. J Fungi (Basel) 2024; 10:138. [PMID: 38392810 PMCID: PMC10890128 DOI: 10.3390/jof10020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Verticillium wilt of olive (VWO) caused by Verticillium dahliae is considered a major olive (Olea europaea) disease in Mediterranean-type climate regions. The lack of effective chemical products against VWO makes it necessary to search for alternatives such as biological control. The main goal of this study was to evaluate the effect of six Streptomyces spp. strains as biological control agents (BCAs) against VWO. All of them were molecularly characterized by sequencing 16S or 23S rRNA genes and via phylogenetic analysis. Their effect was evaluated in vitro on the mycelial growth of V. dahliae (isolates V004 and V323) and on microsclerotia (MS) viability using naturally infested soils. Bioassays in olive plants inoculated with V. dahliae were also conducted to evaluate their effect against disease progress. In all the experiments, the reference BCAs Fusarium oxysporum FO12 and Aureobasidium pullulans AP08 were included for comparative purposes. The six strains were identified as Streptomyces spp., and they were considered as potential new species. All the BCAs, including Streptomyces strains, showed a significant effect on mycelial growth inhibition for both V. dahliae isolates compared to the positive control, with FO12 being the most effective, followed by AP08, while the Streptomyces spp. strains showed an intermediate effect. All the BCAs tested also showed a significant effect on the inhibition of germination of V. dahliae MS compared to the untreated control, with FO12 being the most effective treatment. Irrigation treatments with Streptomyces strain CBQ-EBa-21 or FO12 were significantly more effective in reducing disease severity and disease progress in olive plants inoculated with V. dahliae compared to the remaining treatments. This study represents the first approach to elucidating the potential effect of Streptomyces strains against VWO.
Collapse
Affiliation(s)
- Miriam Díaz-Díaz
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Begoña I Antón-Domínguez
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - María Carmen Raya
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Alexander Bernal-Cabrera
- Centro de Investigaciones Agropecuarias (CIAP), Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
- Departamento de Agronomía, Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Ricardo Medina-Marrero
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera Camajuaní km 5 1/2, Santa Clara 54830, Villa Clara, Cuba
| | - Antonio Trapero
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, (Unit of Excellence 'María de Maeztu' 2020-2024), Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| |
Collapse
|
5
|
Song L, Wang F, Liu C, Guan Z, Wang M, Zhong R, Xi H, Zhao Y, Wen C. Isolation and Evaluation of Streptomyces melanogenes YBS22 with Potential Application for Biocontrol of Rice Blast Disease. Microorganisms 2023; 11:2988. [PMID: 38138134 PMCID: PMC10745888 DOI: 10.3390/microorganisms11122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Chuang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| |
Collapse
|
6
|
Al-Shuaibi BK, Kazerooni EA, Hussain S, Velazhahan R, Al-Sadi AM. Plant-Disease-Suppressive and Growth-Promoting Activities of Endophytic and Rhizobacterial Isolates Associated with Citrullus colocynthis. Pathogens 2023; 12:1275. [PMID: 38003740 PMCID: PMC10674396 DOI: 10.3390/pathogens12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study was conducted to investigate the antagonistic potential of endophytic and rhizospheric bacterial isolates obtained from Citrullus colocynthis in suppressing Fusarium solani and Pythium aphanidermatum and promoting the growth of cucumber. Molecular identification of bacterial strains associated with C. colocynthis confirmed that these strains belong to the Achromobacter, Pantoea, Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus, and Exiguobacterium genera. A dual culture assay showed that nine of the bacterial strains exhibited antifungal activity, four of which were effective against both pathogens. Strains B27 (Pantoea dispersa) and B28 (Exiguobacterium indicum) caused the highest percentage of inhibition towards F. solani (48.5% and 48.1%, respectively). P. aphanidermatum growth was impeded by the B21 (Bacillus cereus, 44.7%) and B28 (Exiguobacterium indicum, 51.1%) strains. Scanning electron microscopy showed that the strains caused abnormality in phytopathogens' mycelia. All of the selected bacterial strains showed good IAA production (>500 ppm). A paper towel experiment demonstrated that these strains improved the seed germination, root/shoot growth, and vigor index of cucumber seedlings. Our findings suggest that the bacterial strains from C. colocynthis are suppressive to F. solani and P. aphanidermatum and can promote cucumber growth. This appears to be the first study to report the efficacy of these bacterial strains from C. colocynthis against F. solani and P. aphanidermatum.
Collapse
Affiliation(s)
| | | | | | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.)
