1
|
Najjari A, Elmnasri K, Cherif H, Burleigh S, Guesmi A, Mahjoubi M, Linares-Pastén JA, Cherif A, Ouzari HI. Metataxonomic analysis of halophilic archaea community in two geothermal oases in the southern Tunisian Sahara. FEMS Microbiol Lett 2025; 372:fnae106. [PMID: 39657077 PMCID: PMC11719619 DOI: 10.1093/femsle/fnae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
This study assesses halophilic archaea's phylogenetic diversity in southern Tunisia's geothermal water. In the arid southern regions, limited surface freshwater resources make geothermal waters a vital source for oases and greenhouse irrigation. Three samples, including water, sediment, and halite soil crust, were collected downstream of two geothermal springs of the Ksar Ghilane (KGH) and Zaouet Al Aness (ZAN) oases, Tunisia. The samples were subjected to 16S rRNA gene sequencing using the Illumina Miseq sequencing approach. Several haloarchaea were identified in the geothermal springs. The average taxonomic composition revealed that 20 out of 33 genera were shared between the two geothermal sources, with uneven distribution, where the Halogranum genus was the most represented genus with an abundance of 18.9% and 11.58% for ZAW and KGH, respectively. Several unique site-specific genera were observed: Halonotius, Halopelagius, Natronorubrum, and Haloarcula in ZAN, and Haloprofundus, Halomarina, Halovivax, Haloplanus, Natrinema, Halobium, Natronoarchaeum, and Haloterrigena in the KGH pool. Most genus members are typically found in low-salinity ecosystems. These findings suggest that haloarchaea can disperse downstream from geothermal sources and may survive temperature and chemical fluctuations in the runoff.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Khaled Elmnasri
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Hanene Cherif
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Stephen Burleigh
- Department of Process and Life Science Engineering, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Amel Guesmi
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Mouna Mahjoubi
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Javier A Linares-Pastén
- Division of Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, P. O. Box 124, 22100 Lund, Sweden
| | - Ameur Cherif
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Hadda-Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
2
|
Lassoued K, Mahjoubi M, Asimakis E, Bel Mokhtar N, Stathopoulou P, Ben Hamouda R, Bousselmi O, Marasco R, Masmoudi AS, Daffonchio D, Tsiamis G, Cherif A. Diversity and networking of uni-cyanobacterial cultures and associated heterotrophic bacteria from the benthic microbial mat of a desert hydrothermal spring. FEMS Microbiol Ecol 2024; 100:fiae148. [PMID: 39557663 DOI: 10.1093/femsec/fiae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024] Open
Abstract
Thermal springs harbour microorganisms, often dominated by cyanobacteria, which form biofilms and microbial mats. These phototrophic organisms release organic exudates into their immediate surroundings, attracting heterotrophic bacteria that contribute to the diversity and functioning of these ecosystems. In this study, the microbial mats from a hydrothermal pool in the Ksar Ghilane oasis in the Grand Erg Oriental of the Desert Tunisia were collected to obtain cyanobacterial cultures formed by single cyanobacterial species. High-throughput analysis showed that while the microbial mat hosted diverse cyanobacteria, laboratory cultures selectively enriched cyanobacteria from the Leptolyngbya, Nodosilinea, and Arthronema. Per each of these genera, multiple non-axenic uni-cyanobacterial cultures were established, totalling 41 cultures. Cyanobacteria taxa mediated the assembly of distinct heterotrophic bacterial communities, with members of the Proteobacteria and Actinobacteria phyla dominating. The bacterial communities of uni-cyanobacterial cultures were densely interconnected, with heterotrophic bacteria preferentially co-occurring with each other. Our study highlighted the complex structures of non-axenic uni-cyanobacterial cultures, where taxonomically distinct cyanobacteria consistently associate with specific groups of heterotrophic bacteria. The observed associations were likely driven by common selection pressures in the laboratory, such as cultivation conditions and specific hosts, and may not necessarily reflect the microbial dynamic occurring in the spring microbial mats.
Collapse
Affiliation(s)
- Khaoula Lassoued
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
- National Institute of Agronomy of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Mouna Mahjoubi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Refka Ben Hamouda
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Olfa Bousselmi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Ameur Cherif
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| |
Collapse
|
3
|
Kumar S, Das S, Jiya N, Sharma A, Saha C, Sharma P, Tamang S, Thakur N. Bacterial diversity along the geothermal gradients: insights from the high-altitude Himalayan hot spring habitats of Sikkim. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100310. [PMID: 39629478 PMCID: PMC11613191 DOI: 10.1016/j.crmicr.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Geothermal habitats present a unique opportunity to study microbial adaptation to varying temperature conditions. In such environments, distinct temperature gradients foster diverse microbial communities, each adapted to its optimal niche. However, the complex dynamics of bacterial populations in across these gradients high-altitude hot springs remain largely unexplored. We hypothesize that temperature is a primary driver of microbial diversity, and bacterial richness peaks at intermediate temperatures. To investigate this, we analysed bacterial diversity using 16S rRNA amplicon sequencing across three temperature regions: hot region of 56-65 °C (hot spring), warm region of 35-37 °C (path carrying hot spring water to the river), and cold region of 4-7 °C (river basin). Our findings showed that Bacillota was the most abundant phylum (45.51 %), followed by Pseudomonadota (32.81 %) and Actinomycetota (7.2 %). Bacillota and Chloroflexota flourished in the hot and warm regions, while Pseudomonadota thrived in cooler areas. Core microbiome analysis indicated that species richness was highest in the warm region, declining in both cold and hot regions. Interestingly, an anomaly was observed with Staphylococcus, which was more abundant in cases where ponds were used for bathing and recreation. In contrast, Clostridium was mostly found in cold regions, likely due to its viability in soil and ability to remain dormant as a spore-forming bacterium. The warm region showed the highest bacterial diversity, while richness decreased in both cold and hot regions. This highlights the temperature-dependent nature of microbial communities, with optimal diversity in moderate thermal conditions. The study offers new insights into microbial dynamics in high-altitude geothermal systems.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Sayak Das
- Department of Life Science & Bioinformatics, Har Gobind Khurana School of Life Sciences, Assam University, Silchar, Assam 788011, India
| | - Namrata Jiya
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Chirantan Saha
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| |
Collapse
|
4
|
Rangra S, Sharma N, Lata P, Sharma KB, Kumari R, Singh SP, Savitri. NGS-Based Metagenomics Depicting Taxonomic and Functional Insights into North-Western Himalayan Hot Springs. Indian J Microbiol 2024; 64:1099-1109. [PMID: 39282167 PMCID: PMC11399500 DOI: 10.1007/s12088-024-01248-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/29/2024] [Indexed: 09/18/2024] Open
Abstract
Hot springs have tremendous significance due to their divulging physiochemical features. In the recent past, metagenomics has emerged as a unique methodology to explore microbiota as well as new biocatalysts possessing advantageous biochemical properties from hot springs. In the present study, metagenomics has been employed for microbial diversity exploration and identification of genes involved in various metabolic pathways among two hot springs, Manikaran and Tatapani, located in Himachal Pradesh, India. Taxonomic analysis of both metagenomes revealed the dominance of the Proteobacteria phylum. Genomic signatures of other bacterial phyla such as Chloroflexi, Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, and Firmicutes were also found in significant abundance in both the metagenomes. The abundance of microorganisms belonging to genera, especially Nitrospira, Thauera, Meiothermus, Thiobacillus, Massilia, and Anaerolinea, was reported to be prevalent in the hot springs. A significant amount of metagenomic data remained taxonomically unclassified, which indeed emphasizes the scientific importance of these thermoaquatic niches. The functional potential analysis of both metagenomes revealed pathways related to carbohydrate metabolism, followed by amino acid metabolism, energy metabolism, genetic information processing, metabolism of cofactors and vitamins, membrane transporter, and signal transduction. Exploration of biomass-modifying biocatalysts enumerated the presence of glycoside hydrolases, glycosyl transferases, polysaccharide lyases, and carbohydrate esterases in the metagenomic data. Together, these findings offer an in-depth understanding of the microbial inhabitants in North-Western Himalayan hot springs and their underlying potential for various biotechnological and industrial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01248-z.
