1
|
Li W, Shi Y, Sun J, Guo X, Bian Y, Ren M, Liu Y, Yan Q, Du L, Kwok LY, Zong X, Sun Z. Differential effects of Lactococcus starter cultures on Cheddar cheese: Insights from texture, electronic sensory, and metabolomics analyses. Food Chem 2025; 469:142644. [PMID: 39732074 DOI: 10.1016/j.foodchem.2024.142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Cheese-associated microbiota and their interactions are crucial in determining the properties of cheese. This study aimed to compare the effects of different starter cultures on Cheddar cheese production using texture analysis, electronic sensory evaluation, and both volatile and non-volatile metabolomics. Specifically, we examined Lactococcus lactis BL19 and Lactococcus cremoris LC99, both individually and in combination. The results revealed distinct electronic sensory profiles and varied volatile and non-volatile metabolomic characteristics among cheese samples produced with different starter combinations, although no significant differences in texture were observed. Notably, BL19 had a more pronounced effect on electronic sensory attributes and both volatile and non-volatile metabolites compared to LC99. Furthermore, the combination of starter cultures did not demonstrate an additive effect on these parameters. This study offers valuable insights into the interactions of cheese microorganisms and establishes a foundation for developing diverse flavor profiles in cheese through strategic starter culture selection.
Collapse
Affiliation(s)
- Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Yudong Shi
- Mengniu Global R&D Innovation Center, Hohhot, PR China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xiaobin Guo
- Mengniu Global R&D Innovation Center, Hohhot, PR China
| | - Yanfei Bian
- Inner Mongolia Mengniu Cheese Co., Ltd, Hohhot, PR China
| | - Min Ren
- Inner Mongolia Mengniu Cheese Co., Ltd, Hohhot, PR China
| | - Yuetong Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Qingquan Yan
- Inner Mongolia Mengniu Cheese Co., Ltd, Hohhot, PR China
| | - Li Du
- Inner Mongolia Mengniu Cheese Co., Ltd, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xuexing Zong
- Inner Mongolia Mengniu Cheese Co., Ltd, Hohhot, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
2
|
Keung WS, Zhang WH, Luo HY, Chan KC, Chan YM, Xu J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr Polym 2025; 352:123209. [PMID: 39843110 DOI: 10.1016/j.carbpol.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Natural polysaccharides have complex structural properties and a wide range of health-promoting effects. Accumulating evidence suggests that the effects are significantly mediated through fermentation by gut microbiota. In recent years, the relationship between the structures of natural polysaccharides and their properties in regulating gut microbiota has garnered significant research attention as researchers attempt to precisely understand the role of gut microbiota in the bioactivities of natural polysaccharides. Progress in this niche, however, remains limited. In this review, we first provide an overview of current research investigating this structure-property relationship. We then present a detailed correlation analysis between the structural characteristics of 159 purified natural polysaccharides and their effects on gut microbiota reported over the past two decades. The analysis revealed that diverse gut bacteria show specific correlations with the molecular weight, glycosidic linkages, and monosaccharide composition of natural polysaccharides. Multifaceted molecular mechanisms, including carbohydrate binding, enzymatic degradation, and cross-feeding, were proposed to be collectively involved in these correlations. Finally, we offer our perspective on future studies to further improve our understanding of the relationship between polysaccharide structure and gut microbiota regulation.