| |
Collapse
|
7
|
Turkan S, Mierek-Adamska A, Kulasek M, Konieczna WB, Dąbrowska GB. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 2023; 11:e15392. [PMID: 37283892 PMCID: PMC10239620 DOI: 10.7717/peerj.15392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Background To ensure food security in the face of climate change and the growing world population, multi-pronged measures should be taken. One promising approach uses plant growth-promoting fungi (PGPF), such as Trichoderma, to reduce the usage of agrochemicals and increase plant yield, stress tolerance, and nutritional value. However, large-scale applications of PGPF have been hampered by several constraints, and, consequently, usage on a large scale is still limited. Seed coating, a process that consists of covering seeds with low quantities of exogenous materials, is gaining attention as an efficient and feasible delivery system for PGPF. Methods We have designed a new seed coating composed of chitin, methylcellulose, and Trichoderma viride spores and assessed its effect on canola (Brassica napus L.) growth and development. For this purpose, we analyzed the antifungal activity of T. viride against common canola pathogenic fungi (Botrytis cinerea, Fusarium culmorum, and Colletotrichum sp.). Moreover, the effect of seed coating on germination ratio and seedling growth was evaluated. To verify the effect of seed coating on plant metabolism, we determined superoxide dismutase (SOD) activity and expression of the stress-related RSH (RelA/SpoT homologs). Results Our results showed that the T. viride strains used for seed coating significantly restricted the growth of all three pathogens, especially F. culmorum, for which the growth was inhibited by over 40%. Additionally, the new seed coating did not negatively affect the ability of the seeds to complete germination, increased seedling growth, and did not induce the plant stress response. To summarize, we have successfully developed a cost-effective and environmentally responsible seed coating, which will also be easy to exploit on an industrial scale.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Milena Kulasek
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiktoria B. Konieczna
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
8
|
Zhang H, Bai X, Han Y, Han L. Stress-Resistance and Growth-Promoting Characteristics and Effects on Vegetable Seed Germination of Streptomyces sp. Strains Isolated from Wetland Plant Rhizospheres. Curr Microbiol 2023; 80:190. [PMID: 37079055 DOI: 10.1007/s00284-023-03297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Wetlands are the most biologically diverse ecosystems on Earth. The isolation of Streptomyces strains from wetlands is helpful to study their diversity and functions in such habitats. In this study, six strains of Streptomyces were isolated from the rhizosphere soil of three plant species in the Huaxi Wetland at Guiyang and were identified as Streptomyces galilaeus, S. avidinii, S. albogriseolus, S. albidoflavus, S. spororaveus, and S. cellulosae, respectively. The six strains all solubilized phosphate, fixed nitrogen, and produced ACC deaminase and siderophores, and four strains also secreted indole-3-acetic acid. The six strains had the ability to resist to certain degrees of salinity, drought, and acidic/alkaline pH stress. In addition, the S. avidinii WL3 and S. cellulosae WL9 strains significantly promoted seed germination of mung bean, pepper, and cucumber, especially the WL3 strain. A pot experiment further showed that WL3 significantly promoted the growth of cucumber seedlings. Thus, strains of six species of Streptomyces with multiple plant growth-promoting characteristics were isolated from the wetland. These results lay a foundation for their potential use as microbial agents for seed-coating treatments.
Collapse
Affiliation(s)
- Hong Zhang
- College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xue Bai
- College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yujie Han
- College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lizhen Han
- College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Exploration of Novel Scaffolds Targeting Cytochrome b of Pyricularia oryzae. Int J Mol Sci 2023; 24:ijms24032705. [PMID: 36769028 PMCID: PMC9917009 DOI: 10.3390/ijms24032705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of P. oryzae cytochrome bc1 (cyt bc1) complex to perform a high-throughput virtual screening of two commercially available compound libraries. Three chemotypes were selected, from which a small collection of differently substituted analogues was designed and synthesized. The compounds were tested as inhibitors of the cyt bc1 enzyme function and the mycelium growth of both strobilurin-sensitive (WT) and -resistant (RES) P. oryzae strains. This pipeline has permitted the identification of thirteen compounds active against the RES cyt bc1 and five compounds that inhibited the WT cyt bc1 function while inhibiting the fungal mycelia only minimally. Serendipitously, among the studied compounds we identified a new chemotype that is able to efficiently inhibit the mycelium growth of WT and RES strains by ca. 60%, without inhibiting the cyt bc1 enzymatic function, suggesting a different mechanism of action.
Collapse
|
10
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sudha A, Durgadevi D, Archana S, Muthukumar A, Suthin Raj T, Nakkeeran S, Poczai P, Nasif O, Ansari MJ, Sayyed RZ. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum. Front Microbiol 2022; 13:923360. [PMID: 35966704 PMCID: PMC9366667 DOI: 10.3389/fmicb.2022.923360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sorghum is a major grain crop used in traditional meals and health drinks, and as an efficient fuel. However, its productivity, value, germination, and usability are affected by grain mold, which is a severe problem in sorghum production systems, which reduces the yield of harvested grains for consumer use. The organic approach to the management of the disease is essential and will increase consumer demand. Bioactive molecules like mVOC (volatile organic compound) identification are used to unravel the molecules responsible for antifungal activity. The Streptomyces rochei strain (ASH) has been reported to be a potential antagonist to many pathogens, with high levels of VOCs. The present study aimed to study the inhibitory effect of S. rochei on sorghum grain mold pathogens using a dual culture technique and via the production of microbial volatile organic compounds (mVOCs). mVOCs inhibited the mycelial growth of Fusarium moniliforme by 63.75 and Curvularia lunata by 68.52%. mVOCs suppressed mycelial growth and inhibited the production of spores by altering the structure of mycelia in tripartite plate assay. About 45 mVOCs were profiled when Streptomyces rochei interacted with these two pathogens. In the present study, several compounds were upregulated or downregulated by S. rochei, including 2-methyl-1-butanol, methanoazulene, and cedrene. S. rochei emitted novel terpenoid compounds with peak areas, such as myrcene (1.14%), cymene (6.41%), and ç-terpinene (7.32%) upon interaction with F. moniliforme and C. lunata. The peak area of some of the compounds, including furan 2-methyl (0.70%), benzene (1.84%), 1-butanol, 2-methyl-(8.25%), and myrcene (1.12)%, was increased during tripartite interaction with F. moniliforme and C. lunata, which resulted in furan 2-methyl (6.60%), benzene (4.43%), butanol, 2-methyl (18.67%), and myrcene (1.14%). These metabolites were implicated in the sesquiterpenoid and alkane biosynthetic pathways and the oxalic acid degradation pathway. The present study shows how S. rochei exhibits hyperparasitism, competition, and antibiosis via mVOCs. In addition to their antimicrobial functions, these metabolites could also enhance plant growth.