Collapse
Affiliation(s)
- Shailja Rangra
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh 171005 India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, Punjab 140306 India
| | - Prem Lata
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh 171005 India
| | - Kiran Bala Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh 171005 India
| | - Reena Kumari
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh 171005 India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, Punjab 140306 India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh 171005 India
| |
Collapse
|
5
|
Hambali KU, Eilu E, Kumar S, Afolabi AO, Tijani NA, Faseun YO, Odoki M, Gechemba Mokaya C, Makeri D, Jakheng SPE, Sankarapandian V, Adeyemo RO, Adegboyega TT, Adebayo IA, Ntulume I, Akinola SA. Monitoring Multi-Drug Resistant Klebsiella pneumoniae in Kitagata Hot Spring, Southwestern Uganda: A Public Health Implication. Infect Drug Resist 2024; 17:3325-3341. [PMID: 39131514 PMCID: PMC11315647 DOI: 10.2147/idr.s472998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background The concerning frequency of K. pneumoniae in various recreational settings, is noteworthy, especially regarding multi-drug resistant (MDR) strains. This superbug is linked to the rapid spread of plasmids carrying these resistance genes. The objective of this study was to evaluate the spatiotemporal prevalence of MDR-K. pneumoniae in the Kitagata hot spring, Southwestern Uganda. Methods A laboratory-based descriptive longitudinal study was conducted between May and July 2023. During rainy and dry seasons, we collected eighty water samples in the morning and evening from the hot spring. The temperature at each point was measured prior to sample collection, and two samples were obtained at varying depths. 5 mL of each homogenized sample were pre-enriched in brain heart infusion broth, and subsequently in both blood and violet red bile agar. The Kirby-Bauer disk diffusion method was performed, followed by the detection of carbapenemase (CR) and extended-spectrum β-lactamase (ESBL) production. Polymerase chain reaction showed resistance genes viz. bla TEM, bla CTX-M and bla KPC. Data were analyzed using SPSS-20 to obtain chi-square tests and regression analysis. Results K. pneumoniae accounted for 30.0% of isolates obtained from Kitagata hot springs, with all isolates classified as multi-drug resistant. All isolates were resistant to ampicillin, rifampicin, ceftazidime, and azithromycin (79.2%). Additionally, 95.8% of isolates harbored bla TEM gene alone and both bla TEM and bla CTX genes, followed by bla KPC alone (33.3%), with 25% harboring all three resistance genes. During the dry season, K. pneumoniae had a higher prevalence (35.0%) compared to the wet season (25.0%). The prevalence of MDR-K. pneumoniae significantly increased over the course of the study. The presence of the three studied resistance genes in the isolates showed a positive correlation with the second phase of sample collection and the dry season but exhibited a negative correlation with temperature, except for isolates harboring either bla TEM alone or bla TEM+KPC+CTX genes. Conclusion Kitagata hot spring serves as a hotspot for continuous dissemination and acquisition of MDR-K. pneumoniae harboring resistance genes that encode for ESBL and CR production. The healthcare sector ought to implement an ongoing monitoring and surveillance system as well as robust antimicrobial resistance stewardship programs aimed at delivering health education to the community.
Collapse
Affiliation(s)
- Kaltume Umar Hambali
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Emmanuel Eilu
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Sunil Kumar
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Abdullateef Opeyemi Afolabi
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Naheem Adekilekun Tijani
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Yusuf Olusola Faseun
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Martin Odoki
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Christine Gechemba Mokaya
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Danladi Makeri
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | | | - Vidya Sankarapandian
- Department of Medical Microbiology and Immunology, Kampala International University-Western Campus, Ishaka-Bushenyi, Uganda
| | - Rasheed Omotayo Adeyemo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Taofeek Tope Adegboyega
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Ismail Abiola Adebayo
- Department of Medical Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Ibrahim Ntulume
- School of Biosecurity Biotechnical and Laboratory Sciences, College of Medicine and Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Saheed Adekunle Akinola
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
6
|
Benammar L, Menasria T, Dibi AR. Deciphering the geochemical influences on bacterial diversity and communities among two Algerian hot springs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44848-44862. [PMID: 38954336 DOI: 10.1007/s11356-024-34123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Northeastern Algeria boasts numerous hot springs, yet these hydrothermal sites remain largely unexplored for their microbial ecology. The present study explores the bacterial abundance and diversity within two distinct Algerian hot springs (Hammam Saïda and Hammam Debagh) and investigates the link between the prevailing bacteria with geochemical parameters. High-throughput 16S rRNA gene sequencing of water and sediment samples revealed a bacterial dominance of 99.85-91.16% compared to Archaea (0.14-0.66%) in both springs. Interestingly, Saïda hot spring, characterized by higher temperatures and sodium content, harbored a community dominated by Pseudomonadota (51.13%), whereas Debagh, a Ca-Cl-SO4 type spring, was primarily populated by Bacillota with 55.33%. Bacteroidota displayed even distribution across both sites. Additional phyla, including Chloroflexota, Deinococcota, Cyanobacteriota, and Chlorobiota, were also present. Environmental factors, particularly temperature, sodium, potassium, and alkalinity, significantly influenced bacterial diversity and composition. These findings shed light on the interplay between distinct microbial communities and their associated geochemical properties, providing valuable insights for future research on biogeochemical processes in these unique ecosystems driven by distinct environmental conditions, including potential applications in bioremediation and enzyme discovery.