Collapse
Affiliation(s)
- Wing-Shan Keung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
3
|
Sun J, Hang G, Lv H, Li Y, Song Q, Zhong Z, Sun Z, Liu W. Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates. BMC Microbiol 2025; 25:2. [PMID: 39762730 PMCID: PMC11702113 DOI: 10.1186/s12866-024-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk. In this study, the sequencing and assembly results of 10 C. acnes isolates from breast milk were compared with the genomic data of 454 strains downloaded from NCBI, and the characteristics of breast milk isolates from various perspectives, including phylogeny, genomic characteristics, virulence genes, drug resistance genes, and carbohydrate utilization, were elucidated. RESULTS The findings of this study revealed no differences between the breast milk isolates and other isolates in terms of genomic features, phylogenetic relationships, virulence, and resistance-related genes. However, breast milk-derived isolates exhibited significantly lower copies of the carbohydrate metabolic enzyme genes GT5 and GT51 (P < 0.05) and a higher copy number of the GH31 gene (P < 0.05) than others. C. acnes primarily consists of three genetic branches (A, B, and C), which correspond to the three subspecies of C. acnes (C. acnes subsp. elongatum, C. acnes subsp. defendens, C. acnes subsp. acnes). The genetic differences between branches B and C were smaller than that between branch A. Branches A and B carry a higher number of copies of carbohydrate enzymes, including CE1, CE10, GH3, and CBM32 than branch C. Branches B and C possess the carbohydrate enzymes PL8 and GH23, which are absent in branch A. Core genes, core intergenic regions, and concatenated sequences of core genes and core intergenic regions were compared to construct a phylogenetic tree, and it was found that core intergenic regions could be used to describe phylogenetic relationships. CONCLUSIONS It is therefore speculated that the C. acnes in breast milk originates from the nipple or breast surface. This study provides a novel genetic basis for genetic differentiation of C. acnes isolates from breast milk.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Qiujie Song
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China.
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Niu D, Feng N, Xi S, Xu J, Su Y. Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. Mol Genet Genomics 2024; 299:24. [PMID: 38438804 DOI: 10.1007/s00438-024-02101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.
Collapse
Affiliation(s)
- Dekai Niu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Siteng Xi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China.
| |
Collapse
|
5
|
You L, Lv R, Jin H, Ma T, Zhao Z, Kwok LY, Sun Z. A large-scale comparative genomics study reveals niche-driven and within-sample intra-species functional diversification in Lacticaseibacillus rhamnosus. Food Res Int 2023; 173:113446. [PMID: 37803772 DOI: 10.1016/j.foodres.2023.113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
Lacticaseibacillus rhamnosus (L. rhamnosus) is widely recognized as a probiotic species, and it exists in a variety of environments including host gut and dairy products. This work aimed at conducting a large-scale comparative genomics analysis of 384 L. rhamnosus genomes (257 whole-sequence or metagenomic-assembled genomes from gut-associated isolates [122 and 135 retrieved from the UHGG and NCBI databases, respectively] and 127 genomes from dairy isolates [34 from the NCBI database; 93 isolated from a cheese sample and sequenced here]). Our results showed that L. rhamnosus had a large and open pan-genome (15,253 pan-genes identified from all 384 genomes; 15,028 pan-genes if the 93 cheese-originated isolates were excluded). The core-gene phylogenetic tree constructed from the 384 L. rhamnosus genomes comprised five phylogenetic branches, with a random distribution of dairy and gut-associated isolates/genomes across the tree. No significant difference was identified in the overall profile of metabolism-related genes between dairy and gut-associated genomes; however, notably, the gut-associated strains/isolates contained more genes coding for specific metabolic pathways and carbohydrate-active enzymes, e.g., lacto-N-biosidase (EC 3.2.1.140; GT20) and lacto-N-biose phosphorylase/galacto-N-biose phosphorylase (EC 2.4.1.211; GH112). Further, we found that there was obvious intra-species diversification of the 93 cheese-originated L. rhamnosus isolates, forming three clades (Clades A, B, and C) in the reconstructed core-gene phylogenetic tree. There were numerous single nucleotide variations (over 10,000) across the three clades. Moreover, significant differences were observed in the content of metabolism-related genes across clades (p < 0.05, Adonis test), characterized by the enrichment in glycoside hydrolases in Clade C and the possession of unique metabolic pathways in each clade. These results implicated genomics/functional diversification of L. rhamnosus in a single food matrix and niche-driven adaptive evolution of isolates from dairy and host gut-associated origins. Our study shed insights into the selection of candidate strains for food industry applications.