Collapse
Affiliation(s)
- A. Sudha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - D. Durgadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S. Archana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - A. Muthukumar
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - T. Suthin Raj
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - S. Nakkeeran
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science, and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
12
|
Carlucci A, Raimondo ML, Colucci D, Lops F. Streptomyces albidoflavus Strain CARA17 as a Biocontrol Agent against Fungal Soil-Borne Pathogens of Fennel Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111420. [PMID: 35684193 PMCID: PMC9182602 DOI: 10.3390/plants11111420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
Fennel crop is a horticultural plant susceptible to several soil-borne fungal pathogens responsible for yield losses. The control of fungal diseases occurring on fennel crops is very difficult with conventional and/or integrated means; although several chemical fungicides are able to contain specific fungal diseases, they are not registered for fennel crops. The intensive use of some fungicides causes public concern over the environment and human health. The main aims of this study were to assess the ability of a strain of Streptomyces albidoflavus CARA17 to inhibit the growth of fungal soil-borne pathogens, and to protect fennel plants against severe fungal soil-borne pathogens such as Athelia rolfsii, Fusarium oxysporum, Plectosphaerella ramiseptata, Sclerotinia sclerotiorum and Verticillium dahliae. This study confirmed that the CARA17 strain has been able to inhibit the mycelium growth of pathogens in vitro conditions with significant inhibition degrees, where S. sclerotiorum resulted in being the most controlled. The strain CARA17 was also able to significantly protect the fennel seedlings against fungal soil-borne pathogens used in vivo conditions, where the treatment with an antagonist strain by dipping resulted in being more effective at limiting the disease severity of each fungal soil-borne pathogen. Moreover, any treatment with the CARA17 strain, carried out by dipping or after transplanting, produced benefits for the biomass of fennel seedlings, showing significant effects as a promoter of plant growth. Finally, the results obtained showed that CARA17 is a valid strain as a biocontrol agent (BCA) against relevant fungal soil-borne pathogens, although further studies are recommended to confirm these preliminary results. Finally, this study allowed for first time worldwide the association of Plectosphaerella ramiseptata with fennel plants as a severe pathogen.
Collapse
|
13
|
khaleel alhialy S, Shawkat Thanoon A. Molecular diagnosis of Streptomyces genus and bioactive potential against pathogenic microbes. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study (40) locally isolated the genus Streptomyces from soil samples collected from different regions of Iraq ( Nineveh , Erbil , Duhok ) and evaluated their antagonistic. The isolates were found to have bioactivity against gram-positive and negative bacteria and fungus. Streptomyces were isolated on (S.G. medium), and morphological similarities and the 16 srRNA sequencing were used to characterize them. . The results of a polymerase chain reaction (PCR) with eight strands of DNA gene picked from local bacteria isolates in a volume range of (900–1000) base pairs. The nitrogenic base sequence determined the polymerase chain reaction products of DNA samples selected from 6 local isolates. These strands preserved the employed DNA ladder volume. According to DNA Blast NCBI data, the species are Streptomyces atrovirens, Streptomyces SP.S. coeuleroubidus, and Streptomyces bellus.
Keywords. Streptomyces, Molecular, Pathogenic Microbes
Collapse
|
14
|
Zalila-Kolsi I, Kessentini S, Tounsi S, Jamoussi K. Optimization of Bacillus amyloliquefaciens BLB369 Culture Medium by Response Surface Methodology for Low Cost Production of Antifungal Activity. Microorganisms 2022; 10:microorganisms10040830. [PMID: 35456879 PMCID: PMC9029587 DOI: 10.3390/microorganisms10040830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Bacillus amyloliquefaciens BLB369 is an important plant growth-promoting bacterium, which produces antifungal compounds. A statistics-based experimental design was used to optimize a liquid culture medium using inexpensive substrates for increasing its antifungal activity. A Plackett–Burman design was first applied to elucidate medium components having significant effects on antifungal production. Then the steepest ascent method was employed to approach the experimental design space, followed by an application of central composite design. Three factors were retained (candy waste, peptone, and sodium chloride), and polynomial and original trigonometric models fitted the antifungal activity. The trigonometric model ensured a better fit. The contour and surface plots showed concentric increasing levels pointing out an optimized activity. Hence, the polynomial and trigonometric models showed a maximal antifungal activity of 251.9 (AU/mL) and 255.5 (AU/mL) for (19.17, 19.88, 3.75) (g/L) and (19.61, 20, 3.7) (g/L) of candy waste, peptone, and NaCl, respectively. This study provides a potential strategy for improving the fermentation of B. amyloliquefaciens BLB369 in low-cost media for large-scale industrial production.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (S.T.); (K.J.)
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi P.O. Box 25669, United Arab Emirates
- Correspondence:
| | - Sameh Kessentini
- Laboratory of Probability and Statistics, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 1171, Sfax 3000, Tunisia;
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (S.T.); (K.J.)
| | - Kaïs Jamoussi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (S.T.); (K.J.)
| |
Collapse
|
15
|
Biocontrol Streptomyces Induces Resistance to Bacterial Wilt by Increasing Defense-Related Enzyme Activity in Solanum melongena L. Curr Microbiol 2022; 79:146. [PMID: 35344085 DOI: 10.1007/s00284-022-02832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces strains were isolated from rhizosphere soil and evaluated for in vitro plant growth and antagonistic potential against Ralstonia solanacearum. Based on their in vitro screening, seven Streptomyces were evaluated for plant growth promotion (PGP) and biocontrol efficacy by in-planta and pot culture study. In the in-planta study, Streptomyces-treated eggplant seeds showed better germination percentage, plant growth, and disease occurrence against R. solanacearum than the control treatment. Hence, all seven Streptomyces cultures were developed as a bioformulation by farmyard manure and used for pot culture study. The highest plant growth, weight, and total chlorophyll content were observed in UP1A-1-treated eggplant followed by UP1A-4, UT4A-49, and UT6A-57. Similarly, the maximum biocontrol efficacy was observed in UP1A-1-treated eggplants against bacterial wilt. The biocontrol potential of Streptomyces is also confirmed through metabolic responses by assessing the activities of the defense-related enzymes peroxidase (POX), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and as well as the levels of total phenol. Treatment with UP1A-1/ UT4A-49 and challenge with R. solanacearum led to maximum changes in the activities of POX, PPO, and PAL and the levels of total phenol in the eggplants at different time intervals. Alterations in enzymes of UP1A-1 treatment were related to early defense responses in eggplant. Therefore, the treatment with UP1A-1 significantly delayed the establishment of bacterial wilt in eggplant. Altogether, the present study suggested that the treatment of Streptomyces maritimus UP1A-1 fortified farmyard manure has improved the plant growth and stronger disease control against R. solanacearum on eggplant.