Collapse
Affiliation(s)
- Leyla Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Taha Menasria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria.
| | - Amira Rayenne Dibi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| |
Collapse
|
7
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Chen JS, Hussain B, Tsai HC, Nagarajan V, Koner S, Hsu BM. Analysis and interpretation of hot springs water, biofilms, and sediment bacterial community profiling and their metabolic potential in the area of Taiwan geothermal ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159115. [PMID: 36181827 DOI: 10.1016/j.scitotenv.2022.159115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms developed a mechanism that copes with heat, acidity, and high dissolved metal concentrations that likely first evolved. The geothermal fluids emerging in the geothermal springs of Taiwan, located at a subduction zone, are still under signs of progress in the characterization of the various microbial taxonomic changes over time. However, no systematic studies have been performed to compare water, biofilms, and sediment bacterial communities and the primary driving force of dissolved and mineral substrates capable of supporting microbial metabolism. In this study, 16S rRNA gene sequencing was employed for bacterial community exploration, and their potential metabolic pathways involved from water, biofilms, and sediment samples, collected from the geothermal valley (Ti-re-ku). Metagenomic data revealed that the water samples had higher bacterial diversity and richness than biofilms and sediment samples. At the genus level, Alicyclobacillus, Thiomonas, Acidocella, Metallibacterium, Picrophilus, and Legionella were significantly abundant in the water samples. The biofilms were rich in Aciditerrimonas, Bacillus, Acidithiobacillus, and Lysinibacillus, whereas the sediment samples were abundant in Sulfobacillus. The PICRUSt2-predicted functional results revealed that heavy metal-related functions such as heavy-metal exporter system, cobalt‑zinc‑cadmium resistance, arsenical pump, high-affinity nickel-transport, and copper resistance metabolisms were significant in the water samples. Moreover, sulfur-related pathways such as thiosulfate oxidation, dissimilatory sulfate reduction, and assimilatory sulfate reduction were important in water samples, followed by biofilms and sediment. Therefore, our findings highlighted the comparative taxonomic diversity and functional composition contributions to geothermal fluid, with implications for understanding the evolution and ecological niche dimension of microbes which are the key to geothermal ecosystem function.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 824, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi County 621, Taiwan.
| |
Collapse
|
9
|
Mondal N, Roy C, Chatterjee S, Sarkar J, Dutta S, Bhattacharya S, Chakraborty R, Ghosh W. Thermal Endurance by a Hot-Spring-Dwelling Phylogenetic Relative of the Mesophilic Paracoccus. Microbiol Spectr 2022; 10:e0160622. [PMID: 36287077 PMCID: PMC9769624 DOI: 10.1128/spectrum.01606-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/24/2022] [Indexed: 01/05/2023] Open
Abstract
High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic Paracoccus isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator Paracoccus had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other Paracoccus, contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. IMPORTANCE For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, in vitro endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.
Collapse
Affiliation(s)
- Nibendu Mondal
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Chayan Roy
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | | | - Subhajit Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
10
|
Das S, Najar IN, Sherpa MT, Kumari A, Thakur N. Post-monsoon seasonal variation of prokaryotic diversity in solfataric soil from the North Sikkim hot spring. Int Microbiol 2022; 26:281-294. [PMID: 36478539 DOI: 10.1007/s10123-022-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The solfataric soil sediments of the hot springs of Sikkim located at Yume Samdung and Lachen valley were studied for deciphering the bacterial diversity. The main aim here is to present a comparative study and generate a baseline data on the post-monsoon seasonal variation for the months of October and December, analyzed through 16S rRNA V3-V4 amplicon sequencing. The results have shown that there is not much variation at phylum level in the month of October in all the three hot springs such as New Yume Samdung (NYS), Old Yume Samdung (OYS), and Tarum (TAR) hot spring. The abundant phyla mainly present were Firmicutes, followed by Proteobacteria, Actinobacteria, and Bacteroidetes. Similarly, in the month of December, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were prevalent; however, the percent relative abundance of these phyla in the month of December is relatively less. Besides this decrease in percent abundance, it was interestingly seen that relatively more phyla were found contributing towards the bacterial diversity in the month of December. Similar to phylum level, at genus level, there was not much variation seen among various prevalent genera of the three studied hot springs in both months. The major genera prevalent in both months among all the three hot springs were followed by Bacillus, Desulfotomaculum, Lactobacillus, and Paenibacillus. A similar trend was also seen at gene level that relative abundance of various genera was higher in the month of October but more genera were found to be contributing towards bacterial diversity in the month of December. Few distinct genera were found to be more abundant in the month of December such as Rhodopirellula and Blastopirellula. The results may conclude that there is not much variation in the abundance and type of bacterial communities during the post-monsoon season in the month of October and December. However, this may be assumed that there is the accumulation or increase in the bacterial communities during the winter (relatively higher temperature among hot springs) and may favor few mesophilic and more thermophilic communities as well.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
11
|
Wei F, Xu R, Xu Y, Cheng T, Ma Y. Insight into bacterial community profiles of oil shale and sandstone in ordos basin by culture-dependent and culture-independent methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:723-735. [PMID: 35903918 DOI: 10.1080/10934529.2022.2105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
To promote the exploitation of unconventional oil resources by indigenous microorganisms, the bacterial community profiles of oil shale and sandstone in Ordos Basin were investigated using Illumina Miseq sequencing combined with the culture-based method, which was performed and reported in this literature for the first time. A total of 601 operational taxonomic units (OTUs) were obtained from collected samples, the predominant phylum present in all samples was Proteobacteria (76.96%-93.07%). Discriminatory bacterial community profiles existed in those samples by culture-dependent and culture-independent methods, with variations not only in diversity indices but also in the abundance of bacteria at different genus levels. The dominant genera in cultured sandstone sample (SCB), uncultured sandstone sample (SUB), cultured shale sample (YCB), uncultured shale sample (YUB) were Enhydrobacter (71.62%), Acidovorax (42.44%), Pseudomonas (40.13%), Variovorax (70.02%), respectively. Both sample sources and culturing methods were the principal factors affecting the variation, while the communities' structures were favored primarily by culture-dependent or culture-independent approaches. The high abundance of hydrocarbon degradation-related genes was exhibited in YCB, which reveals a great potential for utilization of the culture-dependent method in shale oil exploitation. This study provided guidance for the exploitation of shale oil and sandstone oil by artificial utilization of indigenous bacteria.