Collapse
Affiliation(s)
- Lijun You
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
6
|
Liu J, Tang W, Hou L, Wang J, Wang R, Zhang Y, Dong Z, Liu R, Yu S. Alteration of gut microbiota in migraine patients with irritable bowel syndrome in a Chinese Han population. Front Neurol 2022; 13:899056. [PMID: 36468070 PMCID: PMC9709108 DOI: 10.3389/fneur.2022.899056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
Objective Migraine is frequently reported in patients with irritable bowel syndrome (IBS), and emerging evidence suggests that gut microbiota plays a role in migraine and IBS. However, alterations in the gut microbiome in migraine patients with IBS remain unknown. This study aimed to explore the compositions of gut microbiota in migraine patients with IBS in a Chinese Han population. Methods Sixteen migraine patients with IBS and thirteen age- and gender-matched IBS patients with similar dietary and lifestyle habits were enrolled in this pilot study. Demographic data, clinical data, eating habits, lifestyle habits, comorbidities, and medications were recorded using a unified case registration form. Questionnaires for the Migraine Disability Assessment (MIDAS), Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD) were completed. Fecal samples were collected, and microbial DNA was extracted. Gut microbiota 16S ribosomal RNA (16S rRNA) gene sequencing targeting the V4 region was performed using the Illumina HiSeq 2500 high-throughput sequencing platform. The relationships between gut microbiota and clinical characteristics of migraine were analyzed. Results The structure of gut microbiota differed between migraine patients with IBS and patients with IBS, while the richness and diversity of gut microbiota in migraine patients with IBS showed no significant difference from that of patients with IBS. We found a higher relative abundance of the genus Parabacteroides and a lower relative abundance of the genera Paraprevotella, Lachnospiraceae_UCG-010, Lactococcus, Collinsella, and Comamonas in migraine patients with IBS than in patients with IBS. According to random forest predictive models, the phylum Bacteroidota shows the most important role in migraine patients with IBS. Furthermore, no statistical correlation was found between significantly different taxa at the genus level and migraine clinical data. Conclusion This study identified that altered gut microbiota occurred in Chinese Han migraine patients with IBS, but no correlation was found between gut microbiota and the clinical characteristics of migraine. Further study is needed to better understand the role of gut microbiota in the pathogenesis of migraine in IBS.
Collapse
Affiliation(s)
- Jieqiong Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- Department of Neurology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Lei Hou
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Jing Wang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Rongfei Wang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Yaofen Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
7
|
Liu W, Li W, Zheng H, Kwok LY, Sun Z. Genomics divergence of Lactococcus lactis subsp. lactis isolated from naturally fermented dairy products. Food Res Int 2022; 155:111108. [DOI: 10.1016/j.foodres.2022.111108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/13/2022]
|
8
|
Comparative Genomic Analysis Reveals Intestinal Habitat Adaptation of Ligilactobacillus equi Rich in Prophage and Degrading Cellulase. Molecules 2022; 27:molecules27061867. [PMID: 35335231 PMCID: PMC8952416 DOI: 10.3390/molecules27061867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ligilactobacillus equi is common in the horse intestine, alleviates the infection of Salmonella, and regulates intestinal flora. Despite this, there have been no genomic studies on this species. Here, we provide the genomic basis for adaptation to the intestinal habitat of this species. We sequenced the genome of L. equi IMAU81196, compared this with published genome information from three strains in NCBI, and analyzed genome characteristics, phylogenetic relationships, and functional genes. The mean genome size of L. equi strains was 2.08 ± 0.09 Mbp, and the mean GC content was 39.17% ± 0.19%. The genome size of L. equi IMAU81196 was 1.95 Mbp, and the GC content was 39.48%. The phylogenetic tree for L. equi based on 1454 core genes showed that the independent branch of strain IMAU81196 was far from the other three strains. In terms of genomic characteristics, single-nucleotide polymorphism (SNP) sites, rapid annotation using subsystem technology (RAST), carbohydrate activity enzymes (CAZy), and predictions of prophage, we showed that strain L. equi JCM 10991T and strain DSM 15833T are not equivalent strains.It is worth mentioning thatthestrain of L. equi has numerous enzymes related to cellulose degradation, and each L. equi strain investigated contained at least one protophage. We speculate that this is the reason why these strains are adapted to the intestinal environment of horses. These results provide new research directions for the future.
Collapse
|
9
|
Park SH, Lee YH, Yeo MH, Chang KS. First Case of Urinary Tract Infection by Lactococcus garvieae in Korea. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.3.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang-Hyun Park
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Korea
| | - Young-Hyeon Lee
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Korea
| | - Min-Ho Yeo
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Korea
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Korea
| |
Collapse
|
10
|
Daniel N, Rossi Perazza L, Varin TV, Trottier J, Marcotte B, St-Pierre P, Barbier O, Chassaing B, Marette A. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1014-G1033. [PMID: 33881354 DOI: 10.1152/ajpgi.00028.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.