Collapse
|
16
|
Pérez-Corral DA, Ornelas-Paz JDJ, Olivas GI, Acosta-Muñiz CH, Salas-Marina MÁ, Berlanga-Reyes DI, Sepulveda DR, Mares-Ponce de León Y, Rios-Velasco C. Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:875. [PMID: 35406854 PMCID: PMC9002626 DOI: 10.3390/plants11070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.
Collapse
Affiliation(s)
- Daniel Alonso Pérez-Corral
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Guadalupe Isela Olivas
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Miguel Ángel Salas-Marina
- División de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Carretera Villacorzo-Ejido Monterrey Km 3.0., Tuxtla Gutiérrez C.P. 30520, Chiapas, Mexico;
| | - David Ignacio Berlanga-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - David Roberto Sepulveda
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Yericka Mares-Ponce de León
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| |
Collapse
|
17
|
Potential Antagonistic Bacteria against Verticillium dahliae Isolated from Artificially Infested Nursery. Cells 2021; 10:cells10123588. [PMID: 34944096 PMCID: PMC8699867 DOI: 10.3390/cells10123588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
As an ecofriendly biocontrol agent, antagonistic bacteria are a crucial class of highly efficient fungicides in the field against Verticillium dahliae, the most virulent pathogen for cotton and other crops. Toward identifying urgently needed bacterial candidates, we screened bacteria isolated from the cotton rhizosphere soil for antagonisitic activity against V. dahliae in an artificially infested nursery. In preliminary tests of antagonistic candidates to characterize the mechanism of action of on culture medium, 88 strains that mainly belonged to Bacillus strongly inhibited the colony diameter of V. dahliae, with inhibiting efficacy up to 50% in 9 strains. Among the most-effective bacterial strains, Bacillus sp. ABLF-18, and ABLF-50 and Paenibacillus sp. ABLF-90 significantly reduced the disease index and fungal biomass of cotton to 40–70% that of the control. In further tests to elucidate the biocontrol mechanism (s), the strains secreted extracellular enzymes cellulase, glucanase, and protease, which can degrade the mycelium, and antimicrobial lipopeptides such as surfactin and iturin homologues. The expression of PAL, MAPK and PR10, genes related to disease resistance, was also elicited in cotton plants. Our results clearly show that three candidate bacterial strains can enhance cotton defense responses against V. dahliae; the secretion of fungal cell-wall-degrading enzymes, synthesis of nonribosomal antimicrobial peptides and induction of systemic resistance shows that the strains have great potential as biocontrol fungicides.
Collapse
|
18
|
Rehan M, Alsohim AS, Abidou H, Rasheed Z, Al Abdulmonem W. Isolation, Identification, Biocontrol Activity, and Plant Growth Promoting Capability of a Superior Streptomyces tricolor Strain HM10. Pol J Microbiol 2021; 70:245-256. [PMID: 34349814 PMCID: PMC8326983 DOI: 10.33073/pjm-2021-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested (i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 was the most effective producer with a value of 273.02 μg/ml. An autochthonous strain S. tricolor HM10 should be an important biological agent to control phytopathogens and promote plant growth.
Collapse
Affiliation(s)
- Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia.,Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Abdullah S Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Hussam Abidou
- Department of Basic Science, Second Faculty of Agriculture, University of Aleppo, Aleppo, Syria
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
19
|
Pellan L, Dieye CAT, Durand N, Fontana A, Strub C, Schorr-Galindo S. Biocontrol Agents: Toolbox for the Screening of Weapons against Mycotoxigenic Fusarium. J Fungi (Basel) 2021; 7:446. [PMID: 34205071 PMCID: PMC8226957 DOI: 10.3390/jof7060446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a set of experiments to screen and decipher the mechanisms of biocontrol agents (BCAs), isolated from commercial formulation, against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides. These two phytopathogens produce mycotoxins harmful to human and animal health and are responsible for the massive use of pesticides, for the protection of cereals. It is therefore essential to better understand the mechanisms of action of alternative control strategies such as the use of BCAs in order to optimize their applications. The early and late stages of interaction between BCAs and pathogens were investigated from germination of spores to the effects on perithecia (survival form of pathogen). The analysis of antagonist activities of BCAs revealed different strategies of biocontrol where chronological, process combination and specialization aspects of interactions are discussed. Streptomyces griseoviridis main strategy is based on antibiosis with the secretion of several compounds with anti-fungal and anti-germination activity, but also a mixture of hydrolytic enzymes to attack pathogens, which compensates for an important deficit in terms of spatial colonization capacity. It has good abilities in terms of nutritional competition. Trichoderma asperellum is capable of activating a very wide range of defenses and attacks combining the synthesis of various antifungal compounds (metabolite, enzymes, VOCs), with different targets (spores, mycelium, mycotoxins), and direct action by mycoparasitism and mycophagy. Concerning Pythium oligandrum, its efficiency is mainly due to its strong capacity to colonize the environment, with a direct action via microbial predation, stimulation of its reproduction at the contact of pathogens and the reduction of perithecia formation.
Collapse
Affiliation(s)
- Lucile Pellan
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Cheikh Ahmeth Tidiane Dieye
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Noël Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| |
Collapse
|
20
|
Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci Rep 2021; 11:9317. [PMID: 33927238 PMCID: PMC8085009 DOI: 10.1038/s41598-021-88495-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The responses of rhizosphere bacterial communities of Streptomyces (SS14 and IT20 stains) treated-pepper plants following inoculation by Phytophthora capsici (PC) was investigated using Illumina MiSeq sequencing. Distinct modulation of the bacteriome composition was found for PC samples with the highest relative abundance (RA) of Chitinophaga (22 ± 0.03%). The RA of several bacterial operational taxonomic units (OTUs) was affected and caused changes in alpha and beta-diversity measures. In IT20, the RA of Cyanobacteria was enriched compared to SS14 (72%) and control samples (47%). Phylotypes belonging to Devosia, Promicromonospora, Kribbella, Microbacterium, Amylocolatopsis, and Pseudomonas genera in the rhizosphere were positively responding against the pathogen. Our findings show that the phosphate solubilizing strain IT20 has higher microbial community responders than the melanin-producing strain SS14. Also, positive interactions were identified by comparing bacterial community profiles between treatments that might allow designing synthetic bio-inoculants to solve agronomic problems in an eco-friendly way.