Collapse
Affiliation(s)
- Fengdan Wei
- College of Life Science, Northwest University, Xi'an, China
| | - Rui Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Yuanyuan Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Tao Cheng
- College of Life Science, Northwest University, Xi'an, China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Zhang B, Deng J, Xie J, Wu H, Wei C, Li Z, Qiu G, Wei C, Zhu S. Microbial community composition and function prediction involved in the hydrolytic bioreactor of coking wastewater treatment process. Arch Microbiol 2022; 204:426. [PMID: 35751757 DOI: 10.1007/s00203-022-03052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
The hydrolytic acidification process has a strong ability to conduct denitrogenation and increase the biological oxygen demand/chemical oxygen demand ratio in O/H/O coking wastewater treatment system. More than 80% of the total nitrogen (TN) was removed in the hydrolytic bioreactor, and the hydrolytic acidification process contributed to the provision of carbon sources for the subsequent nitrification process. The structure and diversity of microbial communities were elaborated using high-throughput MiSeq of the 16S rRNA genes. The results revealed that the operational taxonomic units (OTUs) belonged to phyla Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria were the dominant taxa involved in the denitrogenation and degradation of refractory contaminants in the hydrolytic bioreactor, with relative abundances of 22.94 ± 3.72, 29.77 ± 2.47, and 18.23 ± 0.26%, respectively. The results of a redundancy analysis showed that the OTUs belonged to the genera Thiobacillus, Rhodoplanes, and Hylemonella in the hydrolytic bioreactor strongly positively correlated with the chemical oxygen demand, TN, and the removal of phenolics, respectively. The results of a microbial co-occurrence network analysis showed that the OTUs belonged to the phylum Bacteroidetes and the genus Rhodoplanes had a significant impact on the efficiency of removal of contaminants that contained nitrogen in the hydrolytic bioreactor. The potential function profiling results indicate the complementarity of nitrogen metabolism, methane metabolism, and sulfur metabolism sub-pathways that were considered to play a significant role in the process of denitrification. These results provide new insights into the further optimization of the performance of the hydrolytic bioreactor in coking wastewater treatment.
Collapse
Affiliation(s)
- Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
13
|
Keshari N, Zhao Y, Das SK, Zhu T, Lu X. Cyanobacterial Community Structure and Isolates From Representative Hot Springs of Yunnan Province, China Using an Integrative Approach. Front Microbiol 2022; 13:872598. [PMID: 35547135 PMCID: PMC9083006 DOI: 10.3389/fmicb.2022.872598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Cyanobacteria from the representative hot springs of Yunnan Province, China are explored for their diversity and community composition following an integrative approach of cultivation-independent and -dependent studies and further isolation of potential taxa for future biotechnological perspective. 16S rRNA amplicon sequencing of microbial mats in these hot springs with temperature ranging from 38 to 90°C revealed Cyanobacteria and Proteobacteria constituting a bounteous portion of the bacterial community. The combined approach of 16S rRNA amplicon sequencing and phenotypic analysis revealed the diversity of cyanobacteria (a total of 45 genera). Out of these, a total of 19 cyanobacterial taxa belonging to 6 genera and 10 species were isolated as individuals with the possibility of biotechnological utilization. These isolates were subjected to a thorough morphological study and molecular characterization using 16S rRNA gene sequencing for identification and understanding their phylogeny. The identity and phenotypic and genotypic characteristics of 7 cyanobacterial isolates are not identical to any known cyanobacterial species, generating scope for future taxonomic novelties. Preliminary experiments based on high-temperature (50°C) cultivation showed that most of the isolates were thermotolerant and suggested for their high biotechnological usage potential.
Collapse
Affiliation(s)
- Nitin Keshari
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yang Zhao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Sudipta Kumar Das
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, India
| | - Tao Zhu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Lu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Nagar S, Talwar C, Motelica-Heino M, Richnow HH, Shakarad M, Lal R, Negi RK. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Front Microbiol 2022; 13:848010. [PMID: 35495730 PMCID: PMC9044081 DOI: 10.3389/fmicb.2022.848010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.
Collapse
Affiliation(s)
- Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Chandni Talwar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Mikael Motelica-Heino
- UMR 7327, Centre National de la Recherche Scientifique, Institut des Sciences de la Terre D'Orleans (ISTO), Université d'Orleans-Brgm, Orleans, France
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Rup Lal
- NASI Senior Scientist Platinum Jubilee Fellow, The Energy and Resources Institute, New Delhi, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
15
|
Fang S, Yan J. Analysis of prokaryotic microbial diversity in hot spring water from Bantang (China) using the targeted amplicon analysis. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Shu Fang
- School of Chemistry and Material Engineering, Chaohu University, Chaohu, Anhui, People’s Republic of China
| | - Juan Yan
- School of Chemistry and Material Engineering, Chaohu University, Chaohu, Anhui, People’s Republic of China
| |
Collapse
|
16
|
Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Sci Rep 2022; 12:2850. [PMID: 35181739 PMCID: PMC8857248 DOI: 10.1038/s41598-022-06943-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The SKY hot spring is a unique site filled with a thick layer of plant litter. With the advancement of next-generation sequencing, it is now possible to mine many new biocatalyst sequences. In this study, we aimed to (i) identify the metataxonomic of prokaryotes and eukaryotes in microbial mats using 16S and 18S rRNA markers, (ii) and explore carbohydrate degrading enzymes (CAZymes) that have a high potential for future applications. Green microbial mat, predominantly photosynthetic bacteria, was attached to submerged or floating leaves litter. At the spring head, the sediment mixture consisted of plant debris, predominantly brownish-reddish gelatinous microbial mat, pale tan biofilm, and grey-white filament biofilm. The population in the spring head had a higher percentage of archaea and hyperthermophiles than the green mat. Concurrently, we cataloged nearly 10,000 sequences of CAZymes in both green and brown biofilms using the shotgun metagenomic sequencing approach. These sequences include β-glucosidase, cellulase, xylanase, α-N-arabinofuranosidase, α-l-arabinofuranosidase, and other CAZymes. In conclusion, this work elucidated that SKY is a unique hot spring due to its rich lignocellulosic material, often absent in other hot springs. The data collected from this study serves as a repository of new thermostable macromolecules, in particular families of glycoside hydrolases.
Collapse
|
17
|
Mathan Kumar R, Jani K, Parvathi JR, Thomas BM, Raja SSS, Pandey A, Sharma A. Bacterial diversity of geochemically distinct hot springs located in Maharashtra, India. Arch Microbiol 2022; 204:110. [PMID: 34978617 DOI: 10.1007/s00203-021-02728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Bacterial diversity of four thermally different hot springs of Ratnagiri district, Maharashtra, India, was investigated using culture-dependent and culture-independent approaches. A total of 144 bacterial cultures were isolated and identified using MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) and 16S rRNA gene sequencing. Culture-independent analysis by Ion Torrent sequencing targeting the V3 region of the 16S rRNA gene revealed the predominance of Firmicutes across all the hot springs, followed by Chloroflexi, Bacteroidetes, Cyanobacteria, Proteobacteria, Armatimonadetes, Actinobacteria, Nitrospirae, Acidobacteria, and Deinococcus-Thermus, with subtle differences in their abundance. At the lower taxonomic rank of genus, we noted the prevalence of Acinetobacter followed by Clostridium, Planomicrobium, Bacillus, Streptomyces, and Leptolyngbya. Metagenomics imputation using in silico approach revealed divergence in the metabolic capabilities of bacterial communities along the thermal gradient of host springs, with site TS (63 °C) featuring the abundant functional gene families.