Collapse
Affiliation(s)
- Noëmie Daniel
- Faculty of Food Science, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Laίs Rossi Perazza
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Bruno Marcotte
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Philippe St-Pierre
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, France
| | - André Marette
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| |
Collapse
|
11
|
Huang D, Yang B, Chen Y, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Comparative genomic analyses of Lactobacillus rhamnosus isolated from Chinese subjects. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Lactococcus lactis Diversity Revealed by Targeted Amplicon Sequencing of purR Gene, Metabolic Comparisons and Antimicrobial Properties in an Undefined Mixed Starter Culture Used for Soft-Cheese Manufacture. Foods 2020; 9:foods9050622. [PMID: 32414204 PMCID: PMC7278722 DOI: 10.3390/foods9050622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
The undefined mixed starter culture (UMSC) is used in the manufacture of cheeses. Deciphering UMSC microbial diversity is important to optimize industrial processes. The UMSC was studied using culture-dependent and culture-independent based methods. MALDI-TOF MS enabled identification of species primarily from the Lactococcus genus. Comparisons of carbohydrate metabolism profiles allowed to discriminate five phenotypes of Lactococcus (n = 26/1616). The 16S sequences analysis (V1–V3, V3–V4 regions) clustered the UMSC microbial diversity into two Lactococcus operational taxonomic units (OTUs). These clustering results were improved with the DADA2 algorithm on the housekeeping purR sequences. Five L. lactis variants were detected among the UMSC. The whole-genome sequencing of six isolates allowed for the identification of the lactis subspecies using Illumina® (n = 5) and Pacbio® (n = 1) technologies. Kegg analysis confirmed the L. lactis species-specific niche adaptations and highlighted a progressive gene pseudogenization. Then, agar spot tests and agar well diffusion assays were used to assess UMSC antimicrobial activities. Of note, isolate supernatants (n = 34/1616) were shown to inhibit the growth of Salmonella ser. Typhimurium CIP 104115, Lactobacillus sakei CIP 104494, Staphylococcus aureus DSMZ 13661, Enterococcus faecalis CIP103015 and Listeria innocua CIP 80.11. Collectively, these results provide insightful information about UMSC L. lactis diversity and revealed a potential application as a bio-protective starter culture.
Collapse
|
13
|
Ou YJ, Ren QQ, Fang ST, Wu JG, Jiang YX, Chen YR, Zhong Y, Wang DD, Zhang GX. Complete Genome Insights into Lactococcus petauri CF11 Isolated from a Healthy Human Gut Using Second- and Third-Generation Sequencing. Front Genet 2020; 11:119. [PMID: 32174973 PMCID: PMC7054480 DOI: 10.3389/fgene.2020.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Lactococcus petauri CF11 was originally isolated from the gut of healthy humans. To determine the underlying molecular and genetic mechanisms of the probiotic potential of CF11, we performed complete genome sequencing, annotation, and comparative genome analysis. The complete genome of L. petauri CF11 comprised of 1,997,720 bp, with a DNA G+C content of 38.21 mol% containing 1982 protein coding genes and 16 rRNA operons. We found that 1206 genes (56.05%) were assigned a putative function using the gene ontology (GO) resource. The gene products of CF11 were primarily concentrated in molecular function and biological processes, such as catalysis, binding, metabolism, and cellular processes. Furthermore, 1,365 (68.87%) genes were assigned an illative function using COGs. CF11 proteins were associated with carbohydrate transport and metabolism, and amino acid transport and metabolism. This indicates that CF11 bacteria can perform active energy exchange. We classified 1,111 (56.05%) genes into six KEGG functional categories; fructose-bisphosphate aldolase and the phosphoenol pyruvate:phosphotransferase system (PTS), which are necessary in producing short-chain fatty acids (SCFAs), were excited in the carbohydrate metabolic pathway. This suggests that L. petauri CF11 produces SCFAs via glycolysis. The genomic island revealed that some regions contain fragments of antibiotic resistance and bacteriostatic genes. In addition, ANI analysis showed that L. petauri CF11 had the closest relationship with L. petauri 159469T, with an average nucleotide consistency of 98.03%. Taken together, the present study offers further insights into the functional and potential role of L. petauri CF11 in health care.