Collapse
|
21
|
Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie van Leeuwenhoek 2021; 114:823-833. [PMID: 33774760 DOI: 10.1007/s10482-021-01561-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
A novel endophytic actinomycete with antagonistic activity against various phytopathogenic fungi, designated strain p1417T, was isolated from the root of cattail (Typha angustifolia L.) collected from Yunnan Province, Southwest China. A polyphasic taxonomic study was carried out to establish the taxonomic status of this strain. Strain p1417T was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. The diamino acid present in the cell wall was LL-diaminopimelic acid. Xylose and arabinose occurred in whole cell hydrolysates. The menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were found to be iso-C16:0, anteiso-C15:0, iso-C15:0 and C16:0. The genomic DNA G + C content of strain p1417T based on the genome sequence was 72.0 mol%. Based on 16 S rRNA gene, five housekeeping genes and whole genome sequences analysis, strain p1417T was most closely related to Streptomyces flavofungini JCM 4753T (99.4% 16 S rRNA gene sequence similarity), Streptomyces alboflavus JCM 4615T (98.8%) and Streptomyces aureoverticillatus JCM 4347T (98.2%). However, the average nucleotide identity values, the digital DNA-DNA hybridization values and the multilocus sequence analysis evolutionary distances between this strain and its closely related strains showed that it belonged to one distinct species. In addition, these results were also supported by differences in the phenotypic and chemotaxonomic characteristics between strain p1417T and three closely related type strains. Therefore, it is concluded that strain p1417T represents a novel species of the genus of Streptomyces, for which the name Streptomyces typhae sp. nov. is proposed. The type strain is p1417T (= CCTCC AA 2019091T = DSM 110636T).
Collapse
|
22
|
Kunova A, Cortesi P, Saracchi M, Migdal G, Pasquali M. Draft genome sequences of two Streptomyces albidoflavus strains DEF1AK and DEF147AK with plant growth-promoting and biocontrol potential. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01616-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Bacteria belonging to the Streptomyces genus can be exploited in environmentally friendly approaches to food safety. Genome information can help to characterize bioactive strains opening the possibility to decipher their mechanisms of action.
Methods
The biocontrol and plant growth-promoting activity of two Streptomyces spp. strains, DEF1AK and DEF147AK, were assessed in vitro and in planta. The genome sequences were determined using the Illumina NextSeq sequencing system and were assembled using EvoCAT (Evogene Clustering and Assembly Toolbox).
Result
Streptomyces spp. DEF1AK and DEF147AK were able to improve seed germination and early plant development of maize, wheat, and tomato and inhibited the mycelium growth of diverse fungal plant pathogens in vitro. The genome sequence analysis identified both strains as S. albidoflavus (99% sequence identity). Both genomes were of 7.1-Mb length with an average GC content of 73.45%. AntiSMASH and MIBiG analyses revealed strain-specific sets of secondary metabolite gene clusters in the two strains as well as differences in the number and type of duplicated genes.
Conclusion
The combination of the biological activity and genomic data is the basis for in-depth studies aimed at the identification of secondary metabolites involved in plant growth-promoting and biocontrol activity of Streptomyces spp. The comparison of unique genomic features of the two strains will help to explain their diverse biocontrol and plant growth-promoting activities and warrant targeted functional genomics approaches to verify their mechanisms of action.
Collapse
|
23
|
Wang Y, Liang J, Zhang C, Wang L, Gao W, Jiang J. Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth. Front Microbiol 2020; 11:1602. [PMID: 32733429 PMCID: PMC7363778 DOI: 10.3389/fmicb.2020.01602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Oomycete Phytophthora infestans [(Mont.) de Bary] is the cause of potato late blight, a plant disease which poses a serious threat to our global food security and is responsible for huge economic losses worldwide. Lipopeptides produced by Bacillus species are known to be potent antibacterial compounds against many plant pathogens. In this study, we show that Bacillus megaterium WL-3 has an antagonistic effect against potato late blight. Electrospray ionization mass spectrometry (ESI-MS) revealed that lipopeptides derived from the WL-3 strain contained three subfamilies, surfactin (C13 - C15), Iturin A (C14 - C16), and Fengycin A (C15 - C19). The Iturin A and Fengycin A lipopeptide families were each confirmed to have anti-oomycete effects against P. infestans mycelium growth as well as obvious controlling effects against potato late blight in greenhouse experiments and field assays. Furthermore, Iturin A and Fengycin A were able to promote plant photosynthetic efficiency, plant growth, and potato yield. Most importantly, the combination of Iturin A and Fengycin A (I + F) was superior to individual lipopeptides in controlling potato late blight and in the promotion of plant growth. The results of this study indicate that B. megaterium WL-3 and its lipopeptides are potential candidates for the control of late blight and the promotion of potato plant growth.
Collapse
Affiliation(s)
- Youyou Wang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jiao Liang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Congying Zhang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Le Wang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wenbin Gao
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jizhi Jiang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
Otto-Hanson LK, Kinkel LL. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats. MICROBIAL ECOLOGY 2020; 79:694-705. [PMID: 31656973 DOI: 10.1007/s00248-019-01443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.