Collapse
Affiliation(s)
- R Mathan Kumar
- Government College of Arts and Science, Kurumbalur, Perambalur, (Formerly, Bharathidasan University Constituent College, Perambalur), Kurumbalur, Tamil Nadu, 621212, India
| | - Kunal Jani
- DBT-National Centre for Cell Science, Pune, 411007, India
| | - J R Parvathi
- Somaiya Institute for Research and Consultancy (SIRAC), Somaiya Vidyavihar University, Mumbai, 400077, India
| | - Becky M Thomas
- Somaiya Institute for Research and Consultancy (SIRAC), Somaiya Vidyavihar University, Mumbai, 400077, India.,CHRIST (Deemed to be University), Pune, 412112, India
| | - Suresh S S Raja
- Government College of Arts and Science, Kurumbalur, Perambalur, (Formerly, Bharathidasan University Constituent College, Perambalur), Kurumbalur, Tamil Nadu, 621212, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehra Dun, 248002, India
| | - Avinash Sharma
- DBT-National Centre for Cell Science, Pune, 411007, India.
| |
Collapse
|
18
|
Kiama CW, Njire MM, Kambura AK, Mugweru JN, Matiru VN, Wafula EN, Kagali RN, Kuja JO. Prokaryotic diversity and composition within equatorial lakes Olbolosat and Oloiden in Kenya (Africa). CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100066. [PMID: 34841356 PMCID: PMC8610316 DOI: 10.1016/j.crmicr.2021.100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Total community 16S rDNA was used to determine the diversity and composition of bacteria and archaea within lakes Olbolosat and Oloiden in Kenya. The V3-V4 hypervariable region of the 16S rRNA gene was targeted since it's highly conserved and has a higher resolution for lower rank taxa. High throughput sequencing was performed on 15 samples obtained from the two lakes using the Illumina Miseq platform. Lakes Olbolosat and Oloiden shared 280 of 10,523 Amplicon Sequence Variants (ASVs) recovered while the four sample types (water, microbial mats, dry and wet sediments) shared 4 ASVs. The composition of ASVs in lake Olbolosat was highly dependent on Cu+, Fe2+, NH4 +, and Mn2+, while L. Oloiden was dependent on Mg2+, Na+, Ca2+, and K+. All the alpha diversity indices except Simpson were highest in the dry sediment sample (EC1 and 2) both from lake Oloiden. The abundant phyla included Proteobacteria (33.8%), Firmicutes (27.3%), Actinobacteriota (21.2%), Chloroflexi (6.8%), Cyanobacteria (3.8%), Acidobacteriota (2.8%), Planctomycetota (1.9%) and Bacteroidota (1.1%). Analysis of similarity (ANOSIM) revealed a significant difference in ASV composition between the two lakes (r = 0.191, p = 0.048), and between the sample types (r = 0.6667, p = 0.001). The interaction network for prokaryotic communities within the two lakes displayed Proteobacteria to be highly positively connected with other microbes. PERMANOVA results suggest that temperature controls the functioning of the two ecosystems.
Collapse
Affiliation(s)
- Catherine Wachera Kiama
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Moses Mucugi Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Anne Kelly Kambura
- School of Agriculture, Earth and Environmental Sciences, Taita Taveta University, P. O. Box 635-80300 Voi, Kenya
| | | | - Viviene Njeri Matiru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Eliud Nalianya Wafula
- Department of Physical and Biological Sciences, Bomet University College, P.O Box 701-20400, Bomet Kenya
| | - Robert Nesta Kagali
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Josiah Ochieng Kuja
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| |
Collapse
|
19
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
20
|
Samarasinghe SN, Wanigatunge RP, Magana-Arachchi DN. Bacterial Diversity in a Sri Lankan Geothermal Spring Assessed by Culture-Dependent and Culture-Independent Approaches. Curr Microbiol 2021; 78:3439-3452. [PMID: 34258683 DOI: 10.1007/s00284-021-02608-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Hot springs harbour diverse and interesting groups of microorganisms adapted to extreme conditions. However, due to limitations in the culture-dependent approach, most of such thermophiles remain uncultured and unexplored. Hence, this study was conducted to gain a comprehensive understanding of the bacterial diversity of Mahapelessa hot spring, Sri Lanka using both culture-dependent and culture-independent approaches. The in situ temperature of the water sample was 44.5 °C and the pH was 8.14. 16S rRNA Sanger sequencing of DNA extracted from the 18 bacterial isolates revealed the presence of eight genera belonging to two phyla: Proteobacteria (84%) and Firmicutes (16%) and the most abundant genus being Klebsiella. A total of 23 bacterial phyla representing 80 classes, 43 orders, 123 families, 205 genera and 83 species were detected by 16S rRNA V3-V4 region by amplicon metagenome sequencing of DNA extracted from water samples, where the most abundant phylum was the Proteobacteria (57.39%), followed by Firmicutes (23.7%) and Chloroflexi (4.14%). The three phyla Actinobacteria, Planctomycetes and Bacteroidetes were also detected less than 3% in abundance while 4.48% of bacteria could not be fit into any known phylum. The most abundant genera were Burkholderia (14.87%), Desulfotomaculum (7.23%) and Stenotrophomonas (6.1%). Four strictly anaerobic bacteria, Anaerosolibacter carboniphilus (0.71%), Bellilinea caldifistulae (0.04%), Salimesophilobacter vulgaris (0.1%), Anaerobacterium chartisolvens (0.12%); two potential plant growth-promoting bacteria, Azospirillum halopraeferens (0.04%) and Bradyrhizobium liaoningense (0.16%) and one potential alkali tolerant and sulphate-reducing bacterium, Desulfovibrio alkalitolerans (0.45%) were recorded. Pigmentiphaga sp. was isolated from Mahapelessa hot spring and to the best of our knowledge, this is the first record of this genus from a hot spring. This study gives insight into the vast bacterial diversity present in the Mahapelessa hot spring from the culture-independent approach which could not be identified using standard culturing techniques.