Collapse
Affiliation(s)
- Yun-Jing Ou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiao-Qiao Ren
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shu-Ting Fang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Guo Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yun-Xia Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi-Ran Chen
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yi Zhong
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - De-Dong Wang
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guo-Xia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e36178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This paper describes a novel alignment-free distance-based procedure for inferring phylogenetic trees from genome contig sequences using publicly available bioinformatics tools. For each pair of genomes, a dissimilarity measure is first computed and next transformed to obtain an estimation of the number of substitution events that have occurred during their evolution. These pairwise evolutionary distances are then used to infer a phylogenetic tree and assess a confidence support for each internal branch. Analyses of both simulated and real genome datasets show that this bioinformatics procedure allows accurate phylogenetic trees to be reconstructed with fast running times, especially when launched on multiple threads. Implemented in a publicly available script, named JolyTree, this procedure is a useful approach for quickly inferring species trees without the burden and potential biases of multiple sequence alignments.
Collapse
|
15
|
Marques Da Silva W, Oliveira LC, Soares SC, Sousa CS, Tavares GC, Resende CP, Pereira FL, Ghosh P, Figueiredo H, Azevedo V. Quantitative Proteomic Analysis of the Response of Probiotic Putative Lactococcus lactis NCDO 2118 Strain to Different Oxygen Availability Under Temperature Variation. Front Microbiol 2019; 10:759. [PMID: 31031733 PMCID: PMC6470185 DOI: 10.3389/fmicb.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lactococcus lactis is a gram positive facultative anaerobe widely used in the dairy industry and human health. L. lactis subsp. lactis NCDO 2118 is a strain that exhibits anti-inflammatory and immunomodulatory properties. In this study, we applied a label-free shotgun proteomic approach to characterize and quantify the NCDO 2118 proteome in response to variations of temperature and oxygen bioavailability, which constitute the environmental conditions found by this bacterium during its passage through the host gastro-intestinal tract and in other industrial processes. From this proteomic analysis, a total of 1,284 non-redundant proteins of NCDO 2118 were characterized, which correspond to approximately 54% of its predicted proteome. Comparative proteomic analysis identified 149 and 136 proteins in anaerobic (30°C and 37°C) and non-aerated (30°C and 37°C) conditions, respectively. Our label-free proteomic analysis quantified a total of 1,239 proteins amongst which 161 proteins were statistically differentially expressed. Main differences were observed in cellular metabolism, stress response, transcription and proteins associated to cell wall. In addition, we identified six strain-specific proteins of NCDO 2118. Altogether, the results obtained in our study will help to improve the understanding about the factors related to both physiology and adaptive processes of L. lactis NCDO 2118 under changing environmental conditions.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Siomar Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Cassiana Severiano Sousa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Felipe Luis Pereira
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Henrique Figueiredo
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Damnjanovic D, Harvey M, Bridge WJ. Application of colony BOXA2R-PCR for the differentiation and identification of lactic acid COCCI. Food Microbiol 2019; 82:277-286. [PMID: 31027784 DOI: 10.1016/j.fm.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/15/2022]
Abstract
Repetitive-PCR (rep-PCR) is a well-established genetic method for bacterial strain fingerprinting that is used mostly with REP, ERIC, (GTG)5, BOXA1R and occasionally BOXA2R repetitive primers. In this study, it was demonstrated that BOXA2R-PCR could effectively discriminate between Lactococcus lactis, Leuconostoc mesenteroides and Streptococcus thermophilus; differentiate Lactococcus lactis strains and subspeciate them into lactis and cremoris in a single reaction; generate unique strain fingerprints of various lactic acid bacteria (LAB species) commonly isolated from fermented dairy products, including occasional spoilage bacteria and yeasts. Furthermore, using direct colony PCR a reproducible and rapid method was developed for the differentiation and identification of lactic acid cocci. The simplicity and speed of this microbial identification method has potential practical value for dairy microbiologists, which was demonstrated through a microbiota investigation of select Australian retail dairy products.
Collapse
Affiliation(s)
- Dragica Damnjanovic
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Melissa Harvey
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|