Collapse
Affiliation(s)
- L K Otto-Hanson
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA.
| | - L L Kinkel
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA
| |
Collapse
|
25
|
Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Tissue-specific synergistic bio-priming of pepper by two Streptomyces species against Phytophthora capsici. PLoS One 2020; 15:e0230531. [PMID: 32191748 PMCID: PMC7082030 DOI: 10.1371/journal.pone.0230531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Among several studied strains, Streptomyces rochei IT20 and S. vinaceusdrappus SS14 showed a high level of inhibitory effect against Phytophthora capsici, the causal agent of pepper blight. The effect of two mentioned superior antagonists, as single or combination treatments, on suppression of stem and fruit blight diseases and reproductive growth promotion was investigated in pepper. To explore the induced plant defense reactions, ROS generation and transcriptional changes of selected genes in leaf and fruit tissues of the plant were evaluated. The plants exposed to the combination of two species responded differently in terms of H2O2 accumulation and expression ratio of GST gene compared to single treatments upon pathogen inoculation. Besides, the increment of shoot length, flowering, and fruit weight were observed in healthy plants compared to control. Likely, these changes depended on the coordinated relationships between PR1, ACCO genes and transcription factors WRKY40 enhanced after pathogen challenge. Our findings indicate that appropriate tissue of the host plant is required for inducing Streptomyces-based priming and relied on the up-regulation of SUS and differential regulation of ethylene-dependent genes.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- * E-mail: (NS); (AS)
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
- * E-mail: (NS); (AS)
| | - Masoud Shamsbakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Cattò C, de Vincenti L, Borgonovo G, Bassoli A, Marai S, Villa F, Cappitelli F, Saracchi M. Sub-lethal concentrations of Perilla frutescens essential oils affect phytopathogenic fungal biofilms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:264-272. [PMID: 31158678 DOI: 10.1016/j.jenvman.2019.05.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/07/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The lack of deep knowledge of plant pathogenic fungal biofilms is reflected in the few existing environmental-friendly options for controlling fungal plant disease. Indeed, chemical fungicides still dominate the market but present-day concerns about their real efficacy, increasing awareness of the risk they pose to human health and the environment, and the incidence of fungicide resistance have all led to the current trend of near zero-market-tolerance for pesticide residues in fruit and vegetables. Here, essential oils (PK and PK-IK) from the edible leaves of two cultivars of Perilla frutescens are proposed as new, effective, non-toxic, eco-friendly pesticide-free options suitable for a preventive or integrative approach for sustainable crop protection and product preservation. PK and PK-IK were extracted and characterized, and their ability to affect the biofilm formation of the phytopathogenic model fungi Colletotrichum musae, Fusarium dimerum and Fusarium oxysporum was studied at non-lethal doses. Both essential oils at 1000 and 2000 mg l-1 showed excellent anti-biofilm performance: i) reducing conidia adhesion up to 80.3 ± 16.2%; ii) inhibiting conidia germination up to 100.0 ± 0.0%; iii) affecting biofilm structural development, with a reduction in dry weight of up to 100.0 ± 0.0% and extracellular polysaccharides and proteins up to 81.4 ± 8.0% and 51.0 ± 6.1% respectively. In all cases PK-IK showed better activity than PK.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Luca de Vincenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Angela Bassoli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Simone Marai
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
27
|
Hong CE, Kim JU, Lee JW, Bang KH, Jo IH. Metagenomic analysis of bacterial endophyte community structure and functions in Panax ginseng at different ages. 3 Biotech 2019; 9:300. [PMID: 31355109 DOI: 10.1007/s13205-019-1838-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 01/12/2023] Open
Abstract
This study investigated the root-associated bacterial endophytes of Panax ginseng at different ages by shotgun metagenomic analysis. After mapping metagenome data to the complete ginseng genome to identify unmapped sequences, we predicted the structure and functions of ginseng bacterial endophytes by metagenomic rapid annotation using subsystems technology analysis. While Proteobacteria and Actinobacteria were the predominant phyla in all samples (2-6-year-old roots), class Alphaproteobacteria was most abundant in 3-, 4-, and 5-year-old plants. We found that 3-year-old P. ginseng had a 0.66% unmapped rate against the whole ginseng genome and showed the greatest diversity of endophytic bacteria (α diversity = 299). Prediction of endophytic bacterial functions at different ages by SEED subsystem analysis revealed that siderophore and auxin-related traits-which are known to promote plant growth-were most highly represented in 3-year-old plants. This was supported by a gene frequency analysis of plant growth-promoting genes, including those responsible for solubilization of phosphate and nitrogen metabolism, using BLASTn. These results suggest that endophytic bacteria of the P. ginseng root affect plant growth. Furthermore, the isolation and purification of plant growth-promoting endophytes identified in this study could promote sustainable cultivation of ginseng in the future.
Collapse
|
28
|
Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms. Front Microbiol 2019; 10:1505. [PMID: 31333615 PMCID: PMC6616268 DOI: 10.3389/fmicb.2019.01505] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 01/25/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are potential natural alternatives to chemical fungicides in greenhouse production via inducing plant immune system against biotic stresses. In this research, 126 Streptomyces isolates were recovered from rhizosphere soils of 13 different commercial vegetable greenhouses in Iran. Streptomyces isolates were screened for in vitro Plant growth promoting (PGP) traits and ability to antagonize Fusarium oxysporum f. sp. lycopersici race 3 (FOL), the causal agent of Fusarium wilt of tomato (FWT). Six isolates with the highest antagonistic activity and at least three PGP traits were selected and compared with chemical fungicide Carbendazim® in a greenhouse experiment. All bacterial treatments mitigated FWT disease symptoms like chlorosis, stunting and wilting at the same level or better than Carbendazim®. Strains IC10 and Y28 increased shoot length and shoot fresh and dry weight compared to not inoculated control plants. Phenotypic characterization and 16S rRNA gene sequencing showed, strains IC10 and Y28 were closely related to S. enissocaesilis and S. rochei, respectively. The ability of the superior biocontrol strains to induce antioxidant enzymes activity and systemic resistance (ISR) was investigated. Increased activity of catalase (CAT) in plant treated with both strains as well as an increase in peroxidase (POX) activity in plants treated with Y28 pointed to a strain specific-induced systemic resistance (ss-ISR) in tomato against FOL. The differential induced expression of WRKY70 and ERF1 (two transcription factors involved in plant defense) and LOX and TPX by the analyzed Streptomyces strains, especially after inoculation with FOL, suggests that ss-ISR is triggered at the molecular level.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoud Shamsbakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Ogran A, Yardeni EH, Keren-Paz A, Bucher T, Jain R, Gilhar O, Kolodkin-Gal I. The Plant Host Induces Antibiotic Production To Select the Most-Beneficial Colonizers. Appl Environ Microbiol 2019; 85:e00512-19. [PMID: 31003984 PMCID: PMC6581183 DOI: 10.1128/aem.00512-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Microbial ecosystems tightly associated with a eukaryotic host are widespread in nature. The genetic and metabolic networks of the eukaryotic hosts and the associated microbes have coevolved to form a symbiotic relationship. Both the Gram-positive Bacillus subtilis and the Gram-negative Serratia plymuthica can form biofilms on plant roots and thus can serve as a model system for the study of interspecies interactions in a host-associated ecosystem. We found that B. subtilis biofilms expand collectively and asymmetrically toward S. plymuthica, while expressing a nonribosomal antibiotic bacillaene and an extracellular protease. As a result, B. subtilis biofilms outcompeted S. plymuthica for successful colonization of the host. Strikingly, the plant host was able to enhance the efficiency of this killing by inducing bacillaene synthesis. In turn, B. subtilis biofilms increased the resistance of the plant host to pathogens. These results provide an example of how plant-bacterium symbiosis promotes the immune response of the plant host and the fitness of the associated bacteria.IMPORTANCE Our study sheds mechanistic light on how multicellular biofilm units compete to successfully colonize a eukaryote host, using B. subtilis microbial communities as our lens. The microbiota and its interactions with its host play various roles in the development and prevention of diseases. Using competing beneficial biofilms that are essential microbiota members on the plant host, we found that B. subtilis biofilms activate collective migration to capture their prey, followed by nonribosomal antibiotic synthesis. Plant hosts increase the efficiency of antibiotic production by B. subtilis biofilms, as they activate the synthesis of polyketides; therefore, our study provides evidence of a mechanism by which the host can indirectly select for beneficial microbiota members.