Collapse
Affiliation(s)
- Supun N Samarasinghe
- Molecular Microbiology and Human Diseases Research Group, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - Rasika P Wanigatunge
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Dhammika N Magana-Arachchi
- Molecular Microbiology and Human Diseases Research Group, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka.
| |
Collapse
|
21
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential. Life (Basel) 2021; 11:493. [PMID: 34071172 PMCID: PMC8228822 DOI: 10.3390/life11060493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Omics have given rise to research on sparsely studied microbial communities such as the landfill, lignocellulolytic microorganisms and enzymes. The bacterial diversity of Municipal Solid Waste sediments was determined using the illumina MiSeq system after DNA extraction and Polymerase chain reactions. Data analysis was used to determine the community's richness, diversity, and correlation with environmental factors. Physicochemical studies revealed sites with mesophilic and thermophilic temperature ranges and a mixture of acidic and alkaline pH values. Temperature and moisture content showed the highest correlation with the bacteria community. The bacterial analysis of the community DNA revealed 357,030 effective sequences and 1891 operational taxonomic units (OTUs) assigned. Forty phyla were found, with the dominant phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota, while Aerococcus, Stenotrophomonas, and Sporosarcina were the dominant species. PICRUSt provided insight on community's metabolic function, which was narrowed down to search for lignocellulolytic enzymes' function. Cellulase, xylanase, esterase, and peroxidase were gene functions inferred from the data. This article reports on the first phylogenetic analysis of the Pulau Burung landfill bacterial community. These results will help to improve the understanding of organisms dominant in the landfill and the corresponding enzymes that contribute to lignocellulose breakdown.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
22
|
Li N, Li X, Zhang HJ, Fan XY, Liu YK. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144364. [PMID: 33429277 DOI: 10.1016/j.scitotenv.2020.144364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the dynamics of microbial communities and antibiotic resistance genes (ARGs) during biofilm formation on polypropylene random (PPR), polyvinyl chloride and stainless steel pipes in domestic hot water system (DHWS), as well as their interactions. Full-scale classification was used to divide abundant and rare genera with 0.1% and 1% as the thresholds. The biofilm community structure presented a temporal pattern, which was mainly determined by conditionally rare or abundant taxa (CRAT) and conditionally rare taxa (CRT). The dynamics of microbial community during biofilm formation were observed, and the effect of pipe material on conditionally abundant taxa (CAT) and CRAT was greater than CRT and rare taxa (RT). CRAT showed the most complex internal associations and were identified as the core taxa. Notably, CRT and RT with low relative abundance, also played an important role in the network. For potential pathogens, 17 genera were identified in this study, and their total relative abundance was the highest (3.6-28.9%) in PPR samples. Enterococcus of CRAT was the dominant potential pathogen in young biofilms. There were 36 more co-exclusion patterns (140) observed between potential pathogens and nonpathogenic bacteria than co-occurrence (104). A total of 38 ARGs were predicted, and 109 negative and 165 positive correlations were detected between them. Some potential pathogens (Escherichia/Shigella and Burkholderia) and nonpathogenic bacteria (Meiothermus and Sphingopyxis) were identified as the possible hosts of ARGs. This study is helpful for a comprehensive understanding of the biofilm microbial community and ARGs, and provides a reference for the management and biosafety guarantee of newly-built DHWS.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hui-Jin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan-Kun Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
23
|
Yasir M, Qureshi AK, Azhar EI. 16S amplicon sequencing of microbial communities in enriched and non-enriched sediments of non-volcanic hot spring with temperature gradients. PeerJ 2021; 9:e10995. [PMID: 33859871 PMCID: PMC8020870 DOI: 10.7717/peerj.10995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/02/2021] [Indexed: 12/05/2022] Open
Abstract
Microorganisms in geothermal springs can offer insights into the fundamental and applied study of extremophiles. However, low microbial abundance and culturing requirements limit the ability to analyze microbial diversity in these ecosystems. In this study, culture-dependent and culture-independent techniques were used to analyze sediment samples from the non-volcanic Tatta Pani hot springs in district Poonch of Azad Kashmir. Microbial composition, temperature gradient, and enrichment effects on rare taxa were evaluated. In total, 31 distinct bacterial phyla and 725 genera were identified from the non-enriched Tatta Pani hot spring sediment samples, and 33 distinct bacterial phyla and 890 genera from the enriched sediment samples. Unique phyla specimens from the enriched samples included Candidatus Cloacimonetes, Caldiserica, and Korarchaeota archaea. The enriched samples yielded specific microbiota including 805 bacteria and 42 archaea operational taxonomic units with 97% similarity, though decreased thermophilic microbiota were observed in the enriched samples. Microbial diversity increased as temperature decreased. Candidate novel species were isolated from the culture-dependent screening, along with several genera that were not found in the 16S amplicon sequencing data. Overall, the enriched sediments showed high microbial diversity but with adverse changes in the composition of relatively dominant bacteria. Metagenomic analyses are needed to study the diversity, phylogeny, and functional investigation of hot spring microbiota.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arooj K Qureshi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
DeCastro ME, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso MI. Exploring the taxonomical and functional profile of As Burgas hot spring focusing on thermostable β-galactosidases. Sci Rep 2021; 11:101. [PMID: 33420292 PMCID: PMC7794327 DOI: 10.1038/s41598-020-80489-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
In the present study we investigate the microbial community inhabiting As Burgas geothermal spring, located in Ourense (Galicia, Spain). The approximately 23 Gbp of Illumina sequences generated for each replicate revealed a complex microbial community dominated by Bacteria in which Proteobacteria and Aquificae were the two prevalent phyla. An association between the two most prevalent genera, Thermus and Hydrogenobacter, was suggested by the relationship of their metabolism. The high relative abundance of sequences involved in the Calvin-Benson cycle and the reductive TCA cycle unveils the dominance of an autotrophic population. Important pathways from the nitrogen and sulfur cycle are potentially taking place in As Burgas hot spring. In the assembled reads, two complete ORFs matching GH2 beta-galactosidases were found. To assess their functional characterization, the two ORFs were cloned and overexpressed in E. coli. The pTsbg enzyme had activity towards o-Nitrophenyl-β-D-galactopyranoside (ONPG) and p-Nitrophenyl-β-D-fucopyranoside, with high thermal stability and showing maximal activity at 85 °C and pH 6, nevertheless the enzyme failed to hydrolyze lactose. The other enzyme, Tsbg, was unable to hydrolyze even ONPG or lactose. This finding highlights the challenge of finding novel active enzymes based only on their sequence.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Michael P Doane
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Syndey Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
| | - Elizabeth Ann Dinsdale
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- College of Science and Engineering, Flinders University, Sturt Rd, Bedford Park, SA, 5042, Australia
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain.