Collapse
Affiliation(s)
- Ariel Ogran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eliane Hadas Yardeni
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tabitha Bucher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rakeshkumar Jain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics. Folia Microbiol (Praha) 2019; 65:303-314. [PMID: 31250362 DOI: 10.1007/s12223-019-00725-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The Streptomyces sp. strain AV05 isolated from an organic amendment was found to impact both growth and fumonisin production of Fusarium verticillioides during in vitro direct confrontation. In order to investigate the interactions between the Streptomyces sp. strain AV05 and F. verticillioides, a metabolomic approach was used. The study of the endometabolomes of the microorganisms was carried out in two different conditions: the microorganisms were cultivated alone or in confrontation. The aim of this study was to examine the modifications of the endometabolome of F. verticillioides in confrontation with the Streptomyces strain. The metabolites involved in these modifications were identified using 2D NMR. Many metabolites were found to be overproduced in confrontation assays with the Streptomyces strain, notably 16 proteinogenic amino acids, inosine, and uridine. This suggested that fungal metabolic pathways such as protein synthesis have been affected due to interaction. Thus, metabolomic studies, as well as proteomics or transcriptomics, are useful for deciphering the mechanisms of interactions between biological control agents and mycotoxigenic fungi. This comprehension is one of the key elements of the improvement of the selection and use of antagonistic agents.
Collapse
|
31
|
Colombo EM, Pizzatti C, Kunova A, Gardana C, Saracchi M, Cortesi P, Pasquali M. Evaluation of in-vitro methods to select effective streptomycetes against toxigenic fusaria. PeerJ 2019; 7:e6905. [PMID: 31198624 PMCID: PMC6535041 DOI: 10.7717/peerj.6905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects of Fusarium strain diversity (N = 5) and culture media (N = 6) on the identification of biological control activity of Streptomyces strains (N = 20) against Fusarium pathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media, Fusarium strain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r = 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays of Streptomyces BCAs against fungal pathogens.
Collapse
Affiliation(s)
- Elena Maria Colombo
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| |
Collapse
|
32
|
Thilagam R, Hemalatha N. Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria. J Appl Microbiol 2019; 126:1835-1849. [PMID: 30901131 DOI: 10.1111/jam.14259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to screen potential plant growth promoting rhizobacterial (PGPR) actinobacterial isolate with effective inhibition against anthracnose causing fungal pathogen Colletotrichum capsici. METHODS AND RESULTS In this study, actinobacterias were isolated from rhizosphere soil using dilution plate method and tested for antagonistic potential against pathogenic fungi C. capsici. In primary and secondary screening tests, the actinobacterial isolate BS-26 displayed high antagonistic activity against the fungal pathogen. Isolate BS-26 was identified as Streptomyces violaceoruber based on 16S rDNA sequencing. Furthermore, indole acetic acid production, phosphate solubilization and ammonia production have been confirmed in the S. violaceoruber that suggest their potential to be used as PGPR bacteria. A green house experiment showed that application of S. violaceoruber fermentation broth reduced the incidence of the chilli anthracnose and promoted the growth of chilli seedlings with a significant increase in germination %, total plant height, fresh weight and chlorophyll content when compared to controls. CONCLUSION Streptomyces violaceoruber can be applied as a biofertilizer and biocontrol agent for growing chillies against the attack of fungal pathogen C. capsici. SIGNIFICANCE OF IMPACT OF THE STUDY The damage caused by anthracnose disease is an issue of concern, affecting negatively the economy involved in chilli cultivation. As chemical methods of control have serious disadvantages, biocontrol approach using beneficial (PGPR) micro-organisms shall be a better alternative to control crop diseases.
Collapse
Affiliation(s)
- R Thilagam
- Department of Microbiology, Periyar University, Salem, 636011, Tamilnadu, India
| | - N Hemalatha
- Department of Microbiology, Periyar University, Salem, 636011, Tamilnadu, India
| |
Collapse
|
33
|
Environmental interactions are regulated by temperature in Burkholderia seminalis TC3.4.2R3. Sci Rep 2019; 9:5486. [PMID: 30940839 PMCID: PMC6445077 DOI: 10.1038/s41598-019-41778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/12/2019] [Indexed: 11/08/2022] Open
Abstract
Burkholderia seminalis strain TC3.4.2R3 is an endophytic bacterium isolated from sugarcane roots that produces antimicrobial compounds, facilitating its ability to act as a biocontrol agent against phytopathogenic bacteria. In this study, we investigated the thermoregulation of B. seminalis TC3.4.2R3 at 28 °C (environmental stimulus) and 37 °C (host-associated stimulus) at the transcriptional and phenotypic levels. The production of biofilms and exopolysaccharides such as capsular polysaccharides and the biocontrol of phytopathogenic fungi were enhanced at 28 °C. At 37 °C, several metabolic pathways were activated, particularly those implicated in energy production, stress responses and the biosynthesis of transporters. Motility, growth and virulence in the Galleria mellonella larvae infection model were more significant at 37 °C. Our data suggest that the regulation of capsule expression could be important in virulence against G. mellonella larvae at 37 °C. In contrast, B. seminalis TC3.4.2R3 failed to cause death in infected BALB/c mice, even at an infective dose of 107 CFU.mL-1. We conclude that temperature drives the regulation of gene expression in B. seminalis during its interactions with the environment.
Collapse
|
34
|
Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK, Rai AR. Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere. PLoS One 2018; 13:e0206497. [PMID: 30427885 PMCID: PMC6241123 DOI: 10.1371/journal.pone.0206497] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species 1-14 isolated from cassava rhizosphere soil were evaluated for their antibacterial efficacy against Fusarium oxysporum f.sp. cubense race 4 (FOC4). Of the 63 strains tested, thirteen exhibited potent antibacterial properties and were further screened against eight fungal pathogens. The strain that showed maximum inhibition against all of the test pathogens was identified by 16S rDNA sequencing as Streptomyces sp. 1-14, was selected for further studies. Through the propagation of Streptomyces sp. 1-14 in soil under simulated conditions, we found that FOC4 did not significantly influence the multiplication and survival of Streptomyces sp. 1-14, while indigenous microorganisms in the soil did significantly influence Streptomyces sp. 1-14 populations. To achieve maximum metabolite production, the growth of Streptomyces 1-14 was optimized through response surface methodology employing Plackett-Burman design, path of steepest ascent determinations and Box-Behnken design. The final optimized fermentation conditions (g/L) included: glucose, 38.877; CaCl2•2H2O, 0.161; temperature, 29.97°C; and inoculation amount, 8.93%. This optimization resulted in an antibacterial activity of 56.13% against FOC4, which was 12.33% higher than that before optimization (43.80%). The results obtained using response surface methodology to optimize the fermentation medium had a significant effect on the production of bioactive metabolites by Streptomyces sp. 1-14. Moreover, during fermentation and storage, pH, light, storage temperature, etc., must be closely monitored to reduce the formation of fermentation products with reduced antibacterial activity. This method is useful for further investigations of the production of anti-FOC4 substances, and could be used to develop bio-control agents to suppress or control banana fusarium wilt.
Collapse
|
36
|
Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World J Microbiol Biotechnol 2018; 34:132. [PMID: 30105532 DOI: 10.1007/s11274-018-2517-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
Actinomycetes, a Gram positive bacteria, well reported as a source of antibiotics, also possess potential to control various plant pathogens, besides acting as plant growth promoting agent. Chemicals in different forms are extensively being used in vegetable farming, adversely affecting the environment and consumer health. Microbial agent like actinomycetes can substantially replace these harmful chemicals, and have now started finding a place as an important input in to farming practices. Only selected vegetable crops belonging to 11 different families have been explored with use of actinomycetes as biocontrol and plant growth promoting agent till now. It provides ample opportunities to vegetable researchers, to further explore with use of this very important group of microorganisms, in order to achieve even higher production level of safe vegetables. Mycostop and Actinovate are two actinomycetes based formulations globally available for use in vegetable farming as a substitute for chemical formulations. Present review article has summarized the literature available on use of actinomycetes in vegetable farming. Existing wide gap in knowledge, and potential thrust areas for future research have also been projected.
Collapse
|
37
|
Ding T, Su B, Chen X, Xie S, Gu S, Wang Q, Huang D, Jiang H. An Endophytic Bacterial Strain Isolated from Eucommia ulmoides Inhibits Southern Corn Leaf Blight. Front Microbiol 2017; 8:903. [PMID: 28572799 PMCID: PMC5435801 DOI: 10.3389/fmicb.2017.00903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis DZSY21 isolated from the leaves of Eucommia ulmoides oliv. was labeled by antibiotic marker and found to effectively colonize the leaves of maize plant. Agar diffusion assays and biocontrol effect experiments showed that strain DZSY21 and its lipopeptides had antagonistic activity against Bipolaris maydis, as well as high biocontrol effects on southern corn leaf blight caused by B. maydis. Using MALDI-TOF-MS analysis, we detected the presence of antimicrobial surfactin A, surfactin B, and fengycin in the strain DZSY21. Signaling pathways mediated by DZSY21 were analyzed by testing the expression of key plant genes involved in regulation of salicylic acid (SA) or JA/ET pathways, the defense-related genes PR1 and LOX were concurrently expressed in the leaves of DZSY21-treated plants; this corresponded to slight increase in the expression level of PDF1.2 and decreases in ERF gene transcription levels. The results indicated an induced systemic response that is dependent on the SA and jasmonic acid (JA) pathways. Thus, we hypothesized that the strain DZSY21 inhibits B. maydis by producing antifungal lipopeptides and activating an induced systemic response through SA- and JA-dependent signaling pathways. This work describes a mechanism behind reduced disease severity in plants inoculated with the endophytic bacteria DZSY21.
Collapse
Affiliation(s)
- Ting Ding
- School of Plant Protection, Anhui Agricultural UniversityHefei, China
| | - Bo Su
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural UniversityHefei, China
| | - Xiaojie Chen
- School of Plant Protection, Anhui Agricultural UniversityHefei, China
| | - Shanshan Xie
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural UniversityHefei, China
| | - Shuangyue Gu
- School of Plant Protection, Anhui Agricultural UniversityHefei, China
| | - Qi Wang
- School of Plant Protection, Anhui Agricultural UniversityHefei, China
| | - Dayue Huang
- School of Plant Protection, Anhui Agricultural UniversityHefei, China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural UniversityHefei, China
| |
Collapse
|