| |
Collapse
|
25
|
Li N, Li X, Shi ZY, Fan XY, Zhou ZW. Response of high-, mid- and low-abundant taxa and potential pathogens to eight disinfection methods and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141440. [PMID: 32829270 DOI: 10.1016/j.scitotenv.2020.141440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Eight disinfection methods were applied to control biofilm contamination in domestic hot water system. The inactivation efficiency, responses of high- (≥1%), mid- (0.1% ~ 1%) and low-abundant taxa (≤0.1%) to disinfection, and interactions within and across three sub-communities were investigated. Ultraviolet was the most effective disinfection method for total bacteria and Escherichia coli, and chlorine dioxide had the highest inactivation efficiency on heterotrophic bacteria, while silver ions exhibited poor performance on all of them. At the phylum level, the responses of microorganisms to eight disinfection methods were different, but Proteobacteria and Firmicutes dominated in most samples. Eight disinfection methods had a greater impact on the proportion of high- and mid-abundant taxa than that of low-abundant taxa, and led to dissimilar transformations of genera among high-, mid- and low-abundant taxa in each sample. High-, mid- and low-abundant taxa of different samples showed similar structures and were roughly clustered into three Groups. Moreover, high-abundant taxa had more complex internal interactions than mid- and low-abundant taxa, and mainly presented co-occurrence patterns. The associations between high- and low-abundant taxa were close, and some low-abundant genera were identified as hub bacteria, such as Paracoccus, Thioalkalispira and Flavitalea. Furthermore, a total of 23 potential pathogens were detected in this study, and they mainly showed positive interactions, with Mycobacteria and Streptococcus as keystone genera. These results highlight the dissimilar responses of high-, mid- and low-abundant taxa to disinfection, and the critical role of some low-abundant genera in the microbial network, as well as the co-occurrence patterns among potential pathogens.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhi-Yuan Shi
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200335, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhi-Wei Zhou
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
26
|
Lippai A, Farkas R, Szuróczki S, Szabó A, Felföldi T, Toumi M, Tóth E. Microbiological investigations of two thermal baths in Budapest, Hungary. Report: effect of bathing and pool operation type on water quality. JOURNAL OF WATER AND HEALTH 2020; 18:1020-1032. [PMID: 33328372 DOI: 10.2166/wh.2020.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Hungary, which is famous for its thermal baths, according to the regulations, waters are investigated in hygienic aspects with standard cultivation methods. In the present study, two thermal baths were investigated (the well and three different pool waters in both) using cultivation methods, taxon-specific polymerase chain reactions (PCRs), multiplex PCRs and next-generation amplicon sequencing. Mainly members of the natural microbial community of the well waters and bacteria originating from the environment were detected but several opportunistic pathogenic taxa, e.g., Pseudomonas aeruginosa, P. stutzeri, Acinetobacter johnsoni, Acinetobacter baumanni, Moraxella osloensis, Microbacterium paraoxydans, Legionella spp., Stenotrophomonas maltophilia and Staphylococcus aureus were revealed by the applied methods. Pools with charging-unloading operation had higher microscopic cell counts, colony-forming unit (CFU) counts, number of cocci, P. aeruginosa and S. aureus compared to the recirculation systems. Bacteria originating from human sources (e.g., skin) were identified in the pool waters with less than 1% relative abundance, and their presence was sporadic in the pools. Comparing the microbiological quality of the pools based on the first sampling time and the following four months' period it was revealed that recirculation operation type has better water quality than the charging-unloading pool operation from a hygienic point of view.
Collapse
Affiliation(s)
- Anett Lippai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail: ; Eurofins KVI-PLUSZ Environmental Testing Office Ltd, Szállító utca 6, 1211 Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Marwene Toumi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| |
Collapse
|
27
|
Sharma N, Kumar J, Abedin MM, Sahoo D, Pandey A, Rai AK, Singh SP. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 2020; 20:246. [PMID: 32778049 PMCID: PMC7418396 DOI: 10.1186/s12866-020-01923-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Himalaya is an ecologically pristine environment. The geo-tectonic activities have shaped various environmental niches with diverse microbial populations throughout the Himalayan biosphere region. Albeit, limited information is available in terms of molecular insights into the microbiome, including the uncultured microbes, of the Himalayan habitat. Hence, a vast majority of genomic resources are still under-explored from this region. Metagenome analysis has simplified the extensive in-depth exploration of diverse habitats. In the present study, the culture-independent whole metagenome sequencing methodology was employed for microbial diversity exploration and identification of genes involved in various metabolic pathways in two geothermal springs located at different altitudes in the Sikkim Himalaya. RESULTS The two hot springs, Polok and Reshi, have distinct abiotic conditions. The average temperature of Polok and Reshi was recorded to be 62 °C and 43 °C, respectively. Both the aquatic habitats have alkaline geochemistry with pH in the range of 7-8. Community profile analysis revealed genomic evidence of plentiful bacteria, with a minute fraction of the archaeal population in hot water reservoirs of Polok and Reshi hot spring. Mesophilic microbes belonging to Proteobacteria and Firmicutes phyla were predominant at both the sites. Polok exhibited an extravagant representation of Chloroflexi, Deinococcus-Thermus, Aquificae, and Thermotogae. Metabolic potential analysis depicted orthologous genes associated with sulfur, nitrogen, and methane metabolism, contributed by the microflora in the hydrothermal system. The genomic information of many novel carbohydrate-transforming enzymes was deciphered in the metagenomic description. Further, the genomic capacity of antimicrobial biomolecules and antibiotic resistance were discerned. CONCLUSION The study provided comprehensive molecular information about the microbial treasury as well as the metabolic features of the two geothermal sites. The thermal aquatic niches were found a potential bioresource of biocatalyst systems for biomass-processing. Overall, this study provides the whole metagenome based insights into the taxonomic and functional profiles of Polok and Reshi hot springs of the Sikkim Himalaya. The study generated a wealth of genomic data that can be explored for the discovery and characterization of novel genes encoding proteins of industrial importance.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jitesh Kumar
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India.
| |
Collapse
|
28
|
Li L, Ma ZS. Species Sorting and Neutral Theory Analyses Reveal Archaeal and Bacterial Communities Are Assembled Differently in Hot Springs. Front Bioeng Biotechnol 2020; 8:464. [PMID: 32548097 PMCID: PMC7271673 DOI: 10.3389/fbioe.2020.00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
Although the recognition of archaea as one of the three kingdoms in the tree of life has been nearly a half-century long, the comparative investigations on their ecological adaptations with bacteria have been limited. The mechanisms of their community assembly and diversity maintenance in hot springs have not been addressed. The mechanistic study is critical not only for understanding the hot-spring microbiome structure and dynamics, but also for shedding light on their evolutionary adaptations. We applied the neutral theory model and species sorting paradigm of metacommunity theory to investigate how hot-spring microbial communities were assembled, how their diversities were maintained, and how the temperature and pH influence these mechanisms. Through rigorous statistical tests based on the neutral theory and species sorting paradigm, we found (i) According to the neutral theory, archaeal and bacterial communities are assembled differently, with stochastic neutral force playing a more significant role in archaeal communities than in bacterial communities (neutrality-rate = 52.9 vs. 15.8%, p-value < 0.05). (ii) Temperature and pH account for rather limited (<10%) variations in hot-spring microbiomes based on the species sorting paradigm. The pH has more significant influences than temperature on archaeal communities, and both pH and temperature have similarly low influences on bacterial community structure. (iii) We postulate that the differences between archaea and bacteria are likely due to the longer evolutionary history and better adaptation of archaea to host spring environments.
Collapse
Affiliation(s)
- Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
29
|
Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol 2019; 19:144. [PMID: 31248378 PMCID: PMC6598295 DOI: 10.1186/s12866-019-1521-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Due to the cave oligotrophic environment, this habitat presents a challenge for microorganisms to colonize and thrive. However, it has been well documented that microorganisms play important roles in cave development. Survival of microbes in this unique habitat likely involves a broad range of adaptive capabilities. Recently, cave microbiomes all over the world are of great scientific interest. However, the majority of investigations focused mostly on small subunit ribosomal RNA (16S rRNA) gene, leaving the ecological role of the microbial community largely unknown. Here, we are particularly interested in exploring the taxonomic composition and metabolic potential of microorganisms in soil from Manao-Pee cave, a subterranean limestone cave in the western part of Thailand, by using high-throughput shotgun metagenomic sequencing. Results From taxonomic composition analysis using ribosomal RNA genes (rRNA), the results confirmed that Actinobacteria (51.2%) and Gammaproteobacteria (24.4%) were the dominant bacterial groups in the cave soil community. Metabolic potential analysis, based on six functional modules of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, revealed that functional genes involved in microbial metabolisms are highly represented in this community (40.6%). To better understand how microbes thrive under unfavorable cave condition, we focused on microbial energy metabolism. The results showed that microbial genes involved in oxidative phosphorylation were the most dominant (28.8%) in Manao-Pee cave, and were followed by methane metabolism (20.5%), carbon fixation (16.0%), nitrogen metabolism (14.7%), and sulfur metabolism (6.3%). In addition, microbial genes involved in xenobiotic biodegradation (26 pathways) and in production of secondary metabolites (27 pathways) were also identified. Conclusion In addition to providing information on microbial diversity, we also gained insights into microbial adaptations and survival strategies under cave conditions. Based on rRNA genes, the results revealed that bacteria belonging to the Actinobacteria and Gammaproteobacteria were the most abundant in this community. From metabolic potential analysis, energy and nutrient sources that sustain diverse microbial population in this community might be atmospheric gases (methane, carbon dioxide, nitrogen), inorganic sulfur, and xenobiotic compounds. In addition, the presence of biosynthetic pathways of secondary metabolites suggested that they might play important ecological roles in the cave microbiome. Electronic supplementary material The online version of this article (10.1186/s12866-019-1521-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apirak Wiseschart
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
30
|
Li L, Ma Z(S. Global Microbiome Diversity Scaling in Hot Springs With DAR (Diversity-Area Relationship) Profiles. Front Microbiol 2019; 10:118. [PMID: 30853941 PMCID: PMC6395440 DOI: 10.3389/fmicb.2019.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The spatial distribution of biodiversity (i.e., the biogeography) of the hot-spring microbiome is critical for understanding the microbial ecosystems in hot springs. We investigated the microbiome diversity scaling (changes) over space by analyzing the diversity-area relationship (DAR), which is an extension to classic SAR (species-area relationship) law in biogeography. We built DAR models for archaea and bacteria with 16S-rRNA sequencing datasets from 165 hot springs globally. From the DAR models, we sketch out the biogeographic maps of hot-spring microbiomes by constructing: (i) DAR profile-measuring the archaea or bacteria diversity scaling over space (areas); (ii) PDO (pair-wise diversity overlap or similarity) profile-estimating the PDO between two hot springs; (iii) MAD (maximal accrual diversity) profile-predicting the global MAD; (iv) LRD/LGD (ratio of local diversity to regional or global diversity) profile. We further investigated the differences between archaea and bacteria in their biogeographic maps. For example, the comparison of DAR-profile maps revealed that the archaea diversity is more heterogeneous (i.e., more diverse) or scaling faster than the bacterial diversity does in terms of species numbers (species richness), but is less heterogeneous (i.e., less diverse) or scaling slower than bacteria when the diversity (Hill numbers) were weighted in favor of more abundant dominant species. When the diversity is weighted equally in terms of species abundances, archaea, and bacteria are equally heterogeneous over space or scaling at the same rate. Finally, unified DAR models (maps) were built with the combined datasets of archaea and bacteria.
Collapse
Affiliation(s)
- Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
31
|
Tang J, Liang Y, Jiang D, Li L, Luo Y, Shah MMR, Daroch M. Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiol 2018; 18:134. [PMID: 30332987 PMCID: PMC6191902 DOI: 10.1186/s12866-018-1271-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ganzi Prefecture in Western China is situated geographically at the transition regions between Tibetan Plateau and Sichuan Basin in a highly tectonically active boundary area between the India and Eurasia plates. The region hosts various hot springs that span a wide range of temperature from 30 to 98 °C and are located at high altitude (up to 4200 m above sea level) in the region of large geothermal anomalies and active Xianshuihe slip-fault that has been active since Holocene. The site represents a biodiversity reservoir for thermophiles, yet their diversity and relationship to geochemical parameters are largely unknown. In the present work, bacterial diversity and community structure in 14 hot springs of Ganzi were investigated using Illumina MiSeq sequencing. Results Bacterial community compositions were evidently distinct among the 14 hot springs, and the bacterial communities in hot springs were majorly abundant in phyla Aquificae, Cyanobacteria and Proteobacteria. Both clustering and PCoA analysis suggested the existence of four bacterial community patterns in these hot springs. Temperature contributed to shaping bacterial community structure of hot springs as revealed by correlation analysis. Abundant unassigned-genus sequences detected in this study strongly implied the presence of novel genera or genetic resources in these hot springs. Conclusion The diversity of hot springs of Ganzi prefecture in Western Sichuan, China is evidently shaped by temperature. Interestingly disproportionally abundant unassigned-genus sequences detected in this study show indicate potential of novel genera or phylotypes. We hypothesize that frequent earthquakes and rapidly changing environment might have contributed to evolution of these potentially new lineages. Overall, this study provided first insight into the bacterial diversity of hot springs located in Western Sichuan, China and its comparison with other similar communities worldwide. Electronic supplementary material The online version of this article (10.1186/s12866-018-1271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dong Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yifan Luo
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Md Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|